## Department of Mechanical Engineering

| 1.  | MAN-001  | Mathematics-1                          | BSC                                | 4 |  |  |  |
|-----|----------|----------------------------------------|------------------------------------|---|--|--|--|
| 2.  | PHN-001  | Mechanics                              | BSC                                | 4 |  |  |  |
| 3.  | CEN-105  | Introduction to Environmental Studies  | GSC                                | 3 |  |  |  |
| 4.  | HS-001A  | Communication Skills (Basic)           | HSSC                               | 2 |  |  |  |
| 5.  | HS-001B  | Communication Skills (Advance)         | ommunication Skills (Advance) HSSC |   |  |  |  |
| 6.  | HSN-002  | Ethics and General Awareness           | thics and General Awareness HSSC   |   |  |  |  |
| 7.  | MIN-101A | Introduction to Mechanical Engineering | DCC                                | 2 |  |  |  |
| 8.  | MIN-103  | Programming and Data Structure         | ESC                                | 4 |  |  |  |
| 9.  | MAN-004  | Numerical Methods                      | BSC                                | 4 |  |  |  |
| 10. | PHN-008  | Electromagnetic Theory                 | BSC                                | 4 |  |  |  |
| 11. | MIN-104  | Manufacturing Technology-I             | Manufacturing Technology-I DCC     |   |  |  |  |
| 12. | MIN-106  | Engineering Thermodynamics DCC         |                                    | 4 |  |  |  |
| 13. | MIN-108  | Mechanical Engineering Drawing DCC     |                                    | 4 |  |  |  |
| 14. | MTN-106  | Material Science                       | ESC                                | 4 |  |  |  |
| 15. | CEN-102  | Solid Mechanics ESC                    |                                    | 4 |  |  |  |
| 16. | MIN-201  | Kinematics of Machines                 | DCC                                | 4 |  |  |  |
| 17. | MIN-203  | Manufacturing Technology-II DCC        |                                    | 4 |  |  |  |
| 18. | MIN-205  | Fluid Mechanics                        | DCC                                | 4 |  |  |  |
| 19. | MIN-291  | Engineering Analysis and Design        | DCC                                | 4 |  |  |  |
| 20. | EEN-112  | Electrical Science                     | ESC                                | 4 |  |  |  |
| 21. | MIN-204  | Machine Drawing                        | DEC                                | 4 |  |  |  |
| 22. | MIN-206  | Mechanics of Materials                 | DEC                                | 4 |  |  |  |
| 23. | MIN-208  | Theory of Production Processes         | DCC                                | 4 |  |  |  |
| 24. | MIN-210  | Energy Conversion                      | DCC                                | 4 |  |  |  |

| 25. | MIN-301 | Dynamics of Machines                       | 4   |   |
|-----|---------|--------------------------------------------|-----|---|
| 26. | MIN-303 | Principles of Industrial Engineering       | DCC | 4 |
| 27. | MIN-305 | Heat and Mass Transfer                     | DCC | 4 |
| 28. | MIN-302 | Machine Design                             | DEC | 4 |
| 29. | MIN-304 | Fluid Machinery                            | 4   |   |
| 30. | MIN-305 | Heat and Mass Transfer                     | 4   |   |
| 31. | MIN-209 | Thermal Engineering                        | 4   |   |
| 32. | MIN-211 | Theory of Machines                         | DCC | 4 |
| 33. | MIN-212 | Machine Design                             | DCC | 4 |
| 34. | MIN-214 | Engineering Economy                        | DCC | 4 |
| 35. | MIN-216 | Theory of Production Processes - I         | DCC | 4 |
| 36. |         |                                            |     |   |
| 37. | MIN-309 | Theory of Production Processes - II        | DCC | 4 |
| 38. | MIN-310 | Quality Management DCC                     |     | 4 |
| 39. | MIN-311 | Operations Research                        | DCC | 4 |
| 40. | MIN-312 | Operations Management                      | 4   |   |
| 41. | MIN-313 | Work System Design DCC                     |     |   |
| 42. | MIN-320 | Automobile Engineering                     | DEC | 4 |
| 43. | MIN-321 | Vibrations and Noise                       | DEC | 4 |
| 44. | MIN-322 | Principles of Lubrication Technology       | DEC | 4 |
| 45. | MIN-323 | Design of Pressure Vessels and Piping      | DEC | 4 |
| 46. | MIN-324 | FEM Applications in Mechanical Engineering | DEC | 4 |
| 47. | MIN-325 | Numerical Methods in Manufacturing         | DEC | 4 |
| 48. | MIN-327 | Reverse Engineering                        | DEC | 4 |

| 49. | MIN-328 | Manufacturing System Analysis               | Manufacturing System Analysis DEC |   |  |  |  |  |
|-----|---------|---------------------------------------------|-----------------------------------|---|--|--|--|--|
| 50. | MIN-329 | Computer Integrated Manufacturing           | DEC                               | 4 |  |  |  |  |
| 51. | MIN-330 | Ergonomics                                  | DEC                               | 4 |  |  |  |  |
| 52. | MIN-331 | Total Quality Management                    | DEC                               | 4 |  |  |  |  |
| 53. | MIN-332 | Industrial Hazards and Safety               | Idustrial Hazards and Safety DEC  |   |  |  |  |  |
| 54. | MIN-333 | Industrial Management                       | DEC                               | 4 |  |  |  |  |
| 55. | MIN-334 | Facilities Design                           | DEC                               | 4 |  |  |  |  |
| 56. | MIN-335 | Concurrent Engineering                      | DEC                               | 4 |  |  |  |  |
| 57. | MIN-336 | Financial Management                        | DEC                               | 4 |  |  |  |  |
| 58. | MIN-337 | Processing of Non-Metals                    | DEC                               | 4 |  |  |  |  |
| 59. | MIN-338 | Measurement & Instrumentation               | DEC/DHC                           | 4 |  |  |  |  |
| 60. | MIN-339 | Heat Exchangers                             | DEC/DHC                           | 4 |  |  |  |  |
| 61. | MIN-340 | Refrigeration & Air-conditioning            | DEC/DHC                           | 4 |  |  |  |  |
| 62. | MIN-341 | Thermal System Design                       | DEC/DHC                           | 4 |  |  |  |  |
| 63. | MIN-342 | Environnemental Pollution & Control         | DEC                               | 4 |  |  |  |  |
| 64. | MIN-343 | Power Plants                                | DEC                               | 4 |  |  |  |  |
| 65. | MIN-344 | Industrial Combustion                       | DEC/DHC                           | 4 |  |  |  |  |
| 66. | MIN-345 | Compressible Flow                           | DEC/DHC                           | 4 |  |  |  |  |
| 67. | MIN-346 | Waste Heat Recovery Systems                 | DEC/DHC                           | 4 |  |  |  |  |
| 68. | MIN-349 | Fire Dynamics                               | DEC/DHC                           | 4 |  |  |  |  |
| 69. | MIN-352 | Experimental Methods in Thermal Engineering | DEC/DHC                           | 4 |  |  |  |  |
| 70. | MIN-354 | Surface Engineering                         | DEC                               | 4 |  |  |  |  |
| 71. | MIN-355 | Building Ventilation&Air-conditioning       | GSEC                              | 4 |  |  |  |  |
| 72. | MIN-357 | Combustion Science & Technology             | GSEC                              | 3 |  |  |  |  |

| 73. | MIN-359 | Fundamentals of Sound and Vibration                           | Fundamentals of Sound and Vibration DEC                                 |   |  |  |  |  |
|-----|---------|---------------------------------------------------------------|-------------------------------------------------------------------------|---|--|--|--|--|
| 74. | MIN-410 | Product and Process Optimization                              | DEC                                                                     | 4 |  |  |  |  |
| 75. | MIN-411 | Maintenance Techniques for Rotating<br>Components             | DEC                                                                     | 4 |  |  |  |  |
| 76. | MIN-412 | Vehicle Dynamics                                              | DEC                                                                     | 4 |  |  |  |  |
| 77. | MIN-413 | MEMS                                                          | DEC                                                                     | 4 |  |  |  |  |
| 78. | MIN-415 | Piping Technology                                             | DEC                                                                     | 4 |  |  |  |  |
| 79. | MIN-416 | Nonlinear Dynamics                                            | nlinear Dynamics DEC ergy and Variational Principles in Engineering DEC |   |  |  |  |  |
| 80. | MIN-417 | Energy and Variational Principles in Engineering<br>Mechanics | DEC                                                                     | 4 |  |  |  |  |
| 81. | MIN-445 | Value Engineering                                             | DEC                                                                     | 4 |  |  |  |  |
| 82. | MIN-500 | I-500 Instrumentation and Measuring Systems                   |                                                                         | 4 |  |  |  |  |
| 83. | MIN-502 | Robotics and Control                                          | DEC                                                                     | 4 |  |  |  |  |
| 84. | MIN-508 | Advanced Automatic Controls DEC                               |                                                                         | 4 |  |  |  |  |
| 85. | MIN-509 | Extended Finite Element Methods                               | DEC                                                                     | 4 |  |  |  |  |
| 86. | MIN-516 | Artificial Intelligence                                       | DEC                                                                     | 4 |  |  |  |  |
| 87. | MIN-523 | Renewable Energy Systems                                      | DEC/DHC                                                                 | 4 |  |  |  |  |
| 88. | MIN-524 | Two Phase Flow and Heat Transfer                              | DEC/DHC                                                                 | 4 |  |  |  |  |
| 89. | MIN-525 | Solar Energy                                                  | DEC/DHC                                                                 | 4 |  |  |  |  |
| 90. | MIN-526 | Advanced Gas Dynamics                                         | DEC/DHC                                                                 | 4 |  |  |  |  |
| 91. | MIN-527 | Computational Fluid Dynamics and Heat DEC/DHC<br>Transfer     |                                                                         | 4 |  |  |  |  |
| 92. | MIN-528 | Boundary Layer Theory                                         | DEC/DHC                                                                 | 4 |  |  |  |  |
| 93. | MIN-529 | Turbulent Flows                                               | PEC                                                                     | 4 |  |  |  |  |
| 94. | MIN-530 | Cold Preservation of Food                                     | DEC/DHC                                                                 | 4 |  |  |  |  |

| 95.  | MIN-531 | Hydrodynamic Machines                          | 4                                          |   |  |  |  |  |
|------|---------|------------------------------------------------|--------------------------------------------|---|--|--|--|--|
| 96.  | MIN-532 | Renewable Energy Systems                       | RASE                                       | 4 |  |  |  |  |
| 97.  | MIN-533 | Refrigeration & Air-conditioning System Design | DEC/DHC                                    | 4 |  |  |  |  |
| 98.  | MIN-534 | Air-conditioning and Ventilation               | DEC/DHC                                    | 4 |  |  |  |  |
| 99.  | MIN-535 | Cryogenic Systems                              | DEC/DHC                                    | 4 |  |  |  |  |
| 100. | MIN-536 | Convective Heat & Mass Transfer                | Convective Heat & Mass Transfer RASE       |   |  |  |  |  |
| 101. | MIN-537 | I.C. Engines                                   | 4                                          |   |  |  |  |  |
| 102. | MIN-539 | Micro & Nano Scale Thermal Engineering         | Micro & Nano Scale Thermal Engineering PEC |   |  |  |  |  |
| 103. | MIN-540 | Combustion                                     | DEC/DHC                                    | 4 |  |  |  |  |
| 104. | MIN-541 | Bio – fluid Mechanics                          | PEC                                        | 4 |  |  |  |  |
| 105. | MIN-542 | Energy Management                              | DEC/DHC                                    | 4 |  |  |  |  |
| 106. | MIN-543 | Fluid Power Engineering                        | DEC                                        | 4 |  |  |  |  |
| 107. | MIN-544 | Design of Heat Exchangers DEC/DHC              |                                            | 4 |  |  |  |  |
| 108. | MIN-545 | Fuel Cells DCC/DHC                             |                                            | 4 |  |  |  |  |
| 109. | MIN-550 | Advanced Machine Design                        | Advanced Machine Design DEC                |   |  |  |  |  |
| 110. | MIN-551 | Dynamics of Mechanical Systems                 | DEC                                        | 4 |  |  |  |  |
| 111. | MIN-553 | Industrial Tribology                           | DEC                                        | 4 |  |  |  |  |
| 112. | MIN-554 | Computer Aided Mechanism Design                | DEC                                        | 4 |  |  |  |  |
| 113. | MIN-555 | Experimental Stress Analysis                   | DEC                                        | 4 |  |  |  |  |
| 114. | MIN-556 | Dynamics of Road Vehicles                      | DEC                                        | 4 |  |  |  |  |
| 115. | MIN-558 | Fracture Mechanics                             | DEC                                        | 4 |  |  |  |  |
| 116. | MIN-559 | Computer Aided Design                          | DEC                                        | 4 |  |  |  |  |
| 117. | MIN-560 | Mechanics of Composite Materials               | DEC                                        | 4 |  |  |  |  |
| 118. | MIN-561 | Advanced Mechanical Vibrations                 | DEC                                        | 4 |  |  |  |  |

| 119. | MIN-562 | Noise Control in Mechanical Systems DEC       |     |   |  |  |  |
|------|---------|-----------------------------------------------|-----|---|--|--|--|
| 120. | MIN-563 | Mechatronics                                  | DEC | 4 |  |  |  |
| 121. | MIN-565 | Smart Materials, Structures and Devices       | DEC | 4 |  |  |  |
| 122. | MIN-566 | Computer Aided Analysis of Mechanical Systems | DEC | 4 |  |  |  |
| 123. | MIN-567 | Computer Graphics                             | DEC | 4 |  |  |  |
| 124. | MIN-568 | Advanced Robotics                             | 4   |   |  |  |  |
| 125. | MIN-573 | Design for Manufacturability                  | DEC | 4 |  |  |  |
| 126. | MIN-574 | Maintenance Management                        | DEC | 4 |  |  |  |
| 127. | MIN-575 | Product Design and Development                | DEC | 4 |  |  |  |
| 128. | MIN-576 | Machine Tool Design and Numerical Control     | DEC | 4 |  |  |  |
| 129. | MIN-577 | Industrial Automation                         | DEC | 4 |  |  |  |
| 130. | MIN-578 | Computer Aided Process Planning               | DEC | 4 |  |  |  |
| 131. | MIN-579 | Information Systems & Data Management         | DEC | 4 |  |  |  |
| 132. | MIN-580 | Welding Science                               | DEC | 4 |  |  |  |
| 133. | MIN-581 | Manufacturing Resources Management            | DEC | 4 |  |  |  |
| 134. | MIN-582 | Flexible Manufacturing Systems                | DEC | 4 |  |  |  |
| 135. | MIN-583 | Materials Management                          | DEC | 4 |  |  |  |
| 136. | MIN-584 | Operations Research                           | DEC | 4 |  |  |  |
| 137. | MIN-585 | Supply Chain Management                       | DEC | 4 |  |  |  |
| 138. | MIN-586 | Metal Forming                                 | DEC | 4 |  |  |  |
| 139. | MIN-587 | Metal Casting                                 | DEC | 4 |  |  |  |
| 140. | MIN-588 | Non-Traditional Machining Processes           | DEC | 4 |  |  |  |
| 141. | MIN-593 | Non Conventional Welding Processes            | DEC | 4 |  |  |  |
| 142. | MIN-594 | Safety Aspect of Welded Structures            | DEC | 4 |  |  |  |

| 143. | MIN-595 | Failure Analysis of Welding Joints                | DEC | 4 |
|------|---------|---------------------------------------------------|-----|---|
| 144. | MIN-596 | Automation and Application of Robotics in Welding | DEC | 4 |
| 145. | MIN-597 | Welding Procedure for Specific Applications       | DEC | 4 |
| 146. | MIN-598 | Weldability of Metals                             | DEC | 4 |
| 147. | MIN-599 | Surface Engineering                               | DEC | 4 |
| 148. | MIN-205 | Fluid Mechanics                                   | DCC | 4 |

| NA | ME OF DEPTT/CENTR       | RE:    | Department of Civil Engineering |      |    |              |        |
|----|-------------------------|--------|---------------------------------|------|----|--------------|--------|
| 1. | Subject code: CEN-102   | 2      | Course Title: Solid Mechanics   |      |    |              |        |
| 2. | Contact Hours: L:       | 3      | <b>T: 1</b>                     | P:   | 0  |              |        |
| 3. | Examination Duration () | Hrs):  | Theory:                         | 3    |    | Practical:   | 0      |
| 4. | Relative Weightage: C   | WS: 25 | PRS: 0                          | MTE: | 25 | ETE: 50      | PRE: 0 |
| 5. | Credits: 4              | 6. Se  | emester: Spring                 |      | 7. | Subject Area | a: ESC |

- 8. Pre-requisite: Nil
- 9. Objective : To introduce the concepts of equilibrium and deformation in components, and structures for engineering design.
- 10. Details of Course :

| S. No. | Contents                                                           | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------|----------------------|
| 1.     | Analysis of Stresses and Strains : Concept of stress, normal       | 08                   |
|        | stress and shear stress, nine Cartesian components of stress at a  |                      |
|        | point, sign convention and notation, equality of shear stresses    |                      |
|        | on mutually perpendicular planes and their planes of action,       |                      |
|        | stress circle; Concept of strain, normal and shear strain, two     |                      |
|        | dimensional state of strain, Poisson's ratio, volumetric strain,   |                      |
|        | strain circle, Concept of strain energy                            |                      |
| 2.     | Stress-Strain Relationships : Hooke's law and its application      | 02                   |
|        | to isotropic materials, elastic constants and their relationships, |                      |
|        | plane stress and plain strain conditions.                          |                      |
| 3.     | Mechanical Properties : Uniaxial tension test to determine         | 02                   |
|        | yield and ultimate strength of materials, stress-strain diagram,   |                      |
|        | proof stress, ductile and brittle materials, hardness and impact   |                      |
|        | strength; Conditions affecting mechanical behaviour of             |                      |
|        | engineering materials                                              |                      |
| 4.     | Members in Uniaxial State of Stress : Uniform cross-section        | 04                   |
|        | and tapered bars subjected to uniaxial tension and                 |                      |
|        | compression, composite bars and statically indeterminate bars,     |                      |
|        | thermal stresses; Introduction to plasticity; S.E. under axial     |                      |
|        | loading.                                                           |                      |
| 5.     | Members Subjected to Axi-Symmetric Loads : Stresses and            | 02                   |
|        | strains in thin cylindrical shells and spheres under internal      |                      |
|        | pressure, stresses in thin rotating rings.                         |                      |
| 6.     | Members Subjected to Torsional Loads : Torsion of solid            | 02                   |
|        | and hollow circular shafts, stepped and composting shafts,         |                      |
|        | close-coiled helical springs subjected to axial loads, S.E. in     |                      |

|     | torsion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7.  | <b>Members S ubjected t o Flexural L oads :</b> Statically determinate beams, support reactions, relationship between load, shear force and bending moment, shear force and bending moment diagrams; Theory of flexure for initially straight beams, distribution of bending stresses across the beam cross-section, principal stresses in beams; Equation of elastic curve for the loaded beam, relationship between bending moment, slope and deflection; Calculation of deflection by integration, moment area and unit-load methods, S.E. in flexure. | 15 |
| 8.  | <b>Members Subj ected t o Combined L oads :</b> Short struts subjected to eccentric loads, shafts subjected to combined bending, torsion and axial thrust, concept of theory of failure.                                                                                                                                                                                                                                                                                                                                                                  | 02 |
| 9.  | <b>Elastic S tability of C olumns :</b> Euler's theory of initially straight columns, critical loads for different end condition of columns, eccentric loading, columns with small initial curvature, empirical formulae.                                                                                                                                                                                                                                                                                                                                 | 02 |
| 10. | <b>Stresses i n B eams (Advance T opics) :</b> Composite beams,<br>Transformed section method, Bending of unsymmetric beams,<br>The shear-center concept.                                                                                                                                                                                                                                                                                                                                                                                                 | 03 |
|     | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42 |

| S. No. | Name of Authors / Books / Publishers                             | Year of              |
|--------|------------------------------------------------------------------|----------------------|
|        |                                                                  | <b>Publication</b> / |
|        |                                                                  | Reprint              |
| 1.     | Gere, J.M. and Goodno, B.J., "Strength of Materials", Indian     | 2009                 |
|        | Edition (4th reprint), Cengage Learning India Private Ltd.       |                      |
| 2.     | Beer, F.P., Johuston, Jr., E.R., Dewolf, J.T. and Mazureu, D.E., | 2009                 |
|        | "Mechanics of Materials", Fifth Edition, McGraw Hill.            |                      |
| 3.     | Hibbeler, R.C., "Mechanics of Materials", Sixth Edition,         | 2005                 |
|        | Pearson.                                                         |                      |
| 4.     | Crandall, S.H., Dahl, N.C. and Lardner, T.J., "An Introduction   | 1999                 |
|        | to the Mechanics of Solids", 2nd Edition, McGraw Hill.           |                      |
| 5.     | Timoshenko, S.P. and Young, D.H., "Elements of Strength of       | 2009                 |
|        | Materials", Fifth Edition, (In MKS Units), East-West Press Pvt.  | (reprint)            |
|        | Ltd.                                                             |                      |

| NAME OF DEPTT./0     | CENTRE:     | Department of Electrical Engineering |           |              |        |
|----------------------|-------------|--------------------------------------|-----------|--------------|--------|
| 1. Subject Code: EE  | CN-112      | Course Title:                        | Electrica | ll Science   |        |
| 2. Contact Hours:    | L: 3        | T: 1                                 |           | P: 2/2       |        |
| 3. Examination Durat | ion (Hrs.): | Theory: 3                            |           | Practical: 0 | )      |
| 4. Relative Weight:  | CWS: 15     | PRS: 15                              | MTE: 30   | ETE: 40      | PRE: 0 |
| 5. Credits: 4        | 6. Set      | mester: Both                         | 7.        | Subject Area | : ESC  |

8. Pre-requisite: NIL

- 9. O bjective: To introduce the s tudents to the f undamentals of E lectrical E ngineering concepts of network analysis, principles of electrical machines, basics of electrical measurement and measuring instruments.
- 10. Details of Course:

| S. No. | Contents                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------|----------------------|
| 1.     | Energy Resources an dU tilization: Conventional a nd non -              | 5                    |
|        | conventional ene rgy r esources; Introduction to electrical ene rgy     |                      |
|        | generation from di fferent re sources, transmission, di stribution a nd |                      |
|        | utilization.                                                            |                      |
| 2.     | Network F undamentals: T ypes of S ources a nd e lements,               | 5                    |
|        | Kirchoff's Laws, M esh a nd N ode A nalysis o f D .C. N etworks,        |                      |
|        | Network T heorems: T hevenin's T heorem, N orton's T heorem,            |                      |
|        | Superposition T heorem, M aximum P ower T heorem, S tar-Delta           |                      |
|        | Transformation.                                                         |                      |
| 3.     | A.C. F undamentals: C oncept of phasor, impedance and                   | 4                    |
|        | admittance; Mesh a nd N ode a nalysis of A C networks; Network          |                      |
|        | theorems in AC networks; Active and reactive power in AC circuits;      |                      |
|        | Resonance in series AC circuits; Power factor correction.               |                      |
| 4.     | Three-phase A.C. Circuits: A nalysis of 3 -phase ba lanced start-       | 2                    |
|        | delta circuits, Power in 3-phase Circuits.                              |                      |
| 5.     | Measurement of Electrical Quantities: Measurement of Voltage,           | 5                    |
|        | Current, and Power; Measurement of 3 phase power; Energy meters.        |                      |
| 6.     | Single P hase T ransformer: Introduction to magnetic circuit            | 5                    |
|        | concepts, Basic constructional features, operating principle, phasor    |                      |
|        | diagram, e quivalent c ircuit, vol tage r egulation; Eddy current a nd  |                      |
|        | Hysteresis losses, efficiency; Open circuit and Short Circuit tests.    |                      |

| 7. | <b>D.C. Machines</b> : Principle of operation, constructional features; Emf and torque equations; Types of excitation; Generator characteristics; Starting and speed control of D.C. motors.                                                                                                | 5  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8. | <b>AC Machines</b> : Three-phase Induction Motor - Operating principle, constructional f eatures, torque-speed ch aracteristics, starting and speed control; Single-phase Induction Motor - Operating principle, constructional f eatures, t orque-speed characteristics, starting methods. | 5  |
| 9. | <b>Industrial A pplications an d C ontrol: V</b> arious i ndustrial l oads, traction, heating, lighting; C oncept o f pow er e lectronic control of AC and DC motors.                                                                                                                       | 6  |
|    | Total                                                                                                                                                                                                                                                                                       | 42 |

| S. No. | Name of Authors / Books / Publishers                                        | Year of<br>Publication/<br>Reprint |
|--------|-----------------------------------------------------------------------------|------------------------------------|
| 1.     | Mukhopadhyaya P., P ant A.K., K umar V. a nd C hittore D.S.,                | 1997                               |
|        | "Elements of Electrical Science", M/s Nem Chand & Brothers.                 |                                    |
| 2.     | Vincent Del Toro, "Electrical Engineering Fundamentals", Prentice           | 2002                               |
|        | Hall of India.                                                              |                                    |
| 3.     | Dubey G. K., "Fundamentals of Electric Drives", 2 <sup>nd</sup> Ed., Narosa | 2007                               |
|        | Publishing House.                                                           |                                    |
| 4.     | Alexander C .K., S adiku M .N.O., "Fundamentals of E lectric                | 2012                               |
|        | Circuits", McGraw Hill, 5 <sup>th</sup> Edition.                            |                                    |
| 5.     | Chapman, S tephen, J., "Electric M achinery F undamentals",                 | 1985                               |
|        | McGraw Hill Book Company.                                                   |                                    |
| 6.     | Hughes E dward, "Electrical & E lectronic T echnology", Pearson             | 2002                               |
|        | Publishing, 8 <sup>th</sup> edition.                                        |                                    |

| NAME OF DEPTT./CENTRE: |                      |              | Depa       | artment of ] | Mathematics   |         |
|------------------------|----------------------|--------------|------------|--------------|---------------|---------|
| 1.                     | Subject Code: MAN-(  | 004          | Сол        | urse Title:  | Numerical N   | lethods |
| 2.                     | Contact Hours: L: 3  |              | T:1        | P            | : 0           |         |
| 3.                     | Examination Duration | (Hrs.): Theo | ory: 3     | Practi       | cal: 0        |         |
| 4.                     | Relative Weightage:  | CWS: 25      | PRS: 0     | MTE: 25      | ETE: 50       | PRE: 0  |
| 5.                     | Credits: 4           | 6. Semeste   | er: Spring | 7.           | Subject Area: | BSC     |

- 8. Pre-requisite: Nil
- 9. Objective: To introduce various numerical methods to get approximation solutions.
- 10. Details of Course:

| S.No. | Contents                                                                                    | <b>Contact Hours</b> |
|-------|---------------------------------------------------------------------------------------------|----------------------|
| 1     | Error A nalysis: E xact a nd a pproximate nu mbers, R ounding of                            | 3                    |
|       | numbers, Significant di gits, C orrect di gits, va rious t ypes of e rrors                  |                      |
|       | encountered in computations, Propagation of errors.                                         |                      |
| 2     | <b>Solution of system of linear e quations</b> : (i) D irect me thods: G auss               | 8                    |
|       | elimination m ethod w ithout pi voting a nd with pi voting, LU-                             |                      |
|       | decomposition method. (ii) Iterative methods: Jacobi and Gauss-Seidel                       |                      |
|       | methods.                                                                                    |                      |
| 3     | <b>Roots of n on-linear e quations</b> : B isection m ethod, R egula-Falsi                  | 6                    |
|       | method, N ewton-Raphson m ethod, d1 rect 1 terative m ethod w 1th                           |                      |
|       | convergence criteria, Newton-Raphson method for solution of a pair of                       |                      |
|       | non-linear equations.                                                                       |                      |
| 4     | <b>Eigen val ues an d Eigen vectors</b> : D ominant a nd smallest Eigen                     | 3                    |
|       | values/Eigen vectors by power method.                                                       |                      |
| 5     | <b>Interpolation</b> : F inite difference ope rator and their r elationships,               | 6                    |
|       | difference tables, Newton, Bessel and Stirling's interpolation formulae,                    |                      |
|       | Divided di fferences, Lagrange i interpolation a nd N ewton's di vided                      |                      |
|       | difference interpolation.                                                                   |                      |
| 6     | Numerical d inferentiation: F irst and s econd order de rivatives b y                       | 4                    |
|       | various interpolation formulae.                                                             |                      |
| 7.    | Numerical integration: Trapezoidal, S impsons 1/3 <sup>rd</sup> and 3/8 <sup>rd</sup> rules | 6                    |
|       | with e rrors and t heir c ombinations, G auss Legendre 2 -points and 3 -                    |                      |
|       | points formulae                                                                             |                      |
| 8.    | Solution of first and second order or dinary differential equations:                        | 4                    |
|       | Picard's method, Taylor's series method, Euler, Modified Euler, Runge-                      |                      |
|       | Kutta methods and Milne's method.                                                           |                      |
| 9.    | Case studies                                                                                | 2                    |
|       | Total                                                                                       | 42                   |

| S.No. | Name of Authors / Books / Publishers                                              | Year of              |
|-------|-----------------------------------------------------------------------------------|----------------------|
|       |                                                                                   | <b>Publication</b> / |
|       |                                                                                   | Reprint              |
| 1     | Gerald, C. F. and Wheatly, P. O.," Applied N umerical A nalysis", 6 <sup>th</sup> | 2002                 |
|       | Edition, Wesley.                                                                  |                      |
| 2     | Jain, M. K., Iyengar, S. R. K. and Jain, R. K., "Numerical Methods for            | 2000                 |
|       | Scientific and Engineering Computation", New Age Pvt. Pub, New Delhi.             |                      |
| 3     | Conte, S. D. and DeBoor, C., "Elementary Numerical Analysis", McGraw-             | 1982                 |
|       | Hill Publisher                                                                    |                      |
| 4     | Krishnamurthy, E. V. & Sen, S. K., "Applied Numerical Analysis", East             | 1998                 |
|       | West Publication.                                                                 |                      |



9. Objective: To introduce the field of mechanical engineering and its applications in analysis, design, and manufacture of mechanical products and systems.

| S. No. | Contents                                                                         | Contact |  |
|--------|----------------------------------------------------------------------------------|---------|--|
|        |                                                                                  | Hours   |  |
| 1.     | Overview of Mech anical E ngineering: Role of m echanical en gineers,            | 2       |  |
|        | tools in ME, skills and abilities, ethics in engineering, intellectual property. | L       |  |
| 2.     | History of machines and mechanisms.                                              | 2       |  |
| 3.     | Design as a creative problem-solving process: phases of design, design           | 4       |  |
|        | philosophy, design for success, materials in design.                             | L       |  |
| 4.     | Electromechanical systems: Fundamentals of electromechanical systems,            | 2       |  |
|        | the need for control systems.                                                    | L       |  |
| 5.     | Energy C onversion: History of e nergy conversion, overview of                   | 5       |  |
|        | thermodynamics, mechanical energy, work and power, energy conservation           | 1       |  |
|        | and c onversion, he at e ngines and efficiency, sustainable ene rgy; Case        | l       |  |
|        | Study 1: I nternal-Combustion E ngines; Case S tudy 2: E lectrical P ower        |         |  |
|        | Generation; Automobile Engineering.                                              | 1       |  |
| 6.     | Overview of F luid Mechanics: Properties of fluids, pressure a nd                | 3       |  |
|        | buoyancy, laminar and turbulent flows, fluid flow in pipes, drag and lift.       | L       |  |
| 7.     | Introduction to Manufacturing Processes: Casting, machining, welding.            | 8       |  |
| 8.     | Recent trends in mechanical engineering.                                         | 2       |  |
|        | Total                                                                            | 28      |  |

| <b>S.</b> | Name of Books / Authors/ Publishers                                             | Year of              |
|-----------|---------------------------------------------------------------------------------|----------------------|
| No.       |                                                                                 | <b>Publication</b> / |
|           |                                                                                 | Reprint              |
| 1.        | Wickert, J. a nd Lewis, K., " An Introduction t o M echanical                   | 2012                 |
|           | Engineering", 3 <sup>rd</sup> Edition, Cengage Learning                         |                      |
| 2.        | Kalpakjian, S., S chmid, S. R., "Manufacturing E ngineering and                 | 2013                 |
|           | Technology", 7 <sup>th</sup> Edition, Pearson Education                         |                      |
| 3.        | Groover, M. P., "Automation, P roduction S ystems, a nd C omputer               | 2008                 |
|           | Integrated Manufacturing", 3 <sup>rd</sup> Edition, Pearson Education           |                      |
| 4.        | Bolton, W., "Mechatronics: Electronic Control Systems in Mechanical             | 2010                 |
|           | and Electrical Engineering", 5 <sup>th</sup> Edition, Pearson Education         |                      |
| 5.        | Bautista Paz, E., Ceccarelli, M., Echávarri Otero, J., Muñoz Sanz, J.L.,        | 2010                 |
|           | "A Brief Illustrated History of Machines and Mechanisms", Springer              |                      |
| 6.        | Shigley, J., Mischke, C., Budynas, R. and Nisbett, K., "Shigley's               | 2008                 |
|           | Mechanical Engineering Design", 8 <sup>th</sup> Edition, Tata McGraw Hill.      |                      |
| 7.        | Cengel, Y., "Introduction to Thermodynamics and Heat Transfer", 2 <sup>nd</sup> | 2007                 |
|           | Edition, McGraw Hill                                                            |                      |

NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering

- 1. Subject Code: MIN-103 Course Title: Programming and Data Structures T: 0 2. Contact Hours: L: 3 P: 2 3 0 3. Examination Duration (Hrs.): Theory Practical 4. Relative Weightage: CWS PRS PRE 15 15 MTE 30 ETE 40 0 7. Subject Area: ESC 5. Credits: 4 6. Semester: Autumn
- 8. Pre-requisite: Nil

9. Objective: To introduce the concepts of procedural and object oriented programming in C++ and its application to problem solving.

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | Introduction to Programming: Introduction to computer systems;         | 4                    |
|        | Data representation; Basic idea of program execution at micro level;   |                      |
|        | Concept of flow chart and algorithms, algorithms to programs.          |                      |
| 2.     | Basic Programming in C++: Constants, variables, expressions and        | 8                    |
|        | operations; Naming conventions and styles; Conditions and selection    |                      |
|        | statements; Looping and control s tructures; File I/O; H eader files,  |                      |
|        | string processing; Pre-processor directives such as #include, #define, |                      |
|        | #ifdef, #ifndef; Compiling and linking.                                |                      |
| 3.     | Programming Through F unctional D ecomposition: Functions              | 10                   |
|        | (void and value returning); Parameters passing by value, passing by    |                      |
|        | reference, passing by constant r eference; D esign of f unctions and   |                      |
|        | their i nterfaces ( concept of f unctional de composition), r ecursive |                      |
|        | functions, f unction ove rloading a nd d efault a rguments; Library    |                      |
|        | functions; Scope and lifetime of variables.                            |                      |
| 4.     | Data Structures: Fixed size data structures arrays and structures;     | 8                    |
|        | Pointers and dynamic data, relationship between pointers and arrays,   |                      |
|        | function poi nters, d ynamic a rrays; Introduction t o d ynamic da ta  |                      |
|        | structures linked lists, stacks, queues and binary trees.              |                      |
| 5.     | Object O riented Programming: Data hi ding, abstract da ta t ypes,     | 12                   |
|        | classes, access control; Class implementation – default constructor,   |                      |
|        | constructors, c opy constructor, de structor, op erator overloading,   |                      |
|        | friend function; Object oriented design, inheritance and composition;  |                      |
|        | Dynamic binding and virtual functions; Polymorphism.                   |                      |
|        | Total                                                                  | 42                   |

| S. No. | Name of Authors /Books /Publisher                                            | Year of     |
|--------|------------------------------------------------------------------------------|-------------|
|        |                                                                              | Publication |
| 1.     | Dietel, H.M. and Dietel, P.J., "C++ How to Program", 8th E dition,           | 2012        |
|        | Prentice Hall                                                                |             |
| 2.     | Spephan Prata, "C++ Primer Plus", 6 <sup>th</sup> Edition, Pearson Education | 2012        |
| 3.     | Venugopal, K. R., R ajkumar, B. and R avishankar, T., "Mastering             | 1997        |
|        | C++", Tata-McGraw Hill                                                       |             |
| 4.     | Prinz, U.K. and Printz, P., "A C omplete G uide t o Programming in           | 2002        |
|        | C++", Jones and Bartlett Learning                                            |             |

| NAME OF DEPARTMENT: |                               | Department of Mechanical & Industrial Engineering |            |                      |                 |
|---------------------|-------------------------------|---------------------------------------------------|------------|----------------------|-----------------|
| 1.                  | Subject Code: MIN-104         | Course Title: Manufacturing Technology – I        |            | y – I                |                 |
| 2.                  | Contact Hours : L: 2          | T: 0                                              |            | P: 4                 |                 |
| 3.                  | Examination Duration (Hrs.) : | Theory: 3                                         |            | Practical: 0         |                 |
| 4.                  | Relative Weightage : CWS: 0   | PRS: 25                                           | MTE: 25    | ETE: 50              | PRE: 0          |
| 5.                  | Credits: 4 6. Set             | mester : Both                                     | 7. Subject | Area: <b>Departn</b> | nent Core (DCC) |

- 8. Pre-requisite: Nil
- 9. Objectives of Course: To familiarize students with the principles of sheet metal forming, material removal and finishing operations.

| S. No. | Particulars                                                                | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------------|----------------------|
| 1      | Introduction : Classification of di fferent m anufacturing pr ocesses,     | 2                    |
|        | application areas and limitations, selection of a manufacturing process    |                      |
| 2      | Sheet Metal Forming: Introduction to sheet metal forming operations,       | 10                   |
|        | Types of presses, dr ives, O perations: s hearing be nding, s pinning,     |                      |
|        | embossing, blanking, c oining a nd deep dr awing. Die m aterials,          |                      |
|        | compound and progressive dies and punches. Construction details of die     |                      |
|        | set. Auxiliary equipments, safety devices.                                 |                      |
| 3      | Material Removal Processes: Classification of machining processes and      | 10                   |
|        | machine tool s. Tool's ma terials, different t ypes o f c utting tool s,   |                      |
|        | Nomenclature of single point and multipoint cutting tool. Concept of       |                      |
|        | cutting s peed, f eed a nd de pth of c ut. Coolants. D rilling, Boring and |                      |
|        | broaching m achines. Indexing he ad, m illing ope rations us ing s imple,  |                      |
|        | differential and compound indexing. Introduction to CNC Machines.          |                      |
| 4      | Abrasive Finishing: Operations and applications of surface, cylindrical    | 6                    |
|        | and c entreless g rinding pr ocesses; dressing, t ruing a nd ba lancing of |                      |
|        | grinding wheels; grading and selection of grinding wheels.                 |                      |
|        | Total                                                                      | 28                   |

List of Experiments:

| S. No. | Name of Experiment/Study                                |
|--------|---------------------------------------------------------|
| 1.     | Study of turret lathe                                   |
| 2.     | Study of grinding machines, attachments and accessories |
| 3.     | External threading on a given job on lathe machine      |
| 4.     | Internal threading on a given job on lathe machine      |
| 5.     | Taper turning on a given job on lathe machine           |
| 6.     | V-groove cutting on a gven job on lathe machine         |
| 7.     | Profile turning on a given job on lathe machine         |
| 8.     | Cutting teeth on a spur gear on milling machine         |
| 9.     | Helical milling on a given circular job                 |
| 10.    | Slot cutting on a given job on milling machine          |
| 11.    | Shaping operation on cast iron job                      |
| 12.    | Keyway cutting on a given job on slotting machine       |

| S.No. | Name of Authors / Books / Publishers                                   | Year of      |
|-------|------------------------------------------------------------------------|--------------|
|       |                                                                        | Publication/ |
|       |                                                                        | Reprint      |
| 1.    | DeGarmo, E. P, Black, J. T., Kohser, R. A. "Materials and Processes in | 1997         |
|       | Manufacturing", Prentice Hall of India Pvt. Limited                    |              |
| 2.    | Kalpakjian, S. and Schmid, S. R, "Manufacturing Engineering and        | 2000         |
|       | Technology", Pearson Education                                         |              |
| 3.    | Groover, M. P., "Fundamentals of Modern Manufacturing", John Wiley     | 2002         |
|       | and Sons Inc.                                                          |              |
| 4.    | Lindberg, R. A., "Processes and Materials of Manufacture", Prentice    | 1990         |
|       | Hall India Limited                                                     |              |
| 5.    | Rao, P. N., "Manufacturing Technology (Vol. 1&2)", Tata McGraw Hill    | 2009         |
|       |                                                                        |              |

#### NAME OF DEPTT./CENTRE: Department of Mechanical & Industrial Engineering

| 1. Subject Code: MI  | IN-106      | Course Title:  | Engineering | Thermodynam    | ics    |
|----------------------|-------------|----------------|-------------|----------------|--------|
| 2. Contact Hours:    |             | L: 3           | T: 1        | P: 2/2         |        |
| 3. Examination Durat | ion (Hrs.): | Theory: 3      | Pra         | ctical: 0      |        |
| 4. Relative Weight:  | CWS: 20     | PRS: 20        | MTE: 20     | ETE: 40        | PRE: 0 |
| 5. Credits: 4        | 6. Se       | mester: Spring | 7. Sub      | ject Area: DCC | /ESC   |

8. Pre-requisite: Nil

9. Objective: To familiarize the students with basic concepts of macroscopic thermodynamics.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                            | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Introduction to thermodynamic system, surrounding,                                                                                                                                                                                                                                                                                                                    | 3                    |
|        | state, process, properties, equilibrium, heat and work, Zeroth Law of                                                                                                                                                                                                                                                                                                               |                      |
|        | Thermodynamics                                                                                                                                                                                                                                                                                                                                                                      |                      |
| 2.     | Properties of Pure Simple Compressible Substance: PvT surface,                                                                                                                                                                                                                                                                                                                      | 6                    |
|        | Pv, Tv, TP di agrams. E quation of s tate f or i deal a nd r eal ga ses.                                                                                                                                                                                                                                                                                                            |                      |
|        | Virial equation of state, van der Waal equation, use of steam tables                                                                                                                                                                                                                                                                                                                |                      |
|        | and Mollier diagram                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 3.     | <b>First Law of Thermodynamics:</b> First law application to non-flow processes s uch as i sochoric, i sobaric, i sothermal, a diabatic a nd polytropic pr ocesses. Steady f low en ergy equ ation, f low w ork. Application to various practical systems viz. no zzles, di ffuser, turbines, he at e xchangers e tc. A pplication of energy e quation t o transient flow problems. | 7                    |
| 4.     | Second L aw of T hermodynamics: Second l aw, r eversible a nd                                                                                                                                                                                                                                                                                                                       | 6                    |
|        | irreversible p rocesses, Clausius a nd K elvin P lanck s tatements,                                                                                                                                                                                                                                                                                                                 |                      |
|        | Carnot cycle, corollaries of second law: thermodynamic temperature                                                                                                                                                                                                                                                                                                                  |                      |
|        | scale, C lausius i nequality, e ntropy as a p roperty, pr inciple o f                                                                                                                                                                                                                                                                                                               |                      |

|    | increase of entropy. Calculation of entropy change.                                                                                                                                                                                                |    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. | <b>Entropy and E xergy:</b> Entropy and its generation, entropy balance for closed system and for control volume basic concepts of exergy                                                                                                          | 5  |
|    | and i rreversibility, exergy for closed s ystem and c ontrol vol ume,<br>exegetic efficiency.                                                                                                                                                      |    |
| 6. | <b>Gas-Vapour M ixtures and A ir-conditioning:</b> Properties of ga s-<br>vapour m ixtures, a diabatic-saturation a nd w et-bulb t emperatures,<br>psychrometric chart, human comfort and air conditioning, various air<br>conditioning processes. | 4  |
| 7. | <b>Gas and Vapour Power Cycles:</b> Otto, Diesel, Dual, Stirling, Joule-<br>Brayton c ycle. T hermal ef ficiency and mean effective pr essure,<br>Rankine cycle.                                                                                   | 5  |
| 8. | <b>Refrigeration C ycles:</b> reverse C arnot c ycle, v apour c ompression refrigeration cycle.                                                                                                                                                    | 4  |
|    | TOTAL                                                                                                                                                                                                                                              | 42 |

#### List of Experiments:

- 1. Study of P-V-T surface of  $H_2O$  and  $CO_2$ .
- 2. Determine P-T relationship for steam and verify Clausius Clapeyron equation.
- 3. Determine the calorific value of coal using Bomb calorimeter.
- 4. Analysing exhaust gases using Orsat apparatus.
- 5. Determine Relative Humidity and Specific Humidity of air using Sling Psychrometer and Psychrometric Chart.
- 6. Determine COP of a vapour compression refrigeration unit.
- 7. Analysing different processes on an air conditioning unit.

| 11. Suggested B | ooks: |
|-----------------|-------|
|-----------------|-------|

| S. No. | Name of Books / Authors                                            | Year of     |
|--------|--------------------------------------------------------------------|-------------|
|        |                                                                    | Publication |
| 1.     | Borgnakke, C . a nd Sonntag, R .E., "F undamentals of              | 2011        |
|        | Thermodynamics," Wiley India                                       |             |
| 2.     | Cengel, Y.A. a nd Boles, M .A., "Thermodynamics an Engineering     | 2008        |
|        | Approach", Tata McGraw-Hill                                        |             |
| 3.     | Moran, M .J. a nd S hapiro, H .M., "Fundamentals of E ngineering   | 2010        |
|        | Thermodynamics", 4 <sup>th</sup> Ed., John Wiley                   |             |
| 4.     | Russel, L.D., Adebiyi, G. A.," Engineering Thermodynamics", Oxford | 2007        |
|        | University Press                                                   |             |
| 5.     | Arora, C.P., "Thermodynamics", Tata-McGraw Hill                    | 2001        |
| 6.     | Nag, P.K., "Engineering Thermodynamics", Tata-McGraw Hill          | 2005        |

| NAME OF DEPTT. /CENTRE:        | <b>Department</b> | Department of Mechanical and Industrial Engineering |         |  |
|--------------------------------|-------------------|-----------------------------------------------------|---------|--|
| 1. Subject Code: MIN-108       | Course Title:     | Mechanical Engineering Drawing                      |         |  |
| 2. Contact Hours: L: 2         | T: 0              | P: 4                                                |         |  |
| 3. Examination Duration (Hrs.) | Theory: 3         | Practical: 0                                        |         |  |
| 4. Relative Weightage: CWS     | : 0 PRS: 25       | MTE: 25 ETE: 50                                     | PRE: 0  |  |
| 5. Credits: <b>4</b> 6.        | Semester: Both    | 7. Subject Area: I                                  | DCC/ESC |  |

- 8. Pre-requisite: Nil
- 9. Objective: The course objective is to teach the basic concepts of Mechanical Engineering Drawing t ot hes tudents. The emphasis is on t o improve their power of imagination.
- 10. Details of Course:

| S. No. | Contents                                                    | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------|----------------------|
| 1      | General Instructions : Sheet Layout, Line Symbols and       | 1                    |
|        | Groups, Preferred Scales, Technical Sketching               |                      |
| 2      | Types of projections: Reference Planes and Quadrants,       | 2                    |
|        | Orthographic Projection                                     |                      |
| 3      | Projection of point and lines                               | 3                    |
| 4      | Projection of plane figures                                 | 2                    |
| 5      | Projection of solids                                        | 2                    |
| 6      | Section of solid and development                            | 2                    |
| 7      | Shape D escription(External): M ultiplanar R epresentation, | 2                    |
|        | Systems of Projection, Sketching of Orthographic Views      |                      |
|        | from Pictorial Views, Conventional Practices, Precedence    |                      |
|        | of Views, Precedence of Lines                               |                      |
| 8      | Uniplaner R epresentation: S ketching of P ictorial V iews  | 2                    |
|        | (Isometric and Oblique) f rom M ultiplaner O rthographic    |                      |
|        | Views                                                       |                      |
| 9      | Shape D escription (Internal): S ectioning a s an A id t o  | 3                    |
|        | Understanding internal features, Principles of Sectioning,  |                      |
|        | Types of Sections, Section Lines, Cutting Plane Lines and   |                      |
|        | Conventional Practices                                      |                      |
| 10     | Size D escription: D imensioning, T ools of D imensioning,  | 4                    |
|        | Size and Position Dimensions, Unidirectional and Aligned    |                      |
|        | Systems, Principle and Practices of Dimensioning,           |                      |
| 11     | Conventional R epresentation: R epresentation a nd          | 1                    |

|    | Identification of Common Machine Elements and Features |    |
|----|--------------------------------------------------------|----|
| 12 | Introduction to Solid Modeling                         | 4  |
|    | Total                                                  | 28 |

Practical Exercises:

| Topics                                                                | Practice              |
|-----------------------------------------------------------------------|-----------------------|
|                                                                       | <b>Classes of Two</b> |
|                                                                       | <b>Hour Duration</b>  |
| Projection of points and lines                                        | 04                    |
| Projection of plane figures                                           | 02                    |
| Projection of solids                                                  | 03                    |
| Section and development                                               | 02                    |
| Sketching of Orthographic Views from Pictorial Views                  | 04                    |
| Sketching of Pictorial Views (Isometric and Oblique) from Multiplanar | 04                    |
| Orthographic Views, Missing Lines Exercise, Missing Views Exercise    |                       |
| Sectioning Exercise                                                   | 02                    |
| Dimensioning exercise                                                 | 02                    |
| Identification Exercise                                               | 01                    |
| Solid Modeling, orthographic views from solid models                  | 04                    |

| S.No. | Name of Authors / Books / Publishers                         | Year of<br>Publication/ |
|-------|--------------------------------------------------------------|-------------------------|
|       |                                                              | Reprint                 |
| 1.    | Technical Drawing, Giesecke, Mitchell, Spencer, Hill, Dygdon | 2003                    |
|       | and Novak, Macmillan Publishing Company                      |                         |
| 2.    | Engineering G raphics, A. M. C handra and S atish C handra,  | 2003                    |
|       | Narosa Publishing House, New Delhi                           |                         |
| 3.    | Engineering Drawing and Graphics Technology, T.E. French,    | 1993                    |
|       | C.J. Vierck and R.J. Foster, McGraw-Hill Inc                 |                         |
| 4.    | Fundamentals of E ngineering D rawing, W .J. Luzadder, J.    | 1989                    |
|       | Warren and J.M. Duff, Prentice Hall International Editions   |                         |
| 5.    | SP 46: 1988 E ngineering D rawing P ractice for S chools and |                         |
|       | Colleges, Bureau of Indian standards                         |                         |

### NAME OF DEPARTMENT: Mechanical & Industrial Engineering

- 1. Subject Code: MIN-203 Course Title: MANUFACTURING TECHNOLOGY II
- 2. Contact Hours : L: 2 T: 0 P: 4
- 3. Examination Duration (Hrs.) : Theory: 3 Practical: 0
- 4. Relative Weight :CWS: 0 PRS: 25 MTE: 25 ETE: 50 PRE: 0
- 5. Credits: 4 6. Semester : Autumn
- 7. Pre requisite: Nil
- 8. Subject Area: Departmental Core (DCC)

**9. Objectives o f C ourse:** Aim of this s ubject is develop in-depth unde rstanding on manufacturing processes n amely casting, w elding a nd f orming and i ntroduce none-destructive examination methods.

#### **10. Details of Course:**

| S. No. | Particulars                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1      | <b>Foundry :</b> Sand ca sting proc ess- Steps; Core; S and Testing; Molding Processes, Gating system, Solidification Phenomena, Melting Furnaces, Special casting methods - Centrifugal casting; P ermanent mold casting; H ot chamber and cold chamber die casting; Investment casting; Shell mold casting; Plaster mold casting; $CO_2$ mold casting.Casting design considerations, Casting defects and remedies. | 10                   |
| 2      | <b>Welding:</b> Classification of welding processes, electric arc, ISI classification of coated electrodes, spe cial w elding methods: M MAW, G TAW, G MAW, GMAW-CO <sub>2</sub> welding, submerged arc welding, electro-slag welding, electron beam w elding, l aser b eam w elding, ul trasonic w elding, r esistance w elding, welding defects, and arc blow.                                                     | 12                   |
| 3      | None-destructive examination: Principle and application of common Non-<br>Destructive Examination Methods DPT,MPT and UT of Castings and<br>Weldments                                                                                                                                                                                                                                                                | 2                    |
| 4.     | <b>Forming</b> : Forging, Rolling, Extrusion, Wire Drawing and Tube drawing, Forging Defects and Remedies.                                                                                                                                                                                                                                                                                                           | 4                    |
|        | Total                                                                                                                                                                                                                                                                                                                                                                                                                | 28                   |

| S.No | Name of Book / Authors / Publisher | Year of<br>Publicati |
|------|------------------------------------|----------------------|
|      |                                    | on                   |

| 1 | DeGarmoE.Paul, Black J.T., Ronald A. Kohser, Materials and Processes in       | 1997 |
|---|-------------------------------------------------------------------------------|------|
|   | Manufacturing;; Prentice Hall of India Pvt. Limited-Delhi                     |      |
|   |                                                                               |      |
| 2 | Kalpakjian S., Schmid S.R. Manufacturing Engineering and Technology;; Pearson | 2000 |
|   | Education, Delhi                                                              |      |
| - |                                                                               |      |
| 3 | GrooverMikell P., Fundamentals of Modern Manufacturing;; John Wiley and Sons  | 2002 |
|   | Inc.                                                                          |      |
|   |                                                                               |      |
| 4 | Lindberg R.A. Processes and Materials of Manufacture; Prentice Hall India     | 1990 |
|   | Limited;                                                                      |      |
|   |                                                                               |      |
| 5 | Rao P.N. Manufacturing Technology; Tata McGraw Hill                           | 1998 |
|   |                                                                               |      |

| NAME OF DEPTT.      | /CENTRE:      | <b>Department of I</b> | Mechanical and | l Industrial Engineer | ring |
|---------------------|---------------|------------------------|----------------|-----------------------|------|
| 1. Subject Code: M  | IIN-205       | Course Title: <b>F</b> | luid Mechanics | 5                     |      |
| 2. Contact Hours:   | L: 3          | T: 1                   | Р:             | 2/2                   |      |
| 3. Examination Dura | ation (Hrs.): | Theory: 3              | 3              | Practical: 0          |      |
| 4. Relative Weight: | CWS: 20       | PRS: 20 MTE: 20        | ETE: 40        | PRE: 0                |      |
| 5. Credits: 4       | 6. S          | emester: Spring        | 7. Subj        | ect Area: DCC         |      |
| 8. Pre-requisite:   | Nil           |                        |                |                       |      |

9. Objective: To provide the basic knowledge of fluid statics and dynamics.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                          | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction</b> : C ontinuum c oncept, p roperties of fluids, N ewtonian and Non-Newtonian fluids.                                                                                                                                                                                                                                                            | 3                    |
| 2.     | <b>Fluid S tatics:</b> Pascal's l aw, hydrostatic pr essure, pressure measurement, manometer and m icro-manometer, pressure gauge; Forces on plane and curved surfaces, centre of pressure, equilibrium of s ubmerged a nd f loating bodi es, buo yancy, m etacentric he ight; Fluids s ubjected t o c onstant l inear a cceleration a nd t o c onstant rotation. | 5                    |
| 3.     | <b>Kinematics of F luid:</b> Types of f low, Lagrangian and E ulerian approach, path line, streak line and stream line, stream tube, stream function a nd pot ential f unction, f lownet; D eformation of f luid elements, vorticity and circulation.                                                                                                             | 4                    |
| 4.     | <b>Fluid D ynamics:</b> Reynolds t ransport t heorem; Conservation equations of mass, momentum and energy, Navier-Stokes, Euler and Bernoulli equations; Forces due to fluid flow over flat plates, curved vanes and in the bends, applications of Bernoulli equation.                                                                                            | 8                    |
| 5.     | <b>Ideal F luid F low:</b> Ideal f low i dentities, f low ove r ha lf bod y,<br>Rankine ova l, s tationary and r otating cylinders, M agnus ef fect,<br>d'Alembert's paradox.                                                                                                                                                                                     | 5                    |
| 6.     | <b>Viscous F low:</b> Reynolds e xperiment, l aminar a nd turbulent f low, plane P oiseuille flow, C ouette flow, H agen-Poiseuille flow; F riction factor and M oody's diagram, losses in pipes and pipe fittings; Flow over aerofoil, lift and drag, flow separation.                                                                                           | 6                    |
| 7.     | <b>Dimensional A nalysis:</b> Basic and derived quantities, similitude and dimensional analysis, Buckingham $\pi$ – theorem, non -dimensional parameters, model testing.                                                                                                                                                                                          | 4                    |

| 8. | Flow Measurement: Flow measuring devices, Pitot tube, obstruction       | 3  |
|----|-------------------------------------------------------------------------|----|
|    | flow me ters, principles of hot a nemometry and particle ima ge         |    |
|    | velocimetry.                                                            |    |
| 9. | <b>Compressible F low:</b> Propagation of s ound w aves, M ach num ber, | 4  |
|    | isentropic f low and s tagnation pr operties, one di mensional          |    |
|    | convergent-divergent nozzle flow, normal shock.                         |    |
|    | Total                                                                   | 42 |

## LIST OF EXPERIMENTS

| S. No. | Name of Experiment                                                         |
|--------|----------------------------------------------------------------------------|
| 1.     | Experimental verification of Bernoulli's theorem                           |
| 2.     | Impact of jet of a fluid on vanes                                          |
| 3.     | Calibration and determination of coefficient of discharge for              |
|        | (1)Venturimter and (2) Orificemeter                                        |
| 4.     | Calibrate V and rectangular notch (or weir) and compare their performances |
| 5.     | Flow visualization/patterns                                                |
| 6.     | Flow field investigation by using educational PIV setup                    |

| S.No. | Name of Authors / Books / Publishers                                            | Year of              |
|-------|---------------------------------------------------------------------------------|----------------------|
|       |                                                                                 | <b>Publication</b> / |
|       |                                                                                 | Reprint              |
| 1.    | Munson, B.R., Young, D.F., Okiishi, T.H., and Rothmayer, A.P.,                  | 2012                 |
|       | "Fundamentals of Fluid Mechanics", 7th Ed., John Wiley & Sons                   |                      |
| 2.    | Som, S. K., Biswas, G. and Chakraborty, S., "Introduction to Fluid              | 2012                 |
|       | Mechanics and Fluid Machines", 3 <sup>rd</sup> Ed., Tata McGraw Hill            |                      |
| 3.    | Massey, B.S. and Ward-Smith, J., "Fluid Mechanics", 9 <sup>th</sup> Ed., CRC    | 2011                 |
|       | Press                                                                           |                      |
| 4.    | White, F.M., "Fluid Mechanics", 7 <sup>th</sup> Ed., McGraw-Hill                | 2010                 |
| 5.    | Yuan, S.W., "Foundation of Fluid Mechanics", 2 <sup>nd</sup> Ed., Prentice-Hall | 1988                 |
| 6.    | Streeter, V.L., Wylie, E.B., and Bedford, K.W., "Fluid Mechanics",              | 1998                 |
|       | 9 <sup>th</sup> Ed., McGraw-Hill                                                |                      |

| NAME OF DEPARTMENT:           | Depar         | Department of Mechanical & Industrial Engineering |                |               |  |
|-------------------------------|---------------|---------------------------------------------------|----------------|---------------|--|
| 1. Subject Code: MIN-208      | Course        | Title: Theory                                     | of Producti    | on Processes  |  |
| 2. Contact Hours :            | L: <b>3</b>   | T: 1                                              | P: 2/2         |               |  |
| 3. Examination Duration (Hrs. | ): Theory     | Theory: <b>3</b>                                  |                | 0             |  |
| 4. Relative Weight :CWS: 20   | PRS: 20       | MTE: 20                                           | ETE: <b>40</b> | PRE: <b>0</b> |  |
| 5. Credits: 4                 | 6. Semester : | Spring                                            | 7.Pre –req     | uisite: NIL   |  |

8.Subject Area: DCC

# 9.Objectives of Course: This course is intended to impart fundamentals of the theory of various manufacturing processes used in industry and fundamentals of tooling design and metrology.

| S. No. | Particulars                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1      | <b>Theory of Metal Cutting:</b> Tool geometry, chip formation, chip control, mechanics of single point orthogonal machining, tool life, economics of metal cutting.                                                                                                                                                                                                                                                                                         | 08                   |
| 2      | <b>Non-Conventional Machining Methods:</b> Comparison with conventional methods, principles and applications of ECM, EDM, ultrasonic, electron beam and laser machining.                                                                                                                                                                                                                                                                                    | 05                   |
| 3      | <b>Jigs and Fixtures:</b> Usefulness of Jigs and Fixtures, Design principles of jigs and fixtures, Principles of location and clamping,Types locating and clamping devices, Few simple design of Jigs and Fixtures : lathe, milling, boring, s haping, br oaching, grinding, a ssembly a nd w elding f ixtures, Economics of Jigs and Fixtures.                                                                                                             | 06                   |
| 4      | <b>Metrology:</b> Introduction, i nspection t ypes and principles, r adius and taper measurement, measurement of screw threads and gears. Limits, fits, and d imensional a nd g eometrical o r f orm t olerances, c omputer v ision system ba sed measurement, coordinate m easuring machines, measurement of f orm t olerances, measurement of surface roughness: surface r oughness t erminology, di fferent m ethods of s urface r oughness measurement. | 06                   |
| 5      | <b>Foundry:</b> Gating s ystem de sign, R isering de sign, p roduction of gr ay, malleable and spheroidal graphite iron castings.                                                                                                                                                                                                                                                                                                                           | 06                   |
| 6      | Welding: Weldability, s tructure in w eld and heat affected zones, distortion and residual stresses, welding of ca st iron, stainless steel and aluminum, hard facing.                                                                                                                                                                                                                                                                                      | 05                   |

| 7 | <b>Forming</b> : I ntroduction of f orming proc ess an alysis m ethods ( slab method, uniform deformation energy method, limit analysis), Analysis of extrusion, rolling and forging processes, forming de fects, formability & workability, temperature & lubrication aspects in forming. | 06 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | Total                                                                                                                                                                                                                                                                                      | 42 |

| S. No. | Name of Books / Authors / Publisher                                                                                            | Year of<br>Publication |
|--------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|
|        |                                                                                                                                | 1 ubication            |
| 1      | Ghosh, A., and Mallik, A.K., "Manufacturing Science" A ffiliated East-<br>West press Pvt. Ltd.                                 | 1985                   |
| 2      | Lal, G.K., "Introduction to Machining Science" New Age International<br>Publishers                                             | 1996                   |
| 3      | Gupta, I.C., "Text B ook of E ngineering M etrology" D hanpatRai<br>Publishing Co.                                             | 2003                   |
| 4      | Heine, R. W., L oper, C. R., a nd R osenthal, P. C., "Principles of Metal Casting", 21 <sup>st</sup> reprint, Tata McGraw-Hill | 1997                   |
| 5      | Kuo, S., "Welding Metallurgy", John-Wiley & Sons Inc.                                                                          | 2003                   |
| 6      | Dieter, G.E., "Mechanical Metallurgy", McGraw Hill Book Company                                                                | 1988                   |

#### Laboratory Work Outline:

Experimental studies on the cutting tool angle measurement, cutting tool grinding, use of dynamometers, mechanical measurements etc.

#### **Mechanical and Industrial Engineering** NAME OF DEPTT./CENTRE: Department 1. Subject Code: MIN-209 Course Title: Thermal Engineering 2. Contact Hours: L: 3 T: 1 P: 2/2 Practical: 0 3. Examination Duration (Hrs.): Theory: 3 4. Relative Weight: CWS: 20 **PRS: 20 MTE: 20 ETE: 40** PRE: 0 5. Credits: 4 6. Semester: Spring 7. Subject Area: DCC

- 8. Pre-requisite: Nil
- 9. Objective: The c ourse i s de signed t o f amiliarize t he s tudents w ith f undamentals of thermodynamics and heat transfer.
- 10. Details of Course:

| S. No. | Contents                                                                                   | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Introduction t o T hermodynamics, e xamples of                               |                      |
|        | thermal pow er plants, refrigeration systems; D efinitions: s ystem,                       | 2                    |
|        | boundary, s urroundings, c losed and open s ystems, pr operties,                           |                      |
|        | processes, work and heat interactions.                                                     |                      |
| 2.     | Laws of t hermodynamics: Zeroth l aw, concept of t emperature,                             |                      |
|        | temperature scales, methods of temperature measurement; First law                          |                      |
|        | for c yclic process in closed system, internal en ergy; First law for                      | 8                    |
|        | open s ystem, s teady flow e nergy e quation (SFEE), a pplication o f                      |                      |
|        | SFEE for simple devices.                                                                   |                      |
| 3.     | <b>Properties of pure substance:</b> Properties of pure substance, <i>T-v</i> , <i>p-v</i> |                      |
|        | diagrams, properties o fs team, use of s team t ables, example                             | 6                    |
|        | problems for use of steam tables.                                                          |                      |
| 4.     | Second I aw of t hermodynamics: Kelvin-Planck a nd C lausius                               |                      |
|        | statements of s econd l aw of t hermodynamics, C arnot t heorem,                           | 6                    |
|        | corollaries of C arnot t heorem f or absolute t emperature s cale,                         |                      |
|        | entropy.                                                                                   |                      |
| 5.     | Power C ycles: Rankine v apor pow er cycles on T -s di agrams, gas                         | 6                    |
|        | power cycles, Otto, Diesel and Joule cycles, simple problems.                              |                      |
| 6.     | <b>Refrigeration &amp; A ir-conditioning:</b> Working of s imple v apor                    |                      |
|        | compression c ycle, r epresentation of va rious pr ocesses on p -h                         |                      |
|        | diagram, air-conditioning principles, definitions of humidity, relative                    | 6                    |
|        | humidity, wet-bulb and dry-bulb temperatures. Psychrometric chart,                         |                      |
|        | representation of va rious a ir-conditioning pr ocesses on                                 |                      |

|    | psychrometric chart.                                                     |    |
|----|--------------------------------------------------------------------------|----|
| 7. | Heat Transfer: Introduction to different modes of heat transfer,         |    |
|    | conduction, convection and radiation.                                    |    |
|    | Conduction: Fourier's law of heat conduction, 1D heat conduction         |    |
|    | equation, different types of boundary conductions, thermal resistance,   |    |
|    | composite wall for plane wall and cylindrical geometries.                | 8  |
|    | <b>Convection:</b> Free and forced convection principles, important non- |    |
|    | dimensional numbers, correlations for Nusselt number.                    |    |
|    | Radiation: Basic laws of radiation, black body concept, emissivity,      |    |
|    | absorptivity, reflectivity, transmissivity.                              |    |
|    | Total                                                                    | 42 |

| S. No. | Name of Authors /Books /Publisher                                      | Year of     |
|--------|------------------------------------------------------------------------|-------------|
|        |                                                                        | Publication |
| 1.     | Cengel, Y. A. and Boles, M. A., "Thermodynamics: An Engineering        | 2011        |
|        | Approach", 7th Ed., Tata McGraw-Hill                                   |             |
| 2.     | Van Wylen G.J. a nd Sonntag, R.E., "Fundamentals of C lassical         | 2002        |
|        | Thermodynamics", 4 <sup>th</sup> Edn., John Wiley & Sons               |             |
| 3.     | Rogers, G. and Mayhew, Y., "Engineering Thermodynamics and Heat        | 2002        |
|        | Transfer", 4th Ed., Addison-Wesley                                     |             |
| 4.     | Cengel, Y. A. and Ghajar, A. J., "Heat and Mass Transfer", 4th Edn.,   | 2011        |
|        | Tata McGraw Hill Education Pvt. Ltd., New Dehi                         |             |
| 5.     | Incropera, F.P., Dewitt, D.P., Bergman, T. L. a nd A.S. Lavine,        | 2012        |
|        | "Principles of Heat and Mass Transfer", 7th Ed. (International Student |             |
|        | Version), John Wiley & Sons                                            |             |

12. List of experiments:

I – Applied Thermodynamics

- (i) Flash point and fire point of and lubricants and diesel
- (ii) Calorific value of coal using Bomb Calorimeter
- (iii) Performance test on single cylinder diesel engine
- II Heat Transfer
  - (i) Thermal conductivity of metal rod
  - (ii) Natural convection over a heated vertical wall
  - (iii) Forced convection over a heated cylinder
  - (iv) COP of vapor compression refrigeration system



9. Objective: The objective of the course is to make the students aware of various energy conversion systems, and the underlying principles on which they operate.

| S. No. | Contents                                                                   | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------------|----------------------|
| 1      | Vapor Power Systems: Brief description of vapor power system,              | 07                   |
|        | Rankine cycle, deviation of actual cycle from ideal cycle, principal       |                      |
|        | irreversibilities and losses, superheat and reheat, the regenerative vapor |                      |
|        | power cycle, binary vapor cycles and cogeneration.                         |                      |
| 2      | Boilers: Classification, fire tube boilers: Lankashire, Cornish, Cochran,  | 05                   |
|        | Locomotive; water tube boilers: Stirling, Babcox & Wilcox, package         |                      |
|        | type; boiler mountings and accessories, equivalent evaporation, boiler     |                      |
|        | efficiency, high pressure boilers: La Mont, Benson, Loeffler and Velox;    |                      |
|        | draught and chimney, performance of boiler, combustion of fuel, boiler     |                      |
|        | trial.                                                                     |                      |
| 3      | Nozzles and Diffusers: Type of nozzles and diffusers, equation of          | 05                   |
|        | continuity, sonic velocity and Mach number, momentum equation              |                      |
|        | entropy change, nozzle and diffuser efficiency, mass of discharge,         |                      |
|        | choked flow and shape of nozzle, critical pressure ratio, effect of        |                      |
|        | friction, supersaturated flow.                                             |                      |
| 4      | Steam Turbines: Types and application, impulse turbines                    | 07                   |
|        | compounding, velocity diagrams, work output, losses and efficiency.        |                      |
|        | Reaction Turbine, velocity diagrams, degree of reaction, work output       |                      |
|        | asses and efficiency, constructional features and losses in steam turbine. |                      |

| 5  | Condensers: Elements of a condenser unit, type of condensers,                                                                                                                                                                                                           | 03 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Vacuum and condenser efficiencies, cooling towers.                                                                                                                                                                                                                      |    |
| 6. | Gas Turbines: Gas turbine cycles, intercooling, reheat and                                                                                                                                                                                                              | 06 |
|    | regeneration, deviation of actual cycles from ideal cycles, combined                                                                                                                                                                                                    |    |
|    | cycle power plants, velocity diagram, jet propulsion.                                                                                                                                                                                                                   |    |
| 7. | Internal Combustion Engines:                                                                                                                                                                                                                                            |    |
| a. | Classifications, working of two stroke & four stroke engines, thermodynamics of fuel-air cycles, real cycles, various losses in actual engines.                                                                                                                         | 03 |
| b. | Combustion processes in SI engine and its various stages, spark<br>ignition, normal and abnormal combustion, knock preignition,<br>combustion stages in CI engines, ignition delay, types of combustion<br>systems. Fuels for SI and CI engines, their characteristics. | 03 |
| c. | Emissions from SI and CI engines, supercharging and turbocharging, cooling and lubrication, testing and performance of engines, modern developments in IC engines.                                                                                                      | 03 |
|    | Total                                                                                                                                                                                                                                                                   | 42 |

| S.<br>No. | Author(s) / Title / Publisher                                                | Year of<br>Publication/<br>Reprint |
|-----------|------------------------------------------------------------------------------|------------------------------------|
| 1         | Moran MJ & Shapiro HM. Fundamentals of Engineering                           | 2000                               |
|           | Thermodynamics, John Wiley, (4 <sup>th</sup> Edn.)                           |                                    |
| 2         | Wark K.Jr. & Donald E.R, Thermodynamics, McGraw Hill, (6 <sup>th</sup> Edn.) | 1999                               |
| 3         | El-Wakil M.M., Power Plant Technology, McGraw Hill                           | 1988                               |
| 4         | Roger Gordon & Yon Mayhew, Engineering Thermodynamics work                   | 2001                               |
|           | and heat Transfer, Addison-Wesley, (4 <sup>th</sup> Edn.)                    |                                    |
| 5         | Cengel Y.A. & Boles M.A, Thermodynamics an Engineering                       | 2002                               |
|           | Approach, Tata McGraw-Hill, (3 <sup>rd</sup> Edn.)                           |                                    |

#### 12. List of Experiments

- 1. Two stroke variable engine study and trial
- 2. Determination of the constant speed characteristics of the Indec Diesel Engine
- 3. To draw the valve timing diagram of the Black Stone Diesel engine and study.
- 4. Determination of the heating value of fuels using bomb calorimeter.
- 5. Flash point and fire point of and lubricants and diesel
- 6. Calorific value of coal using Bomb Calorimeter

| NAME OF DEPTT./     | CENTRE:      | Mechanical<br>Departmen | & Industria<br>t | al Engineerin  | Ig     |
|---------------------|--------------|-------------------------|------------------|----------------|--------|
| 1. Subject Code: M  | IN-214       | Course Title:           | Engineering E    | conomy         |        |
| 2. Contact Hours:   | L: 3         | T: 1                    |                  | P: 0           |        |
| 3. Examination Dura | tion (Hrs.): | Theory: 3               | Pra              | octical: 0     |        |
| 4. Relative Weight: | CWS: 25      | PRS: 0                  | MTE: 25          | ETE: 50        | PRE: 0 |
| 5. Credits: 4       | 6. Se        | emester: Spring         | 7. Sub           | ject Area: DCC |        |

8. Pre-requisite: Nil

9. Objective: To expose the students to in various methods of computation, cost analysis and

replacement studies, which are the essential tools for an Industrial engineer.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Contact Hours</b> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction:</b> Nature and purpose of engineering economy studies, functions of engineering e conomy, physical and e conomic l aws, consumer and producer goods.                                                                                                                                                                                                                                                                                                                                                                                                     | 3                    |
| 2.     | <b>Interest an d Depreciation:</b> Productivity of c apital, nominal a nd effective interest, interest factors, CAF, PWF, SPWF, SCAF, SFF, and C RF, deferred annuities, perpetuities and capitalized cost, equivalence, gradient factors G PWF and G USF, Classification of depreciation, methods of computing depreciation, economic life and mortality data, capital recovery and return.                                                                                                                                                                              | 11                   |
| 3.     | <b>Industrial Costing and Cost analysis:</b> Classification of costs: direct material, direct labour and overheads, fixed and variable cost, semi-fixed cost, increment, di fferential and marginal cost, sunk cost and its r easons, direct and i ndirect cos t, prime cos t, factory cos t, production c ost a nd t otal c ost. B reak-even analysis, two and t hree alternatives, graphical solution, break-even charts, effects of changes in fixed and variable cost, minimum c ost a nalysis, economic or der quantity, effect of risk and uncertainty on lot size. | 7                    |
| 4.     | <b>Replacement St udies:</b> Reason of r eplacement, evaluation of proposals, replacement be cause o f i nadequacy, excessive maintenance, declining efficiency, obsolescence; MAPI formula.                                                                                                                                                                                                                                                                                                                                                                              | 7                    |
| 5.     | <b>Cost E stimation and R isk an alysis:</b> Difference be tween cos t estimation a nd c ost a ccounting, qualifications of a n estimator, estimating pr ocedure, estimate of m aterial cos t and labour cos t,                                                                                                                                                                                                                                                                                                                                                           | 10                   |

|    | Estimation of c ost i n machining, f orging, w elding a nd f oundry operations. Introduction to risk analysis, measures of risk, techniques |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | of risk analysis; RAD and CE approach.                                                                                                      |    |
| 6. | Economy Study Patterns: Basic economy study patterns and their                                                                              | 4  |
|    | comparison, effect of taxation on economic studies.                                                                                         |    |
|    | Total                                                                                                                                       | 42 |

| S. No. | Name of Books / Authors                                                      | Year of     |
|--------|------------------------------------------------------------------------------|-------------|
|        |                                                                              | Publication |
| 1.     | Ardalan, A., "Economic and Financial Analysis for Engineering and            | 1999        |
|        | Project Management", CRC Press                                               |             |
| 2.     | Grant, E.L., Grant, W., and Leavenworth, R.S., "Principles of                | 2001        |
|        | Engineering Economy", 8 <sup>th</sup> Ed., John Wiley & Sons Inc             |             |
| 3.     | Eschenbach, T.G., "Engineering E conomy by Applying T heory to               | 2003        |
|        | Practice (Engineering T echnology)", 2 <sup>nd</sup> Ed., Oxford U niversity |             |
|        | Press, USA                                                                   |             |
| 4.     | Blank, L.T., a nd Tarquin, A .J., " Engineering E conomy",                   | 2005        |
|        | McGraw-Hill Inc.                                                             |             |
| 5.     | Hartman, J.C., "Engineering E conomy a nd t he D ecision-Making              | 2006        |
|        | Process", Prentice Hall Inc.                                                 |             |
| 6      | Theusen Gerald J., Fabrycky W.J., Engineering Economy, PHI                   | 2008        |

| NAME OF DEPARTMENT:            | Mecha          | Mechanical & Industrial Engineering              |         |        |  |
|--------------------------------|----------------|--------------------------------------------------|---------|--------|--|
| 1. Subject Code: MIN-216       | Course         | Course Title: Theory of Production Processes – I |         |        |  |
| 2. Contact Hours :             | L: 3           | T: 1                                             | P: 2/2  |        |  |
| 3. Examination Duration (Hrs.) | :Theory: 3     | Practical                                        | : 0     |        |  |
| 4. Relative Weight :CWS: 20    | PRS: 20        | MTE: 20                                          | ETE: 40 | PRE: 0 |  |
| 5. Credits: 4                  | 6. Semester :  | Spring                                           |         |        |  |
| 7. Pre-requisite: NIL          | 8. Subject Are | ea: DCC                                          |         |        |  |

9. **Objectives of C ourse:** This c ourse is intended to impart fundamentals of the theory of m achining, advanced machining, finishing processes besides tooling design and metrology.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Theory of Mac hining: S</b> ingle poi nt a nd m ulti-point m achining, c hip formation: mechanism, chip types, chip control, tool geometry: single point, specifications in different sy stems, selection of t ool a ngles, orthogonal a nd ob lique m achining, c utting t ool geometry, mechanics of single point orthogonal machining: Merchant's circle, force, velocity, shear angle, a nd pow er c onsumption r elations, c utting t ool w ear a nd t ool life: wear mechanisms, wear criterion, Taylor's tool life e quation, facing t est, variables affecting tool life; Machinability and its measures, economics of machining. | 11                   |
| 2.     | Advanced Man ufacturing Processes: Process p rinciple, e quipment,<br>analysis and applications of adv anced machining proc esses su ch as<br>Abrasive J et Mach ining, Ultrasonic Machining, Water Jet M achining,<br>Electro Chemical Ma chining, Chemical Mac hining, Electro-Discharge<br>Machining, Wire Electro Discharge Machining, Electron Beam Machining,<br>and Laser Beam Machining, rapid prototyping and rapid tooling:<br>introduction o f s olid-based (FDM, L OM), liquid-based (SLA, SGC),<br>powder-based (3DP, BPM) RP processes.                                                                                        | 11                   |
| 3.     | <b>Finishing and Superfinishing Processes:</b> Principles and a pplications of honing, s uperfinishing, lapping, pol ishing, buf fing, pe ening, a nd burnishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                    |
| 4.     | <b>Metrology:</b> Introduction, inspection types and principles, radius and taper measurement, measurement of scr ew threads and gears. Limits, fits, and dimensional and geometrical or form tolerances, computer vision system based measurement, coordinate measuring machines, measurement of form tolerances, measurement of sur face r oughness: surf ace r oughness terminology, different methods of surface roughness measurement                                                                                                                                                                                                   | 9                    |
| 5. | <b>Jigs and Fixtures:</b> Usefulness of Jigs and Fixtures, Design principles of jigs and fixtures, Principles of location and clamping, Types locating and clamping devices, Few simple design of Jigs and Fixtures : lathe, milling, boring, s haping, br oaching, g rinding, a ssembly a nd w elding f ixtures, Economics of Jigs and Fixtures | 7  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Total                                                                                                                                                                                                                                                                                                                                            | 42 |

| S. No. | Name of Books / Authors                                                                                                   | Year of<br>Publication |
|--------|---------------------------------------------------------------------------------------------------------------------------|------------------------|
|        |                                                                                                                           |                        |
| 1.     | DeGarmo, E.P., Black, J.T., Kohser, R.A., "Materials and Processes in Manufacturing", Prentice Hall of India              | 1997                   |
|        |                                                                                                                           |                        |
| 2.     | Ghosh, A., and Mallik, A.K., "Manufacturing Science" Affiliated East-West press Pvt. Ltd.                                 | 1985                   |
| 3.     | Lal, G .K., "Introduction to M achining S cience" N ew A ge International Publishers                                      | 1996                   |
| 4.     | Chua, C. K., and L. eong, L. F., "Rapid Prototyping: Principles and Applications in Manufacturing" John Wiley & Sons Ltd. | 1997                   |
| 5.     | Gupta, I.C., "Text Book of Engineering Metrology" DhanpatRai Publishing<br>Co.                                            | 2003                   |

| NAME OF DEPTT./     | CENTRE:      | Mechanical & Industrial Engineering<br>Department |             |                  |                |
|---------------------|--------------|---------------------------------------------------|-------------|------------------|----------------|
| 1. Subject Code: M  | IN-303       | Course Titl                                       | e: Princi   | ples of Industri | al Engineering |
| 2. Contact Hours:   |              | L: 3                                              | <b>T:</b> 1 | P: 0             |                |
| 3. Examination Dura | tion (Hrs.): | Theory: 3                                         |             | Practical: 0     |                |
| 4. Relative Weight: | CWS: 25      | PRS:0                                             | MTE: 25     | ETE: 50          | PRE: 0         |
| 5. Credits: 4       | 6. Sen       | nester: Autu                                      | mn          | 7.Subject Area:  | DCC            |

8. Pre-requisite: Nil

9. Objective: To acquaint the students to the tools and techniques of industrial engineering.

10. Details of Course:

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | Industrial Engineering: Introduction to industrial engineering.        | 6                    |
|        | Functions of or ganization, E lements of or ganization, Principles of  |                      |
|        | organization, Types of organization and their selection.               |                      |
| 2.     | Plant L ayout and M aterial H andling: Site s election, types of       | 8                    |
|        | layout, factors a ffecting l ayout, plant bui lding, flexibility a nd  |                      |
|        | expandability, Principles of material handling, types and selection of |                      |
|        | materials handling equipment's.                                        |                      |
| 3.     | Production Planning and Control: Functions, forecasting, routing,      | 8                    |
|        | operations pl anning; G antt c hart, work or der, dispatching a nd     |                      |
|        | follow-up; CPM and PERT techniques.                                    |                      |
| 4.     | Inventory C ontrol: Scope, purchasing and s toring, economic l ot      | 4                    |
|        | size; ABC Analysis.                                                    |                      |
| 5.     | Quality C ontrol: Statistical qua lity control, control c harts f or   | 10                   |
|        | variables and attributes: X bar, R, p & c charts, Concepts &Scope of   |                      |
|        | TQM and QFD.Acceptance S ampling: Consumers r isk, P roducers          |                      |
|        | risk, LQL, AQL, OC curves, Types of sampling plans, AOQ, ATI.          |                      |
| 6.     | Work Study: Scope, work measurement and method study, standard         | 6                    |
|        | data, ergonomics and its industrial applications.                      |                      |
|        | Total                                                                  | 42                   |

| S. No. | Name of Books / Authors                                            | Year of     |
|--------|--------------------------------------------------------------------|-------------|
|        |                                                                    | Publication |
| 1.     | Mitra, A., "Fundamentals of Quality Control and Improvement", John | 2008        |
|        | Wiley & Sons, Inc,                                                 |             |
| 2.     | Russell, R. S., Taylor, B.W., "Operations M anagement", Pearson    | 2003        |

|    | Education                                                        |      |
|----|------------------------------------------------------------------|------|
| 3. | Jocobs, C.A., " Production a nd Operations M anagement", Tata    | 1999 |
|    | McGraw Hill                                                      |      |
| 4. | Groover, M.P., "Automation, P roduction S ystems a nd C omputer- | 2001 |
|    | Integrated Manufacturing", Pearson Education                     |      |
| 5. | Maynard, H.B.,"Industrial Engineering Handbook", McGraw Hill     | 2001 |
| 6. | BesterfieldD.H. et al ., "Total Q uality M anagement:, Pearson   | 1999 |
|    | Education                                                        |      |

| NAME OF DEPTT./                                             | CENTRE:                 | Mechanical &               | Mechanical & Industrial Engineering |                            |        |
|-------------------------------------------------------------|-------------------------|----------------------------|-------------------------------------|----------------------------|--------|
| 1. Subject Code: M                                          | IN-304                  | Course Title:              | Fluid Machi                         | nery                       |        |
| 2. Contact Hours:                                           |                         | L: 3                       | T: 0                                | P: 2/2                     |        |
| 3. Examination Durat                                        | tion (Hrs.):            | Theory: 3                  | Pra                                 | actical: 0                 |        |
| <ul><li>4. Relative Weight:</li><li>5. Credits: 3</li></ul> | <b>CWS: 20</b><br>6. Se | PRS: 20<br>emester: Spring | <b>MTE: 20</b><br>7. Sub            | ETE: 40<br>oject Area: DCC | PRE: 0 |

8. Pre-requisite: Nil

9. Objective: To provide theoretical and practical know ledge of various fluid machines and their performance.

| S.  | Particulars                                                                       | Contact |
|-----|-----------------------------------------------------------------------------------|---------|
| No. |                                                                                   | Hours   |
| 1.  | Introduction : Classification, E uler's t urbomachinery e quation, a erofoil      | 10      |
|     | and cascade theory, impulse and reaction principle, specific speed                |         |
| 2.  | Hydraulic T urbines : Classification, P elton, F rancis, K aplan, p ropeller      | 08      |
|     | and bul b t urbines, ve locity t riangles, pow er a nd e fficiency c alculations, |         |
|     | draft tube, cavitation, Thoma's cavitation factor, governing of impulse and       |         |
|     | reaction turbines.                                                                |         |
| 3.  | Rotodynamic Pumps, Fans & Compressors : Classifications, centrifugal,             | 08      |
|     | mixed a nd a xial f low pum ps, ve locity t riangles; Head, pow er and            |         |
|     | efficiency calculations, system losses and system head, impeller slip and         |         |
|     | slip factors, Hydraulic design of fans and compressors, internal and stage        |         |
|     | efficiency, stalling.                                                             |         |
| 4.  | Performance C haracteristics of R otodynamic Ma chines: Head,                     | 06      |
|     | capacity and power m easurement, performance characteristics, operating           |         |
|     | characteristics, model testing, similarity la ws, Muschal or c onstant            |         |
|     | efficiency curves.                                                                |         |
| 5.  | Hydro-static Pumps : Principle of positive displacement pumps, working            | 06      |
|     | principle of r eciprocating pum ps, i ndicator di agram, s lip, e ffect f riction |         |
|     | and acceleration, air vessels, two throw and three throw pumps. Constant          |         |
|     | and variable delivery, internal and external gear pumps, vane pumps, screw        |         |
|     | pumps, radial piston pumps, rotary piston pumps.                                  |         |
| 6   | Hydraulic T ransmission D evices: Fluid c oupling and t orque converter,          | 04      |
|     | hydraulic jack, press, crane, pressure accumulator and intensifier.               |         |
|     | Total                                                                             | 42      |

| S.  | Name of Books / Authors / Publisher                                             | Year of              |
|-----|---------------------------------------------------------------------------------|----------------------|
| No. |                                                                                 | <b>Publication</b> / |
|     |                                                                                 | Reprint              |
| 1.  | Earl Logan, Turbomachinery: Basic theory and applications, CRC Press            | 2009                 |
| 2.  | Lal, J., Hydraulic Machine; Metropolitan Book Co.                               | 2007                 |
| 4.  | Gopal Krishnan & Prithviraj, A treatise on Turbomachines; scitech               | 2002                 |
|     | publications (India) pvt. Ltd                                                   |                      |
| 5.  | Douglas, J., F., Fluid Mechanics, Pearson Education Ltd.                        | 2005                 |
| 6.  | Som & Bisswas, Introduction to fluid Mechanics, Tata McGrawhill 2 <sup>nd</sup> | 2004                 |
|     | Edition                                                                         |                      |

12. List of Experiments:

- (i) Performance characteristics of Pelton Turbine
- (ii) Performance characteristics of Francis Turbine
- (iii) Performance characteristics of axial flow Turbine
- (iv) Study of a jet reaction principle
- (v) Performance characteristics of ram pump
- (vi) Performance characteristics of centrifugal pump

| NAME OF DEPTT. /CENTRE: |                             | Mech         | anical & Ind                         | ustrial Engine  | ering       |
|-------------------------|-----------------------------|--------------|--------------------------------------|-----------------|-------------|
| 1.                      | Subject Code: MIN-305       | Cours        | Course Title: Heat and Mass Transfer |                 |             |
| 2.                      | Contact Hours:              | L: 3         | T: 1                                 | P: 2/2          |             |
| 3.                      | Examination Duration (Hrs.) | : Theor      | ry: 3                                | Practical: 0    |             |
| 4.                      | Relative Weight: CWS: 20    | PRS: 20      | MTE: 20                              | ETE: 40         | PRE: 0      |
| 5.                      | Credits: 4                  | 6. Semester: | Both 7. Sub                          | oject Area: DCC | C/ <b>M</b> |

8. Pre-requisite: Nil

9. Objectives of Course: The course has been designed to impart basic understanding of heat and m ass t ransfer m echanisms and t o e nable t he s tudents t o a pply t hese i n s olving r eal problems.

| S. No. | Particulars                                                                                                                                                                                                                                                                                                                                                                                              | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1      | Introduction: Mode of he at t ransfer, c onduction, c onvection and                                                                                                                                                                                                                                                                                                                                      | 02                   |
|        | radiation.                                                                                                                                                                                                                                                                                                                                                                                               |                      |
| 2      | <b>Conduction:</b> Fourier, s, law, thermal conductivity of matter and other relevant pr operties, he at di ffusion e quation, bounda ry and i nitial conditions. O ne –dimensional s teady- state conduction t hrough pl ane wall, c ylinder and s phere, c onduction with thermal e nergy generation, heat t ransfer from extended surfaces. T wo- dimensional s teady-state                           | 12                   |
|        | conduction through plane wall.                                                                                                                                                                                                                                                                                                                                                                           |                      |
| 3      | <b>Convection:</b> Velocity, thermal and concentration boundary layers and their s ignificance, 1 aminar a nd t urbulent flow, c onvection t ransfer equations, boundary layer similarity and normalized convection transfer equations, heat and mass transfer analogy, Reynolds analogy, effect of turbulence, convection i n e xternal and i nternal flow, free c onvection, boiling and condensation. | 08                   |
| 4      | <b>Heat ex changers:</b> Heat ex changers t ypes, overall he at t ransfer coefficient, analysis of parallel-flow, counter flow, multipass and cross-flow he at ex changers, effectiveness – NTU method, c ompact he at exchangers.                                                                                                                                                                       | 05                   |
| 5      | Radiation: Fundamental concepts, radiation intensity and its relation to                                                                                                                                                                                                                                                                                                                                 | 10                   |

|   | emission, i rradiation a nd r adiosity, bl ackbody radiation, P lanck    |    |  |  |  |  |
|---|--------------------------------------------------------------------------|----|--|--|--|--|
|   |                                                                          |    |  |  |  |  |
|   |                                                                          |    |  |  |  |  |
|   | law, gray surface. R adiation exchange be tween surfaces, vi ew f actor, |    |  |  |  |  |
|   | blackbody radiation exchange, radiation exchange between diffuse gray    |    |  |  |  |  |
|   | surfaces in an enclosure.                                                |    |  |  |  |  |
| 6 | Diffusion Mas s T ransfer: Fick's l aw of di ffusion, mass dif fusion    | 05 |  |  |  |  |
|   | equation, boundary and initial conditions, mass diffusion without and    |    |  |  |  |  |
|   | with homogeneous chemical reactions, transient diffusion.                |    |  |  |  |  |
|   | Total                                                                    | 42 |  |  |  |  |

| S.  | Name of Books / Authors / Publisher                                               | Year of     |
|-----|-----------------------------------------------------------------------------------|-------------|
| No. |                                                                                   | Publication |
| 1   | Fundamental of H eat and Mass T ransfer, Incropera and D ewitt, 5th E dn.,        | 2002        |
|     | John Wiley & Sons                                                                 |             |
| 2   | Heat Transfer A Practical Approach, Cengel, 4 <sup>th</sup> Edn, Tata McGraw-Hill | 2011        |
| 3   | Heat Transfer, Holman J.P., Ninth Edn. Tata McGraw –Hill                          | 2007        |
| 4   | Heat Transfer, Ozisik, 2 <sup>nd</sup> Edn. Tata McGraw-Hill                      | 1987        |

### NAME OF DEPARTMENT: Mechanical & Industrial Engineering

| 1. Subject Code: MIN-30  | )9 Cours      | e Title: Theory of | f Production Proce | sses-II |
|--------------------------|---------------|--------------------|--------------------|---------|
| 2. Contact Hours: L:     | 3 <b>T:</b> 1 | <b>P:</b> 2/2      |                    |         |
| 3. Examination Duration  | (Hrs.): Theor | <b>y</b> 0 3       | Practical          |         |
| 4. Relative Weight : CWS | 20 PRS        | 20 MTE 20          | ETE 40 PR          | Е       |
| <b>5. Credits:</b> 0 4   | 6. Semester:  | $\checkmark$       | X                  | X       |
|                          |               | Autu               | mn Spring          | Both    |
| 7. Pre –requisite: NIL   |               | 8. Subject         | Area: DCC          |         |

**9. O bjectives of Course:** This course is intended to impart fundamentals of the theory of casting, welding and forming processes and powder metallurgy.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Contact Hours</b> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Theory of Casting:</b> Cooling and solidification of castings, cooling curves, nucleation and dendrite formation, , design of gating and risering system in ferrous and nonferrous foundry practice, production of gray, malleable, and spheroidal graphite iron castings, mechanization in foundry equipments.                                                                                                                                                                                                                                                                                                                                                                          | 12                   |
| 2.     | <b>Theory of Welding:</b> Thermal effects in welding, structure in weld and heat affected zones, distortion and residual stresses, weldability, weld quality, welding of c ast iron, s tainless steel and a luminum, hard facing, brazing, soldering, and adhesive bonding.                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                   |
| 3.     | <b>Theory of Forming:</b> Mechanics of materials: elastic and plastic behavior, concept of stress and strain and their types, Mohr's stress and strain circle in 2-D a nd 3 -D, s tress and s train t ensor, hydrostatic a nd deviatoric components, elastic st ress-strain r elations, s train e nergy, a nisotropy of elastic b ehavior; Theory of P lasticity: true s tress and strain, flow curve, concept of anelastic, hysteresis, and visco-elastic behavior, Bauschinger effect, Tresca and Von-Mises y ield criteria, anisotropy i n yielding, octahedral n ormal and shear stresses and strains, invariants of stress and strains, flow rules or plastic stress-strain relations. | 10                   |
| 4.     | <b>Analysis of Forming Processes:</b> Slab method, uniform deformation energy method, limit a nalysis, analysis of d rawing, e xtrusion, r olling, f orging, deep dr awing, a nd be nding, f orming de fects, f ormability & w orkability, temperature & lubrication aspects in forming.                                                                                                                                                                                                                                                                                                                                                                                                    | 6                    |

| 5. | <b>Powder Metallurgy:</b> Theory of powder metallurgy, manufacture of metal powders, s intering, s econdary ope rations, p roperties of f inished pa rts, design considerations and applications. | 4  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Total                                                                                                                                                                                             | 42 |

| S. No. | Name of Books / Authors                                                    | Year of<br>Publication |
|--------|----------------------------------------------------------------------------|------------------------|
|        |                                                                            | 1 ubication            |
| 1.     | DeGarmo, E.P., Black, J.T., Kohser, R.A., "Materials and Processes in      | 1997                   |
|        | Manufacturing", Prentice Hall of India                                     |                        |
| 2.     | Heine, R. W., L oper, C. R., a nd R osenthal, P. C., "Principles of Metal  | 1997                   |
|        | Casting", 21 <sup>st</sup> reprint, Tata McGraw-Hill                       |                        |
| 3.     | Kuo, S., "Welding Metallurgy", John-Wiley & Sons Inc.                      | 2003                   |
| 4.     | Dieter, G.E., "Mechanical Metallurgy", McGraw Hill Book Company            | 1988                   |
| 5.     | Ghosh, A., and Mallik, A.K., "Manufacturing Science", Affiliated East-West | 1985                   |
|        | Press Pvt. Ltd.                                                            |                        |

**Mechanical & Industrial Engineering Department** NAME OF DEPTT./CENTRE: 1. Subject Code: MIN-310 Course Title: Quality Management **P: 0** 2. Contact Hours: L: 3 **T:1** 3. Examination Duration (Hrs.): Theory: 3 **Practical: 0** 4. Relative Weight: CWS: 25 **PRS: 0 MTE : 25 ETE: 50 PRE: 0** 5. Credits: 4 6. Semester: Spring 7.Subject Area: DCC 8. Pre-requisite: Nil

9. Objective: To impart a wareness r egarding qu ality, i ts i mportance, measurement and applications in design, manufacturing and final inspection of product.

10. Details of Course:

| S. No. | Contents                                                                 | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Different de finitions, di mensions, a nd aspects of       | 7                    |
|        | quality; Traditional and modern views of quality control; Different      |                      |
|        | Philosophies by quality Gurus, seven basic and new quality control       |                      |
|        | tools.                                                                   |                      |
| 2.     | Statistical Process C ontrol: Theory and a pplications of control        | 12                   |
|        | charts, controls charts for variables: charts for averages, ranges, and  |                      |
|        | standard d eviation, control c harts f or a ttributes: p a nd c c harts, |                      |
|        | fraction de fective a nd num ber of de fects pe r uni t, different       |                      |
|        | adaptations of c ontrol c harts, manufacturing pr ocess va riability,    |                      |
|        | manufacturing process capability and tolerances.                         |                      |
| 3.     | Acceptance Sampling: Concept of ac ceptance sampling, sampling           | 7                    |
|        | by attributes: s ingle and double s ampling pl ans; Construction a nd    |                      |
|        | use of OC curves.                                                        |                      |
| 4.     | Total Q uality M anagement: Concept a nd philosophy, scope,              | 10                   |
|        | applications, implementation, quality function de ployment, six          |                      |
|        | sigma, process capa bility, just-in-time phi losophy, quality ci rcles,  |                      |
|        | quality system and Introduction to ISO 9000 and ISO 14000.               |                      |
| 5.     | Reliability: Concept a nd de finition, m easurement a nd t est of        | 6                    |
|        | reliability, design for r eliability, concepts of maintainability a nd   |                      |
|        | availability.                                                            |                      |
|        | Total                                                                    | 42                   |

| S. No. | Name of Books / Authors | Year of     |
|--------|-------------------------|-------------|
|        |                         | Publication |

| 1. | Grant, E., a nd Leavenworth, R ., " Statistical Q uality C ontrol",   | 1996 |
|----|-----------------------------------------------------------------------|------|
|    | McGraw-Hill                                                           |      |
| 2. | Mitra, A., "Fundamentals of Quality Control and Improvement", John    | 2008 |
|    | Wiley & Sons, Inc,                                                    |      |
| 3. | Juran, J.M., "Quality Control Handbook", McGraw-Hill                  | 1988 |
| 4. | Besterfield, D.H., B esterfield - Michna, C., B esterfield, G., a nd  | 1999 |
|    | Besterfield-Sacre, M., "Total Quality Management", Pearson Education  |      |
| 5. | Montgomery, D.C.,"Introduction to Statistical Quality Control", John- | 1996 |
|    | Wiley & Sons Inc.                                                     |      |

| NAME OF DEPTT./CEN                                               | NTRE:   | Mechanical<br>Department | & Industri<br>t      | ial Engineering |        |
|------------------------------------------------------------------|---------|--------------------------|----------------------|-----------------|--------|
| 1. Subject Code: MIN-3                                           | 311     | Course                   | Title: <b>Operat</b> | ions Research   |        |
| <ol> <li>Contact Hours:</li> <li>Examination Duration</li> </ol> | (Hrs.): | L: 3<br>Theory           | T: 1<br>y:3 Pract    | P: 0<br>ical: 0 |        |
| 4. Relative Weight: CW                                           | /S: 25  | PRS: 0                   | MTE: 25              | ETE: 50         | PRE: 0 |
| 5. Credits: 4                                                    | 6. Sem  | ester: Autumn            | 7. Su                | bject Area: DCC |        |

- 8. Pre-requisite: Nil
- 9. Objective: The course covers deterministic and probabilistic mode ls with emphasis on formulation of problems for scientific and quantitative analysis.
- 10. Details of Course:

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Origin a nd de velopment of ope rations r esearch,       | 2                    |
|        | general m ethodology o f O R, applications of O R t o i ndustrial      |                      |
|        | problems.                                                              |                      |
| 2.     | Linear P rogramming: Different t ypes of m odels, formulation of       | 13                   |
|        | linear pr ogramming p roblems ( LPPs), pr oduct-mix pr oblems,         |                      |
|        | deterministic mode ls, graphical s olution. Simplex a lgorithm,        |                      |
|        | computational procedure in simplex method, applications of simplex     |                      |
|        | technique to industrial problems. Duality and its concept, dual linear |                      |
|        | programming, application of elementary sensitivity analysis            |                      |
| 3.     | Linear Optimization Techniques: Integer programming problems           | 15                   |
|        | (IPPs), assignment mod els: ma thematical f ormulation, methods of     |                      |
|        | solutions, transportation pr oblems: m ethods of obt aining opt imal   |                      |
|        | solution de generacy i n t ransportation pr oblems, transshipment      |                      |
|        | problems.                                                              |                      |
| 4.     | Game P roblems: Introduction a nd s cope o f game pr oblems i n        | 6                    |
|        | business a nd i ndustry, min-max c riterion and optimal s trategy,     |                      |
|        | solution of two-person zero-sum game, game problem as a s pecial       |                      |
| _      | case of linear programming.                                            |                      |
| 5.     | Queuing Problems: Queuing systems and concepts, classification of      | 6                    |
|        | queuing situations; Kendall's notation, solution of queuing problems,  |                      |
|        | single channel, single stage, finite and infinite queues with Poisson  |                      |
|        | arrival and exponential service time, applications to industrial       |                      |
|        | problems.                                                              |                      |
|        | Total                                                                  | 42                   |

| S. No. | Name of Books / Authors                                                        | Year of     |
|--------|--------------------------------------------------------------------------------|-------------|
|        |                                                                                | Publication |
| 1.     | Taha,H.A., "An Introduction t o O perations Research", 6 <sup>th</sup> Ed.,    | 2001        |
|        | Prentice Hall of India                                                         |             |
| 2.     | Panneerselvam R., Operations Research, PHI                                     | 2011        |
| 3.     | Hillier, F.J., Lieberman, G.J., "Introduction to Operations Research"          | 2001        |
|        | 7 <sup>th</sup> Ed., Holden Day Inc.                                           |             |
| 4.     | Gross, D., and Harris, C.M., "Fundamentals of Queuing Theory", 2 <sup>nd</sup> | 1985        |
|        | Ed., John Wiely & sons, NY                                                     |             |
| 5.     | Cheema, D.S., "Operation Research", Laxmi Publications (P) Ltd.                | 2005        |
| 6      | Wagner, H.M., "Principles of Operations Research", Prentice Hall of            | 1980        |
|        | India                                                                          |             |

| NAME OF DEPTT./CEN              | TRE:  | Mechanical & Industrial Engineering<br>Department |                              |               | ,      |
|---------------------------------|-------|---------------------------------------------------|------------------------------|---------------|--------|
| 1. Subject Code: MIN-312        |       | Course Title:                                     | <b>Operations Management</b> |               |        |
| 2. Contact Hours: L: 3          |       | <b>T:</b> 1                                       | P: 0                         |               |        |
| 3. Examination Duration (Hrs.): |       | Theory: 3                                         | Practical: 0                 |               |        |
| 4. Relative Weight: CW          | S: 25 | PRS: 0                                            | MTE: 25                      | ETE: 50       | PRE: 0 |
| 5. Credits: 4                   | 6. Se | mester: Spring                                    | 7. Subje                     | ect Area: DCC |        |

- 8. Pre-requisite: Nil
- 9. Objective: The course is designed to provide knowledge about the shop floor and resource management activities in a manufacturing organization.
- 10. Details of Course:

| S. No. | Contents                                                             | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Types and characteristics of manufacturing systems,    | 3                    |
|        | concept of manufacturing cell, system planning and design.           |                      |
| 2.     | <b>Operations Sc heduling:</b> Concepts, loading, s cheduling a nd   | 8                    |
|        | sequencing, single processor scheduling, flow shop scheduling, job-  |                      |
|        | shop scheduling, scheduling criteria; Gantt charts                   |                      |
| 3.     | Project Management: Project management techniques; Introduction      | 5                    |
|        | to C PM and P ERT techniques, activities and events, conventions     |                      |
|        | adopted in drawing networks, graphical representation of events and  |                      |
|        | activities, dummy activities, identification of critical activities. |                      |
| 4.     | Materials Planning an d C ontrol: Field and scope, materials         | 10                   |
|        | planning; I nventories-types and classification; A BC ana lysis,     |                      |
|        | economic 1 ot s ize, E OQ m odel, lead t ime a nd r eorder poi nt,   |                      |
|        | inventory c ontrol s ystems, modern t rends i n pur chasing, store   |                      |
|        | keeping, store operations; Introduction to MRP and MRP-II, bills of  |                      |
|        | material; Introduction to ERP.                                       |                      |
| 5.     | Zero I nventory S ystems: Introduction t o t he ne w m anufacturing  | 5                    |
|        | concepts; JIT, lean manufacturing and agile manufacturing, pull and  |                      |
|        | push systems of production; Kanban system.                           |                      |
| 6.     | Capacity P lanning: Definition of c apacity, capacity pl anning,     | 7                    |
|        | capacity r equirement pl anning, capacity available and required,    |                      |
|        | scheduling order.                                                    |                      |
| 7.     | Supply Chain M anagement: Introduction – understanding s upply       | 4                    |
|        | chain, supply chain performance, supply chain drivers and obstacles, |                      |

| planning demand and supply in a supply chain. |    |
|-----------------------------------------------|----|
| Total                                         | 42 |

| S. No. | Name of Books / Authors                                            | Year of     |
|--------|--------------------------------------------------------------------|-------------|
|        |                                                                    | Publication |
| 1.     | Russell, R.S., and Taylor, B.W., 'Operations Management", Pearson  | 2003        |
|        | Education                                                          |             |
| 2.     | Jocobs, C.A., "Production a nd O perations M anagement", Tata      | 1999        |
|        | McGraw Hill                                                        |             |
| 3.     | Ramamurthy, P. "Production and Operations Management", New Age     | 2002        |
|        | International                                                      |             |
| 4.     | Adam J r., E .E., and Ebert, R.J., "Production a nd O perations    | 2001        |
|        | Management Concept, Models, and Behaviour", 5th Ed., Prentice Hall |             |
|        | of India                                                           |             |
| 5.     | Buffa, E.S., and Sarin, R.K., "Modern P roduction / O perations    | 1994        |
|        | Management", John Willey & Sons                                    |             |

### NAME OF DEPTT./CENTRE:Department of Mechanical andIndustrialEngineering

| 1. | Subject Code:    | MIN-313       | CourseTitle:      | Work System Design |              |
|----|------------------|---------------|-------------------|--------------------|--------------|
| 2. | Contact Hours:   | L: 3          | T: 0              | <b>P</b> :         | 2/2          |
| 3. | Examination Dur  | ation (Hrs.): | Theory 3          |                    | Practiceal 0 |
| 4. | Relative Weight: | CWS: 20       | PRS 20<br>MTE: 30 | ETE 20             | PRE0         |

5. Credits: 46. Semester: Autumn7. Subject Area: DCC

8. Pre– requisite:Nil

9. Objective: To introduce concepts, techniques and tools for work study and Ergonomics

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact<br>Hours |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.     | <b>Productivity:</b> Concept, obj ectives, Factors affecting productivity, Productivity m easurement, c auses of 1 ow p roductivity, T ools and techniques to improve productivity, work study and productivity                                                                                                                                                                                                                                                                                                                          | 06               |
| 2.     | Work St udy: Purpose, s cope a nd d evelopments, hum an a spects, techniques of work study and their scope                                                                                                                                                                                                                                                                                                                                                                                                                               | 04               |
| 3.     | <b>Method St udy:</b> Objectives a nd s cope, recording t echniques: ope ration process charts, flow process charts, two hand process chart, activity chart, other c harts, their a nalysis, flow di agram, string di agram, critical examination t echniques, de velopment, i nstallation and maintenance of improved m ethods, P rinciples of m otion e conomy, M icro M otion s tudy, Therbligs, m otion a nalysis, pr eparations of m otion film and i ts a nalysis, SIMO charts, memo-motion study, cyclegraph and chronocyclegraph | 14               |
| 4.     | <b>Time Study:</b> Scope and objectives, concepts of measurement of work in units of time, T echniques of w ork m easurement, s top w atch time s tudy, allowances and c alculation of s tandard t ime, s tandard t ime a nd i ts applications, W ork s ampling a nd i ntroduction t o P redetermined motion time systems                                                                                                                                                                                                                | 12               |
| 5.     | <b>Ergonomics</b> : Introduction to industrial ergonomics, constituents a reas of ergonomics, m an-machine s ystem, a nthropometry and ergonomics, metabolism a nd or ganization of w ork, e rgonomic a spects i n de sign of controls and displays and their layout, light and vibration consideration in ergonomically de signed s ystem, working c onditions a nd e nvironment, ergonomics and safety                                                                                                                                 | 06               |
|        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42               |

| S. No. | NameofAuthors / Books /Publisher                                 | Year of<br>Publication<br>/Reprint |
|--------|------------------------------------------------------------------|------------------------------------|
| 1.     | Introduction to Work Study by ILO.                               | 2005                               |
| 2.     | Barnes, R.M., "Motion and Time Study", John Wiley & Sons.        | 1980                               |
| 3.     | McCormick, E.J., "Human Factors in Engineering and Design", TMH. | 1976                               |
| 4.     | Bridger, R.S., "Introduction to Ergonomics", CRC Press.          | 2008                               |
| 5.     | Murrel, K.F.H., "Ergonomics", Longsman.                          | 1971                               |

| NAME OF DEPTT./CENT        | RE: Mechanica<br>Departmen | Mechanical & Industrial Engineering<br>Department |              |                     |  |
|----------------------------|----------------------------|---------------------------------------------------|--------------|---------------------|--|
| 1. Subject Code: MIN-325   | Course Title:              | Numerical N                                       | lethods in N | <b>Anufacturing</b> |  |
| 2. Contact Hours:          | L: 3                       | Γ:1 <b>P</b> :0                                   |              |                     |  |
| 3. Examination Duration (H | rs.): <b>Theory: 3</b>     | Practical: 0                                      |              |                     |  |
| 4. Relative Weight: CWS:   | 25 PRS: 0                  | MTE: 25                                           | ETE: 50      | PRE: 0              |  |
| 5. Credits: 4              | 6. Semester: Both          | 7. Sub                                            | ject Area: D | DEC/DHC             |  |

8. Pre-requisite: Nil

- 9. Objective: To expose the students to invarious numerical methods and modeling tools to model and simulate manufacturing and materials processing operations.
- 10. Details of Course:

| 8  |
|----|
|    |
|    |
|    |
|    |
|    |
|    |
| 8  |
|    |
|    |
| 10 |
| 10 |
|    |
|    |
|    |
|    |
|    |
|    |
| 10 |
| 10 |
|    |
|    |
|    |
|    |
|    |
|    |

|    | FEM formulation for plane strain rolling, Governing equations                                                                                                                                                                 |    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. | <b>Modeling of Welding Processes:</b> Weld pool he at & fluid f low,<br>Modeling of fluid d ynamics & c oupled phe nomenon i n a rch w eld<br>pools, finite e lement analysis of w elding r esidual s tress &<br>distribution | 6  |
|    | Total                                                                                                                                                                                                                         | 42 |

| S. No. | Name of Books / Authors                                             | Year of     |
|--------|---------------------------------------------------------------------|-------------|
|        |                                                                     | Publication |
| 1.     | Ilegbusi, O lusegun J., Iguchi, M., W anhsiedler, W., "Mathematical | 2000        |
|        | and P hysical M odelling of M aterials P rocessing O perations",    |             |
|        | Chapman & Hall/ CRC Press                                           |             |
| 2.     | Stefanescu, D. M., "Science and Engineering of C asting             | 2002        |
|        | Solidification", Kluwer Academic/ Plenum Publishers,                |             |
| 3.     | Lal, G. K., Dixit, P. M., Reddy, N. Venkata., "Modelling Techniques | 2011        |
|        | for Metal Forming Processes", Narosa Publishimg House,              |             |
| 4.     | Gupta S antosh K, N umerical M ethods f or E ngineers, N ew A ge    | 2009        |
|        | International (P) Limited Publishers,                               |             |

| NAME OF DEPTT./CENTRE:          |         | Mechanical & Industrial Engineering<br>Department |        |              |              |         |
|---------------------------------|---------|---------------------------------------------------|--------|--------------|--------------|---------|
| 1. Subject Code: M              | IN-327  | Course                                            | Title: | Rever        | se Engineer  | ing     |
| 2. Contact Hours:               |         | L: 3                                              |        | T: 1         | ]            | P: 0    |
| 3. Examination Duration (Hrs.): |         | Theory: 3                                         |        | Practical: 0 |              | 1: 0    |
| 4. Relative Weight:             | CWS: 25 | PRS: 0                                            | MTE:   | 25           | ETE: 50      | PRE: 0  |
| 5. Credits: 4                   | 6. Se   | emester: B                                        | oth    | 7.S          | ubject Area: | DEC/DHC |

8. Pre-requisite: Nil

9. Objective: To t each s tudents various t ools and t echniques us ed f or t he reverse engineering processes and applications.

### 10. Details of Course:

| S. No. | Contents                                                             | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Scope and tasks of RE, Process of duplicating,         | 6                    |
|        | Definition and use of Reverse Engineering, Reverse Engineering as a  |                      |
|        | Generic Process                                                      |                      |
| 2.     | Tools and Techniques for RE: Object scanning: contact scanners,      | 14                   |
|        | noncontact scanners, destructive method, coordinate measuring        |                      |
|        | machine, Point Data Processing: preprocessing and post processing of |                      |
|        | captured data, geometric model development, construction of surface  |                      |
|        | model, solid model, noise reduction, feature identification, model   |                      |
|        | verification                                                         |                      |
| 3.     | Rapid Prototyping:Introduction, current RP techniques and            | 12                   |
|        | materials, Stereo Lithography, Selective Laser Sintering, Fused      |                      |
|        | Deposition Modeling, Three-dimensional Printing, Laminated Object    |                      |
|        | Manufacturing, Multijet Modeling, Laser-engineered Net Shaping,      |                      |
|        | Rapid Prototyping, Rapid Tooling, Rapid Manufacturing                |                      |
| 4.     | Integration:Cognitive approach to RE, Integration of formal and      | 6                    |
|        | structured methods in reverse engineering, Integration of reverse    |                      |
|        | engineering and reuse.                                               |                      |
| 5.     | Legal Aspects of Reverse Engineering: Introduction, Copyright Law    | 4                    |
|        | Total                                                                | 42                   |

| S. No. | Name of Books / Authors                                                              | Year of     |
|--------|--------------------------------------------------------------------------------------|-------------|
|        |                                                                                      | Publication |
| 1.     | Biggerstaff T. J., "Design Recovery for Maintenance and Reuse",<br>IEEE Corporation. | 1991        |
| 2.     | Katheryn, A. Ingle, "Reverse Engineering", McGraw-Hill.                              | 1994        |

| 3. | Aiken Peter, "Data Reverse Engineering", McGraw-Hill.            | 1996 |
|----|------------------------------------------------------------------|------|
| 4. | Linda Wills, "Reverse Engineering", Kluiver Academic Publishers. | 1996 |
| 5. | Donald R. Honsa, "Co-ordinate Measurement and reverse            | 1996 |
|    | engineering", American Gear Manufacturers Association            |      |

| NAME OF DEPTT./CENTRE:             |              | Mechanical & Industrial Engineering<br>Department |      |               |               |
|------------------------------------|--------------|---------------------------------------------------|------|---------------|---------------|
| 1. Subject Code: M                 | IIN-328      | Course Title:                                     | Manu | ıfacturing Sy | stem Analysis |
| 2. Contact Hours:                  |              | L: 3                                              | T: 1 | P: 0          |               |
| 3. Examination Dura                | tion (Hrs.): | Theory: 3                                         |      | Practical: 0  | )             |
| 4. Relative Weight:                | CWS: 25      | PRS:0 MTE:                                        | 25   | ETE: 50       | PRE: 0        |
| 5. Credits: 4<br>8. Pre-requisite: | 6. Se<br>Nil | emester: Both                                     |      | 7.Subject A   | rea: DEC      |

9. Objective: To t each s tudents va rious t ools a nd t echniques us ed f or t he p erformance analysis of manufacturing systems.

| S. No. | Contents                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Definitions of m anufacturing with i nput-output          | 4                    |
|        | model, Definition of system, Basic problems concerning systems and      |                      |
|        | system design procedure, Modes of manufacturing – job/batch/flow        |                      |
|        | and multi-product, small-batch manufacturing.                           |                      |
| 2.     | System M odeling Issues: Centralized v ersus distributed c ontrol;      | 8                    |
|        | Real-time vs . discrete event c ontrol; F orward vs . ba ckward         |                      |
|        | scheduling approaches w ith finite/infinite c apacity loa ding;         |                      |
|        | Modeling of absorbing states and deadlocks, conflicts, concurrency,     |                      |
|        | and synchronization etc.                                                |                      |
| 3.     | System M odeling Tools an d Techniques: Introduction t o                | 15                   |
|        | mathematical modeling, optimization, and simulation; Issues related     |                      |
|        | with Deterministic and Stochastic models, continuous and discrete       |                      |
|        | mathematical mode ling methods-Discrete ev ent, Monte C arlo            |                      |
|        | method; B asic C oncepts of M arkov C hains a nd P rocesses; T he       |                      |
|        | M/M/I and M /M/m Q ueue; M odels of m anufacturing s ystems-            |                      |
|        | including tr ansfer line s a nd flexible ma nufacturing s ystems,       |                      |
|        | Introduction to Petri nets.                                             |                      |
| 4.     | Performance A nalysis: Iransient a nalysis of m anufacturing            | 15                   |
|        | systems, Analysis of a flexible ma chining c enter; P roduct f low      |                      |
|        | analysis; R ank or der c lustering; P rocess flow c harting; M RPI& II, |                      |
|        | Kanban, OPI, JII-Pull and JII-Push, Line of balance, Effects of         |                      |
|        | machine f ailure, set-ups, a nd ot her di sruptions on s ystem          |                      |
|        | performance; Calculation of performance measures-throughput, in-        |                      |
|        | process 1 nventory, du e da tes, M 1L, C apacity, a nd M achine         |                      |
|        | utilization etc.; Critique of nign inventory, long lead time systems;   |                      |
|        | Snop Hoor control issues.                                               | 42                   |
|        | lotal                                                                   | 42                   |

| S. No. | Name of Books / Authors                                             | Year of     |
|--------|---------------------------------------------------------------------|-------------|
|        |                                                                     | Publication |
| 1.     | Askin, R. G., and S tandridge, C. R., "Modeling a nd A nalysis of   | 1993        |
|        | Manufacturing Systems", John Wiley & Sons Inc.                      |             |
| 2.     | Gershwin, S., "Manufacturing S ystems E ngineering", P rentice-Hall | 1994        |
|        | Inc.                                                                |             |
| 3.     | Hitomi, K., "Manufacturing Systems Engineering", Taylor & Francis   | 1998        |
| 4.     | Viswanadham, N ., and N arahari, Y., "Performance M odeling of      | 1992        |
|        | Automated Manufacturing Systems", Prentice-Hall of India            |             |
| 5.     | Hopp, W.J., and S pearman, M.L., "Factory P hysics: Foundation of   | 1996        |
|        | Manufacturing Management", McGraw Hill Inc.                         |             |
| 6.     | Chang, T. C., Wysk, R. A., and W. ang, H. P., "Computer A ided      | 1998        |
|        | Manufacturing", Prentice Hall Inc.                                  |             |

### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering

| 1.       | Subject Code: MIN-329<br>Manufacturing                | Course 7     | Fitle: Compu | ter Integrated       | d    |
|----------|-------------------------------------------------------|--------------|--------------|----------------------|------|
| 2.       | Contact Hours :                                       | L: 3         | <b>T:</b> 1  | P: 0                 |      |
| 3.       | Examination Duration (Hrs.) :                         | Theory: 3    | Practi       | cal: 0               |      |
| 4.       | Relative Weight : CWS: 25                             | PRS: 0       | MTE: 25      | ETE: 50              | PRE0 |
| 5.<br>8. | Credits: <b>4</b> 6. Ser<br>Pre–requisite: <b>Nil</b> | mester: Both | 7. Sub       | ject Area: <b>DE</b> | C    |

- 9. Objective: To provide k nowledge and d etails of the means of c omputer a ided manufacturing and various functions supporting the automated manufacturing.
- 10. Details of Course:

| S.       | Contents                                                                                                                                                                                                                                                                                                                                                                                     | Contact |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <u>1</u> | <b>Introduction:</b> Introduction to manufacturing systems and their performance analysis; Introduction t o a utomation; Introduction t o c omputer i ntegrated manufacturing (CIM).                                                                                                                                                                                                         | 04      |
| 2        | <b>Numerical Control (NC):</b> Introduction, numerical control – its growth and development, c omponents of NC s ystem, i nput de vices, c ontrol s ystems – point to point, straight cut, and continuous path NC, ope n loop and closed loop NC systems, NC interpolations – linear, circular, helical, parabolic and cubic interpolation, applications of NC systems, merits and demerits. | 10      |
| 3        | <b>Extensions of N C:</b> Concepts of c omputer numerical c ontrol ( CNC), machining center, and direct numerical control (DNC), and their advantages.                                                                                                                                                                                                                                       | 06      |
| 4        | <b>Robotics:</b> Robot a natomy a nd r elated a ttributes, r obot c ontrol s ystems – limited sequence, playback with point to point, playback with continuous and intelligent control; End effectors – gripper, tools; Sensors in robotics – tactile sensors, pr oximity, opt ical s ensors a nd m achine vi sion; A pplications of industrial robots, robot programming.                   | 06      |
| 5        | Material H andling a nd S torage: Overview of m aterial ha ndling equipments, a utomated m aterial ha ndling equipments – AGVs, c onveyor systems, pe rformance a nalysis of m aterial ha ndling s ystems, a utomated material storage systems – ASRS and carousel storage, analysis of automated storage systems.                                                                           | 06      |
| 6        | <b>Manufacturing Support Functions:</b> Introduction to group technology (GT), computer a ided pr ocess pl anning (CAPP), m aterial r equirement pl anning (MRP), capacity planning, scheduling etc.                                                                                                                                                                                         | 10      |
|          | Total                                                                                                                                                                                                                                                                                                                                                                                        | 42      |

| S.  | Name of Authors / Books / Publisher                                      | Year of     |
|-----|--------------------------------------------------------------------------|-------------|
| No. |                                                                          | Publication |
|     |                                                                          | / Reprint   |
| 1   | Groover, M. P., "Automation, P roduction s ystems and C omputer          | 2007        |
|     | Integrated Manufacturing", 3 <sup>rd</sup> Ed., Prentice-Hall.           |             |
| 2   | Singh, N., "Systems A pproach t o C omputer Integrated Design and        | 1996        |
|     | Manufacturing", John Wiley & Sons.                                       |             |
| 3   | Chang, TC., W ysk, R. A . and W ang, HP. " Computer A ided               | 2005        |
|     | Manufacturing", 3 <sup>rd</sup> Ed., Prentice Hall.                      |             |
| 4   | Rembold, U., N naji, B. O . a nd S torr A., " Computer Integrated        | 1994        |
|     | Manufacturing", Addison Wesley.                                          |             |
| 5   | Besant, C. B. a nd Lui, C. W. K., "Computer A ided D esign and           | 1991        |
|     | Manufacture",                                                            |             |
|     | Ellis Horwood Ltd.                                                       |             |
| 6   | Rao, P. N., T iwari, N. K. a nd K undra, T.K., "Computer A ided          | 1993        |
|     | Manufacturing", Tata McGraw Hill.                                        |             |
| 7   | Koren, Y. "Computer Control of Manufacturing Systems", McGraw Hill.      | 1983        |
| 8   | Lynch, M., "Computer Numerical Control for Machining", McGraw-Hill.      | 1992        |
| 9   | Sava, M. a nd P usztai, J., "Computer N umerical C ontrol P rogramming", | 1990        |
|     | Prentice Hall.                                                           |             |

| NAME OF DEPTT./                        | CENTRE:      | Mechanica<br>Departmen | l & Industi<br>it | rial Enginee   | ring   |
|----------------------------------------|--------------|------------------------|-------------------|----------------|--------|
| 1. Subject Code: M                     | IN-330       | Course Title:          | Ergonomic         | S              |        |
| 2. Contact Hours:                      |              | L: 3                   | T: 1              | P: 0           |        |
| 3. Examination Dura                    | tion (Hrs.): | Theory: 3              | Prac              | ctical: 0      |        |
| 4. Relative Weight:                    | CWS: 25      | PRS: 0                 | MTE: 25           | ETE: 50        | PRE: 0 |
| 5. Credits: 4<br>8. Pre-requisite: Nil | 6. Set       | mester: Both           | 7. Si             | ubject Area: D | EC/DHC |

- 9. Objective: The main objective of the course is to impart an understanding of the manmachine s ystem. The course deals with the study of the different as pects of physiology and psychology in the work system design.
- 10. Details of Course:

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Introduction a nd r elevance t o w ork s ystem de sign,  | 8                    |
|        | importance of e rgonomics i n pr esent d ay s cenario, D efinition &   |                      |
|        | fundamentals of ergonomics:, historical perspectives, objectives and   |                      |
|        | functions                                                              |                      |
| 2.     | Anthropometry: Human bod y, a nthropometrics, postures; S tand,        | 12                   |
|        | sitting, squatting a nd c ross-legged pos tures, anthropometric        |                      |
|        | measuring t echniques, bod y s upportive de vices, ve rtical a nd      |                      |
|        | horizontal work surface, design of an ergonomic chair                  |                      |
| 3.     | Human factors: Behavioral aspects, cognitive issues, mental work       | 4                    |
|        | load, human error                                                      |                      |
| 4.     | Ergonomic Design: Design methodology and criteria for designing,       | 12                   |
|        | design for improving oc cupational s afety and reduction in f atigue   |                      |
|        | and di scomfort, work s ystem de sign, e nvironmental factors, vi sual |                      |
|        | issues in design, case studies                                         |                      |
| 5.     | Case s tudies: D esign modifications in existing products from the     | 6                    |
|        | ergonomics point of view                                               |                      |
|        | Total                                                                  | 42                   |

| S. No. | Name of Books / Authors                                                                                            | Year of<br>Publication |
|--------|--------------------------------------------------------------------------------------------------------------------|------------------------|
| 1.     | Singh, S (Edt), Ergonomics Interventions for Health and Productivity,<br>Himanshu Publications, Udaipur, New Delhi | 2007                   |

| 2. | Chakrabarti D., Indian Anthropometric Dimensions for ergonomic | 1997 |
|----|----------------------------------------------------------------|------|
|    | design practice, National Institute of Design, Ahmedabad       |      |
| 3. | Salvendy G. (edit), Handbook of Human Factors and ergonomics,  | 1998 |
|    | John Wiley & Sons, Inc.,                                       |      |
| 4. | Dul, J. and Weerdmeester, B. Ergonomics for beginners, a quick | 1993 |
|    | reference guide, Taylor & Francis                              |      |
| 5. | Green, W.S. and Jordan, P.W, Human Factors in Product Design,  | 1999 |
|    | Taylor & Francis                                               |      |

| NAME OF DEPTT./CENTRE:             |               | Mechanical & Industrial Engineering<br>Department |                      |         |              |         |
|------------------------------------|---------------|---------------------------------------------------|----------------------|---------|--------------|---------|
| 1. Subject Code: MI                | N-331         | Course                                            | e Title: <b>Tota</b> | l Quali | ty Managen   | nent    |
| 2. Contact Hours:                  |               | L: 3                                              | Т:                   | 1       | P: 0         |         |
| 3. Examination Dura                | ation (Hrs.): | Theor                                             | y: 3                 | Pra     | ctical: 0    |         |
| 4. Relative Weight:                | CWS: 25       | PRS: 0                                            | MTE: 25              | ETI     | E: 50        | PRE: 0  |
| 5. Credits: 4<br>8. Pre-requisite: | 6. S<br>Nil   | Semester: 1                                       | Both                 | 7.St    | ubject Area: | DEC/DHC |

9. Objective: To development unde rstanding on t ools, t echniques a nd t he phi losophies concerning t he a pplication of t he T otal Q uality M anagement (TQM) in m anufacturing a nd service industry.

| S. No. | Contents                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------|----------------------|
| 1.     | Fundamentals: Evolution of Q uality: Inspection, Q uality C ontrol,     | 10                   |
|        | Quality Assurance and Total Q uality M anagement, Customer-             |                      |
|        | Orientation: Internal & E xternal C ustomer C oncept, Quality           |                      |
|        | Philosophies of Deming, Juran, Crosby, Ishikawa, Taguchi; Tools and     |                      |
|        | improvement cycle (PDCA). Life cycle approach t o qua lity costs        |                      |
|        | prevention; A ppraisal and F ailure costs. V arious T QM m odels.       |                      |
|        | Relationship between quality and environment.                           |                      |
| 2.     | Human Resources Management: Organizational, Communicational             | 6                    |
|        | and T eam r equirements. Types of t eams, Quality circles,              |                      |
|        | Empowerment, Human resource policies in TQM, Group dynamics             |                      |
| 3.     | Tools and Techniques                                                    | 10                   |
|        | Seven QC tools (Histogram, Check sheets, Ishikawa diagrams, Pareto,     |                      |
|        | Scatter di agrams, Control c harts), Quality Function Deployment,       |                      |
|        | Statistical process control, Process capability, JIT and Elimination of |                      |
|        | waste, Total P roductive M aintenance, 5-S. T aguchi's c oncept of      |                      |
|        | quality loss function.                                                  |                      |
| 4.     | Systems and Procedure: Importance, Standardization (National and        | 8                    |
|        | International) Quality Systems, Quality Manuals, Quality Information    |                      |
|        | Systems and documentation, Auditing, Basics of ISO-9000 and ISO         |                      |
|        | 14000: Relevance and misconceptions.                                    |                      |
| 5.     | Implementation: Quality s trategy a nd pol icy, M otivation and         | 8                    |
|        | leadership t heories. C ontinuous vs br eakthrough i mprovements,       |                      |
|        | Management of c hange, Q uality award m odels a nd r ole of s elf-      |                      |

| assessment, Benchmarking, Implementation barriers, TOM practices. |  |
|-------------------------------------------------------------------|--|
|                                                                   |  |

| S. No. | Name of Books / Authors                                           | Year of     |
|--------|-------------------------------------------------------------------|-------------|
|        |                                                                   | Publication |
| 1.     | Besterfield, D C and Besterfield C Total Quality Management,      |             |
|        | Pearson Education Asia, New Delhi                                 |             |
|        |                                                                   | 1999        |
| 2.     | Mohanty R P and Lakhe R R Handbook of Total Quality               |             |
|        | Management, Jaico Publishers                                      |             |
|        |                                                                   | 2000        |
| 3.     | Berk, J. and Berk, S. Total Quality Management: Implementing      |             |
|        | Continuous Improvement. New York: Sterling Publishing             |             |
|        |                                                                   | 1993        |
| 4.     | Logothetis, N. Managing forTotal Quality. New York: Prentice Hall |             |
|        |                                                                   | 1992        |
| 5.     | Bossert, J. L. Quality Function Deployment – A Practitioner's     |             |
|        | Approach, NY: Marcel Dekker                                       |             |
|        |                                                                   | 1994        |
| 6.     | Taguchi, G., A. Elsayed, and T. Hsiang Quality Engineering in     |             |
|        | Production Systems, NY: McGraw Hill                               |             |
|        |                                                                   | 1989        |

| NA | AME OF DEPTT./CENTRE:      | Mechanical & Ind         | lustrial Engineering     |
|----|----------------------------|--------------------------|--------------------------|
| 1. | Subject Code: MIN-332      | Course Title: Industrial | Hazards and Safety       |
| 2. | Contact Hours :            | L: 3 T: 0                | P: 0                     |
| 3. | Examination Duration (Hrs. | ): Theory: 3 Practic     | cal: 0                   |
| 4. | Relative Weight : CWS: 25  | PRS: 0 MTE: 25           | ETE: 50 PRE:0            |
| 5. | Credits: 4                 | 6. Semester: Both        | 7. Subject Area: DEC/DHC |
|    |                            |                          |                          |

### 8. Pre – requisite: Nil

#### 9. Objectives of Course:

The course is planned in such a manner that the students can build on the foundation laid in the basic course on Industrial Hazards and Safety. The course will highlight in detail various Industrial Hazards with emphasis on different types of safety measures.

| S.No | Particulars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact<br>Hours |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1    | PHVSICAL HAZARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110015           |
|      | Noise, properties of sound, occupational damage, risk factors, sound measuring instruments, noise control programmes. Ionizing radiation, types, effects, monitoring instruments, control programmes, OSHA standard - non-ionizing radiations, effects, types, radar hazards, microwaves and radio-waves, lasers, TLV- cold environments, hypothermia, wind chill index, control measures- hot environments, thermal comfort, heat stress indices, acclimatization, estimation and control. | 9                |
| 2    | CHEMICAL AND NUCLEAR HAZARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 2    | Recognition of chemical hazards- types, and concentration, Exposure vs.<br>dose, TLV - Methods of evaluation, process or operation description, field<br>survey, sampling methodology, Air Sampling instruments, Types,<br>Measurement Procedures, Instruments Procedures, Gas and Vapour monitors,<br>dust sample collection devices, personal sampling. Methods of Control -<br>Engineering Control, Nuclear hazards, Disposal of nuclear wastes, Safety<br>measures In nuclear plants    | 9                |
| 3    | BIOLOGICAL AND ERGONOMICAL HAZARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|      | Classification of Biohazardous agents – examples, bacterial agents, rickettsial<br>and chlamydial agents, viral agents, fungal, parasitic agents, infectious<br>diseases - Biohazard control Programmes, employee health Programmes-<br>laboratory safety programmes-animal care and handling-biological safety<br>cabinets – building design. Work Related Musculoskeletal Disorders – careal                                                                                              | 9                |

|   | tunnel syndrome (CTS) - Tendon pain-disorders of the neck- back injuries.                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4 | <b>OCCUPATIONAL HEALTH AND TOXICOLOGY</b><br>Concept and spectrum of health - functional units and activities of occupational health services, pre - employment and post-employment medical examinations - occupational related diseases, levels of prevention of diseases, notifiable occupational diseases, their effects and prevention. Industrial toxicology, local, systemic and chronic effects, temporary and cumulative effects, carcinogens entry into human systems. | 8  |
| 5 | OCCUPATIONAL PHYSIOLOGY<br>Man as a system component – allocation of functions – efficiency –<br>occupational work capacity – aerobic and anaerobic work – evaluation of<br>physiological requirements of jobs – parameters of measurements –<br>categorization of job heaviness – work organization – stress – strain – fatigue<br>– rest pauses – shift work – personal hygiene.                                                                                              | 7  |
|   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 |

| S.No | Name of Book / Authors / Publisher                           | Year of     |
|------|--------------------------------------------------------------|-------------|
|      |                                                              | Publication |
| 1    | "Hand book of Occupational Safety and Health", National      | 1982        |
|      | Safety Council, Chicago.                                     |             |
| 2    | "Encyclopedia of Occupational Health and Safety", Vol. I and | 1985        |
|      | II, International Labour Office, Geneva,                     |             |
| 3    | "Occupational Safety and Health Management" by Thomas J.     | 1989        |
|      | Anton, 2 <sup>nd</sup> Ed.                                   |             |
| 4    | "Occupational Safety Management and Engineering" by Willie   | 2001        |
|      | Hammer and Dennis Price, ISBN: 0-13-896515-3                 |             |

#### **Mechanical & Industrial Engineering** NAME OF DEPTT./CENTRE: Department 1. Subject Code: MIN-333 Course Title: Industrial Management 2. Contact Hours: L: 3 **T:** 1 **P:** 0 3. Examination Duration (Hrs.): **Theory 3 Practical**0 4. Relative Weight: CWS: 25 PRS: 0 **MTE: 25** ETE: 50 **PRE: 0** 5. Credits: 4 6. Semester: Both 7. Subject Area: DEC/DHC 8. Pre-requisite: Nil

9. Objective: This course introduces the study of equilibrium and deformation in components, and structures for engineering design.

10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                          | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Basic conc epts of m anagement, scientific                                                                                                                                                                                                                                                          | 10                   |
|        | management, types of management.                                                                                                                                                                                                                                                                                  |                      |
| 2.     | <b>Organizational Structures:</b> Types of organizations, Functions and objectives of i ndustrial or ganizations, O wnership of Industries; Proprietorship, partnership, joint stock companies, public and private undertakings, c o-operative or ganizations, c omparison of di fferent organization structures. | 12                   |
| 3.     | <b>Personnel Management:</b> Functions, w age and s alary administration, j ob e valuation, satisfactory wage pl an, merit r ating and evaluation plans.                                                                                                                                                          | 10                   |
| 4.     | <b>Industrial Sa fety:</b> Occupational s afety, en gineering safety de sign and safety programmes; Safety aspects in work system design,                                                                                                                                                                         | 10                   |
|        | Total                                                                                                                                                                                                                                                                                                             | 42                   |

|    |                                                                             | Publication |
|----|-----------------------------------------------------------------------------|-------------|
| 1. | J. Russell (Joseph Russell) Smith, "The E lements of Industrial             | 2012        |
|    | Management", HardPress                                                      |             |
| 2. | Rieske, David W., Asfahl and C. Ray, "Industrial Safety and Health          | 2009        |
|    | Management", 6 <sup>th</sup> Ed., Prentice Hall Professional Technical Ref. |             |
|    |                                                                             |             |
| 3. | Gavriel Salvendy, "Handbook of Industrial Engineering: Technology           | 2001        |
|    | and Operations Management", John Wiley & Sons, Inc.                         |             |
| 4. | Herman B. Henderson, Albert E. Haas, "Industrial Organization and           | 1961        |
|    | Management F undamentals", Industrial P ress, T he U niversity of           |             |
|    | California.                                                                 |             |

**Mechanical & Industrial Engineering Department** NAME OF DEPTT./CENTRE: 1. Subject Code: MIN-334 Course Title: Facilities Design 2. Contact Hours: **T:1 P:** 0 L: 3 3. Examination Duration (Hrs.): Theory: 3 **Practical: 0** 4. Relative Weight: CWS: 25 **PRS: 0 MTE: 25** ETE: 50 **PRE: 0** 5. Credits: 4 6. Semester: Both 7.Subject Area: DEC/DHC 8. Pre-requisite: Nil

9. Objective: To i mpart t he kno wledge a bout fundamentals of di fferent aspects o f facility location, facility layout, and material handling for an enterprise.

| S. No. | Contents                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------|----------------------|
| 1.     | Factory Planning: Introduction, factors to be considered                | 2                    |
| 2.     | Plant Location and Site Selection: Levels of plant location, rural,     | 8                    |
|        | urban and suburban location of plants, factors influencing the plant    |                      |
|        | location, optimum plant location, location theories.                    |                      |
| 3.     | Plant Layout: Introduction of production system, scope, objectives,     | 10                   |
|        | importance, and types of plant layout, characteristics of a good plant  |                      |
|        | layout, factoring affecting plant layout, procedure of developing a     |                      |
|        | plant l ayout, installation a nd e valuation of pl ant l ayout, optimum |                      |
|        | plant layout.                                                           |                      |
| 4.     | Group T echnology: Definition, objectives, planning, part f amilies     | 10                   |
|        | and machine cell formation, evaluation of machine cells, types of GT    |                      |
|        | layout, benefits of GT, implementation of GT.                           |                      |
| 5.     | Line B alancing: Definitions, heuristic and analytical m ethods of      | 5                    |
|        | balancing the assembly and production line, single and mixed model      |                      |
|        | line balancing, alternatives to line balancing.                         |                      |
| 6.     | Materials Hand ling: Definition, scope, objectives, principles,         | 7                    |
|        | importance, factors in ma terials ha ndling pr oblem, analysis of       |                      |
|        | materials handling, types and selection of materials handling           |                      |
|        | equipment's, a ids a nd t echniques i n m aterials handling e quipment  |                      |
|        | selection.Planning of material flow, advantages of planned material     |                      |
|        | tlow, tlow pl anning pr inciples, flow pa tterns, analysis of m aterial |                      |
|        | flow.                                                                   |                      |
|        | Total                                                                   | 42                   |

| S. No. | Name of Books / Authors                                                         | Year of     |
|--------|---------------------------------------------------------------------------------|-------------|
|        |                                                                                 | Publication |
| 1.     | Francis, R.L., McGinnis, L.F., and White, J.A., "Facility Layout and            | 2004        |
|        | Location: An Analytical Approach", Prentice Hall of India                       |             |
| 2.     | Meyers, F.E., and Stephens, M.P., "Manufacturing Facilities Design              | 2000        |
|        | and Material Handling", Prentice-Hall, Inc.                                     |             |
| 3.     | Groover, M.P., "Automation, P roduction S ystems a nd C omputer-                | 2001        |
|        | Integrated Manufacturing",2 <sup>nd</sup> Ed., Pearson Education Inc. Delhi     |             |
| 4.     | Sule, D.R., "Manufacturing Facilities-Location, Planning, and Design",          | 1984        |
|        | PWS Publishing Company                                                          |             |
| 5.     | Tompkins, J.A., White, J.A., Bozer, Y.A., Frazelle, E.H., Tanchoco, J.M.,       | 1996        |
|        | and Tervino, J., "Facilities Planning", 2 <sup>nd</sup> Ed., John Willey & Sons |             |

#### **Mechanical & Industrial Engineering** NAME OF DEPTT./CENTRE: Department 1. Subject Code: MIN-335 Course Title: Concurrent Engineering 2. Contact Hours: L: 3 T: 1 **P:** 0 3. Examination Duration (Hrs.): Theory: 3 **Practical: 0** 4. Relative Weight: CWS: 25 PRS: 0 MTE: 25 ETE: 50 **PRE: 0** 5. Credits: 4 6. Semester: Both 7.Subject Area: DEC/DHC 8. Pre-requisite: Nil

9. Objective: To m ake t he l earners a ware on t he i mportance, c oncept, t ools a nd techniques of concurrent engineering.

| S.<br>No | Contents                                                                                                                                                                                                                                                                | <b>Contact Hours</b> |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.       | <b>Introduction:</b> Concurrent engineering concepts, sequential versus concurrent en gineering, importance of concurrent e ngineering, benefits of concurrent engineering.                                                                                             | 8                    |
| 2.       | <b>Design f or M anufacturing and A ssembly:</b> Mathematical modeling be tween de sign a nd m anufacturing, design f or manufacturing and assembly approach, concurrent product design, material ba lance equ ation, cost e quation, average m anufacturing lead time. | 13                   |
| 3.       | <b>Design f or X :</b> Design for qua lity, pseudo m easure of pr oduct optimality, quality function deployment, improvement in unit cost and quality of manufactured products.                                                                                         | 13                   |
| 4.       | <b>Implementation and C ase St udies:</b> Difficulties a ssociated with performing concurrent engineering, life cycle costing, case studies.                                                                                                                            | 8                    |
|          | Total                                                                                                                                                                                                                                                                   | 42                   |
| S. No. | Name of Books / Authors                                                                                                                              | Year of<br>Publication |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1.     | Andreasen, M.M., Kahler, S., Lund, T., and Swift, K., "Design for Assembly", Springer Verlag                                                         | 1988                   |
| 2.     | Molloy, O., Tilley, S., and Warman, E.A., "Design for Manufacturing<br>and Assembly C oncepts, A rchitectures and Implementation",<br>Chapman & Hall | 1998                   |
| 3.     | Wang, B., "Integrated Product, P rocess a nd Enterprise D esign",<br>Chapman & Hall                                                                  | 1997                   |
| 4.     | Benhabib, B., "Manufacturing D esign, P roduction, A utomation and Integration", Marcel Dekker Inc.                                                  | 2003                   |
| 5.     | Huang, G.Q., "Design for X C oncurrent E ngineering Imperatives",<br>Chapman & Hall                                                                  | 1996                   |
| 6.     | Boothroyd, G., D ewhurst, P., and Knight, W., "Product D esign for<br>Manufacture and Assembly", Marcel Dekker Inc.                                  | 2002                   |

| NAME OF DEPTT./                                              | Mechanical & Industrial Engineering<br>Department |             |            |                    |                      |         |
|--------------------------------------------------------------|---------------------------------------------------|-------------|------------|--------------------|----------------------|---------|
| 1. Subject Code: M                                           | IIN-336                                           | Course '    | Title:     | Financial <b>N</b> | Managemen            | it      |
| <ol> <li>Contact Hours:</li> <li>Examination Dura</li> </ol> | <b>L: 3</b> ttion (Hrs.):                         | ]<br>Theory | Г: 1<br>:3 | P                  | P: 0<br>Practical: 0 |         |
| 4. Relative Weight:                                          | CW825                                             | PRS: 0      | MTE        | : 25               | ETE: 50              | PRE: 0  |
| 5. Credits: 4                                                | 6. Set                                            | mester: Bo  | oth        | 7.Su               | bject Area:          | DEC/DHC |

8. Pre-requisite: Nil

9. Objective: To provide de tailed i nsight of t he f inancial r equirements i n i ndustriesbesides techniques of financial planning, control and managerial decisions.

| S. No. | Contents                                                                 | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------|----------------------|
| 1.     | Nature and Scope: Function of finance, jobs and objectives of a          | 12                   |
|        | financial manager, various forms of business organizations,              |                      |
|        | sourceof f inances: s hort te rm f inances- term c redit, accrued        |                      |
|        | expenses and deferred income, bank finance for working c apital;         |                      |
|        | long t erm finances- common s hares, r ight i ssues, debentures,         |                      |
|        | preference shares, lease financing, term loan.                           |                      |
| 2.     | Financial A ccounting: Purpose, f unctions, di fference be tween         | 8                    |
|        | financial and management accounting, Purpose, objective of               |                      |
|        | Financial Statement Analysis, ratio analysis: types of ratio, liquidity  |                      |
|        | ratio, leverage ratio, profitability ratios, and activity ratios.        |                      |
| 3.     | <b>Cost:</b> Nature a nd c lassification of c osts i n a m anufacturing  | 8                    |
|        | company, costing concepts, cost a llocation, Break-even analysis         |                      |
|        | (BEA), ope rating l everage, effect of ch ange i n pr ofit, utility a nd |                      |
|        | limitation of BE Analysis.                                               |                      |
| 4.     | Capital Budgeting (CB): Meaning, importance and difficulties of          | 8                    |
|        | CB, kinds of capital budgeting decisions, cash in flow and out flow      |                      |
|        | estimates. Capital structure, Concepts, needs, d etermination, a nd      |                      |
|        | dimension of working c apital m anagement, estimation of working         |                      |
|        | capital needs, financing current assets.                                 |                      |
| 5.     | Financing and D ividend D ecision: Meaning a nd m easure of              | 6                    |
|        | financial l everage, effect on t he s hare hol ders return, dividends,   |                      |
|        | dividend pol icy, practical cons ideration, constraints of pa ying       |                      |

| dividends, advantages and disadvantages of bonus shares etc. |       |    |
|--------------------------------------------------------------|-------|----|
|                                                              | Total | 42 |

| S. No. | Name of Books / Authors                                                       | Year of     |
|--------|-------------------------------------------------------------------------------|-------------|
|        |                                                                               | Publication |
| 1.     | Bose, D.C., "Fundamental of Financial Management", Prentice Hall              | 2006        |
| 2.     | Martin, K ., S cott J r., P., "Financial M anagement P rinciples and          | 2006        |
|        | Applications", 10 <sup>th</sup> Ed., Academic Internet Publishers             |             |
| 3.     | Higgins, R. C., "Analysis f or F inancial M anagement", 8 <sup>th</sup> Ed.,  | 2005        |
|        | McGraw-Hill/Irwin                                                             |             |
| 4.     | Brigham, E.F., and Ehrhardt, M.C., "Financial Management: Theory              | 2004        |
|        | and P ractice with T homson O NE",11 <sup>th</sup> Ed., South-Western College |             |
|        | Pub.                                                                          |             |
| 5.     | Horne, J.C.V., "Financial Management Policy", Pearson                         | 2004        |

| NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering<br>Department |             |            |            |                   | neering   |
|--------------------------------------------------------------------------|-------------|------------|------------|-------------------|-----------|
| 1. Subject Code: M                                                       | IIN-337     | Course     | Title: Pro | ocessing of Non-M | etals     |
| 2. Contact Hours:                                                        | L: 3        | ,          | T: 1       | P: 0              |           |
| 3. Examination Duration (Hrs.):                                          |             | Theory: 3  |            | Practical: 0      |           |
| 4. Relative Weight:                                                      | CWS: 25     | PRS: 0     | MTE: 25    | 5 ETE: 50         | PRE: 0    |
| 5. Credits: 4<br>8. Pre-requisite:                                       | 6. S<br>Nil | emester: B | oth        | 7. Subject Area   | : DEC/DHC |

9. Objective: The ma in objective of the c ourse is to impart an und erstanding of t he manufacturing science and engineering of non-metals.

#### 10. Details of Course:

| S. No. | Contents                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Classification of engineering materials and processing    | 3                    |
|        | techniques, structure and properties of non-metals                      |                      |
| 2.     | Processing of Glass and ceramics : Glass structure and properties,      | 10                   |
|        | glass me lting a nd forming, glass a nnealing, C eramic pow der         |                      |
|        | preparation, s ynthesis o f ce ramic powders, f abrication of ceramic   |                      |
|        | products from powders: pressing, casting, vapour phase techniques,      |                      |
|        | sintering, finishing, machining. ceramic coatings                       |                      |
| 3.     | Processing of Plastics: thermoplastics and thermosets, Processing of    | 8                    |
|        | Plastics: E xtrusion. Injection m oulding. T hermoforming.              |                      |
|        | Compression m oulding. T ransfer m oulding. G eneral be havior of       |                      |
|        | polymer melts, Machining of plastics                                    |                      |
| 4.     | Processing of p olymer matrix composites: Classification of             | 10                   |
|        | composite ma terials, properties of composites hand l ay-up,            |                      |
|        | autoclaving, f ilament w inding, pul trusion, c ompression m olding,    |                      |
|        | pre-pegging, sheet molding compounds etc., process capability and       |                      |
|        | application areas of various techniques                                 |                      |
| 5.     | Ceramic matrix composites: mechanical pr operties of ce ramic           | 6                    |
|        | matrix c omposites, di fferent pr ocessing t echniques f or c eramic    |                      |
|        | matrix c omposites, process c apability a nd applications of va rious   |                      |
|        | techniques                                                              |                      |
| 6.     | Secondary processing of composite materials: Need of secondary          | 5                    |
|        | operations, di fferent t ype of s econdary ope rations, m achining a nd |                      |
|        | drilling of non-metals, machining induced damage, different methods     |                      |
|        | of reducing the damage on account of secondary processing               |                      |
|        | Total                                                                   | 42                   |

| S. No. | Name of Books / Authors                                                                                    | Year of<br>Publication |
|--------|------------------------------------------------------------------------------------------------------------|------------------------|
| 1.     | Kalpakjian, S., "Manufacturing Processes for Engineering Materials," 3 <sup>rd</sup> Ed., Addison – Wesley | 1997                   |

| 2. | Strong, A.B., "Plastics: Materials and Processing," Pearson Prentice    | 2006 |
|----|-------------------------------------------------------------------------|------|
|    | Hall                                                                    |      |
| 3. | Mathews, F.L., and R awlings, R.D., " Composite M aterials:             | 1999 |
|    | Engineering and Science," Woodhead Publishing                           |      |
| 4. | Peters S.T. "Handbook of Composites", 2 <sup>nd</sup> Ed., Chapman Hall | 1998 |

| NAME OF DEPTT. /CENTRE: |                  |              | Mech         | Mechanical & Industrial Engineering |                  |                 |  |
|-------------------------|------------------|--------------|--------------|-------------------------------------|------------------|-----------------|--|
| 1.                      | Subject Code:    | MIN-338      | Cours        | e Title:                            | Measurement & ]  | Instrumentation |  |
| 2.                      | Contact Hours:   | L: 3         |              | <b>T:</b> 1                         | Р:               | 2/2             |  |
| 3.                      | Examination Dura | tion (Hrs.): | Theo         | ry: 3                               | Practic          | al: 0           |  |
| 4.                      | Relative Weight: | CWS: 20      | PRS: 20      | MTE:                                | 20 ETE: 40       | PRE: 0          |  |
| 5.                      | Credits: 4       |              | 6. Semester: | Both                                | 7. Subject Area: | DEC/DHC         |  |
|                         |                  |              |              |                                     |                  |                 |  |

8. Pre-requisite: Nil

9. Objectives of Course: The course is designed to give the undergraduate students the basic knowledge about the measurement systems and its components. Further, the various other issues related to above aspects have been discussed.

| S.<br>No. | Particulars                                                                                                                                                                                                                                                                                                                                                                                                                           | Contact<br>Hours |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1         | <b>Generalized C onfiguration of Meas uring System :</b> Functional elements of a basic measuring system; different types of measurands, description of functional elements. Input-output c onfiguration of a measuring system. Interfering a nd modifying inputs; methods for correction for interfering and modifying inputs.                                                                                                       | 06               |
| 2         | <b>Characteristics of Instruments :</b> Objective of studying the characteristics of the instruments. S tatic c haracteristics – accuracy, pr ecision, e rror, s ensitivity, hysterisis, threshold, drift, span, static s tiffness etc. D ynamic C haracteristics – time dom ain a nd f requency dom ain c haracteristics t erms. Input-output Impedance's a nd m eaning of i mpedance m ismatching. C oncept of m echanical loading. | 04               |
| 3         | <b>Measurement System Behaviour :</b> Description of mathematical model for the generalized configuration of a m easurement system. Response characteristics of the system – Amplitude, frequency and phase response. O rder of the systems, response of z ero, first and s econd or der s ystems t o s tep, r amp and s inusoidal inputs. Transfer function method to study the response of the system.                              | 07               |
| 4         | <b>Uncertainty Analysis :</b> Classification of e rrors systematic errors, random errors, illegitimate e rrors a nd statistical a nalysis of e xperimental da ta, computation of maximum and rss error .                                                                                                                                                                                                                              | 03               |

| 5 | <b>Principles of Transduction and Transducers :</b> Description of various types of transduction principles. Transducers based on variable resistance, variable inductance, variable capacitance and piezo-electric effects. Displacement transducers - wire w ound pot entiometers, LVDT, strain g ages, strain g age designation system. D iaphragm type P ressure Transducers and other pressure measuring t echniques. D esign of acc elerometers and their applications. Temperature and flow measurement techniques, ultrasonic measurements. Signal conditioners - filters, low, high, band pass and charge amplifiers. | 18 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6 | <b>DAS an d S ignal A nalysis :</b> Data a cquisition system vi a c omputers. T he components of Data ac quisition system, D AS Hardware, s election criteria for choosing a DAS. Techniques for signal analysis.                                                                                                                                                                                                                                                                                                                                                                                                              | 04 |
|   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 |

| S.<br>No. | Name of Books / Authors / Publisher                                                                                            | Year of<br>Publication |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1         | Doeblin E O, and Dhanesh N M, "Measurements S ystem A pplication and Design", 6 <sup>th</sup> Ed., McGraw Hill                 | 2011                   |
| 2         | Mechanical Measurement; Beckwith and Buck; Wesley;                                                                             | 2002                   |
| 3         | Theory and Design for Mechanical Measurements; R ichard S. Figiliola, 4 <sup>th</sup> Edn., Wiley India                        | 2005                   |
| 4         | Instrumentation for Engineering Measurements; James W. Dally, W.F. Rilley and K.G. McConnel; John Wiley (2 <sup>nd</sup> Edn.) | 2003                   |
| 5         | LAB View Manual                                                                                                                | 2012                   |

| NAME OF DEPTT./CENTRE: |               | Departmentof Mechanical & Industrial Engineering |             |               |        |
|------------------------|---------------|--------------------------------------------------|-------------|---------------|--------|
| 1. Subject Code: M     | IIN-339       | Course Title:                                    | Heat Exchan | gers          |        |
| 2. Contact Hours:      |               | L: 3                                             | T: 1        | P: 0          |        |
| 3. Examination Dura    | ttion (Hrs.): | Theory: 3                                        | Pra         | ctical: 0     |        |
| 4. Relative Weight:    | CWS: 25       | PRS: 0                                           | MTE: 25     | ETE: 50       | PRE: 0 |
| 5. Credits: 4          | 6. Se         | mester: Both                                     | 7.Subject   | Area: DEC/DHC | 2      |

#### 8. Pre-requisite: Graduate level course on Heat and Mass Transfer and Fluid Mechanics.

- 9. Objective: The course has been designed to make the students capable to select and design various types of heat exchangers used in industries.
- 10. Details of Course:

| S.  | Particulars                                                                        | Contact |
|-----|------------------------------------------------------------------------------------|---------|
| No. |                                                                                    | Hours   |
| 1   | Introduction: Heat ex changer t ypes and construction, heat t ransfer and f luid   | 6       |
|     | flow fundamentals.                                                                 |         |
| 2   | Types of heat exchangers: Derivations for counter flow and parallel flow heat      | 6       |
|     | exchangers, LMTD and ɛ-NTU method, double pipe heat exchangers, crossflow          |         |
|     | heat exchangers, shell-and-tube heat exchangers, TEMA standards.                   |         |
| 3   | Design S trategy: General de sign considerations a nd a pproaches, design          | 8       |
|     | strategies, material selection and fabrication processes, cost estimation, optimum |         |
|     | design.                                                                            |         |
| 4   | Design of Single Phase Heat Exchangers: Liquid to liquid, gas to gas a nd          | 6       |
|     | liquid to gas heat exchangers.                                                     |         |
| 5   | <b>Design of T wo P hase H eat E xchangers:</b> Steam ge nerators,                 | 6       |
|     | condensers, principle of cooling towers.                                           |         |
| 6   | Design of C ompact H eat E xchangers: Definition, t ypes, de sign pa rameters,     | 8       |
|     | design calculations for liquid-air heat exchangers.                                |         |
| 7   | Introduction to micro, nano and PCB type heat exchangers, familiarization with     | 2       |
|     | heat exchanger design softwares, computer aided design.                            |         |
|     | Total                                                                              | 42      |

| S.<br>No. | Author(s) /Title / Publisher                                                               | Year of<br>Publication/<br>Reprint |
|-----------|--------------------------------------------------------------------------------------------|------------------------------------|
| 1         | Shah, R. K. and Seculic, D. P., "Fundamentals of Heat Exchanger Design", Wiley India.      | 2012                               |
| 2         | Kakac, S. and Liu, H., "Heat Exchangers: selection, rating and thermal design" CRC Press.  | 2012                               |
| 3         | Hesselgreaves, J.E., "Compact Heat Exchangers: selection, design and operation", Pergamon. | 2001                               |
| 4         | Kays, W. M. and London, A. L., "Compact Heat Exchangers", Krieger<br>Publishing Company.   | 1998                               |
| 5         | Webb,R. L. and Kim, N.H., "Principles of Enhanced Heat Transfer", Taylor & Francis.        | 2005                               |

| NAME OF DEPTT./                        | CENTRE: | Department of Mechanical & Industrial Engineering |               |                 |         |
|----------------------------------------|---------|---------------------------------------------------|---------------|-----------------|---------|
| 1. Subject Code: M                     | IN-340  | Course Title:                                     | Refrigeration | &Air-condition  | ing     |
| 2. Contact Hours:                      |         | L: 3                                              | T: 1          | P: 0            |         |
| 3. Examination Duration (Hrs.):        |         | Theory: 3                                         | Practical: 0  |                 |         |
| 4. Relative Weight:                    | CWS: 25 | PRS: 0                                            | MTE: 25       | ETE: 50         | PRE: 0  |
| 5. Credits: 4<br>8. Pre-requisite: Nil | 6. Ser  | mester: Autumr                                    | n/Spring      | 7.Subject Area: | DEC/DHC |

<sup>9.</sup> Objective: To introduce the basic principles of refrigeration and air conditioning processes and relevant e quipment a ssociated w ith t he pr ocess. Load c alculation i n a n a irconditioning system.

| S. No. | Contents                                                                     | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------------|----------------------|
| 1      | Introduction: Review of ba sics t hermodynamics a nd hi story of             | 1                    |
|        | refrigeration and air-conditioning                                           | -                    |
| 2      | Air cycle refrigeration :Carnot Cycle; Bell Coleman Cycle; Aircraft          | 4                    |
|        | Refrigeration: S imple C ycle, Boor S trap cycle, Regenerative Cycle,        | -                    |
|        | Reduced Ambient cycle, DART.                                                 |                      |
| 3      | <b>Refrigerants :</b> Important r efrigerants a nd t heir pr operties; l eak | 2                    |
|        | detection; ch arging o fr efrigerants, selection of r efrigerant             |                      |
|        | compressors. CFCs and Ozone Hole; Ozone-safe Refrigerants, Global            |                      |
|        | Warming and refrigerants.                                                    |                      |
| 4      | Vapour Compression Cycle : Carnot vapor compression Cycle; T-s               | 7                    |
|        | and P -h di agrams of va pour c ompression r efrigeration c ycle;            |                      |
|        | Departure of actual vapor compression cycle from theoretical cycle.          |                      |
|        | Compressor vol umetric efficiency. Analysis of actual c ycle, second         |                      |
|        | law a nalysis of v apour c ompression c ycle. E ffect of s uction a nd       |                      |
|        | discharge pr essure, s ubcooling a nd s uperheating on pe rformance.         |                      |
|        | Compound va pour c ompression s ystem with intercooling f or s ingle         |                      |
|        | and multiple evaporator. Cascading.                                          |                      |
| 5      | Vapour A bsorption R efrigeration S ystems : Aqua-ammonia                    | 3                    |
|        | absorption r efrigeration s ystem; Lithium br omide-water a bsorption        |                      |
|        | systems; pr operties of a qua-ammonia s olution, p -t-x chart; ent halpy     |                      |
|        | concentration chart. Three fluid Electrolux system.                          |                      |
| 6      | Water Refrigeration : Introduction; Principle of Operation; Steam Jet        | 2                    |
|        | Refrigeration; C entrifugal R efrigeration; M erits a nd Demerits of         | -                    |
|        | steam jet refrigeration; Characteristics of Steam Jet Refrigeration          |                      |
| 7      | Non-conventional R efrigeration S ystems : Vortex and Pulse T ube            | 2                    |
|        | Refrigeration Systems; Thermoelectric Refrigeration Systems                  | -                    |

| 8  | <b>Psychrometrics :</b> Introduction t o A ir c onditioning; P sychrometric processes: e vaporative c ooling, humindifier e fficiency; cooling a nd dehumidification b y c hilled w ater s pray and c ooling c oils; b ypass factor; chemical dehumidification; sensible heat factor; apparatus dew point. Elements of comfort air conditioning. | 6  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 9  | <b>Infiltration an d V entilation :</b> Basic con cepts ant t erminology;<br>Driving mechanism of infiltration and ventilation; Indoor air quality;<br>natural ventilation; R esidential a ir le akage; R esidential ventilation;<br>Residential ventilation requirements.                                                                       | 4  |
| 10 | <b>Cooling L oad C alculations :</b> Introduction; H ealth a nd comfort criterion; T hermal C omfort; D esign conditions; E stimation of he at loss and heat gain in a building: HB and RLF method.                                                                                                                                              | 8  |
| 11 | <b>Space A ir D istribution :</b> Room a ir di stribution; tot al, static a nd velocity pressures; friction loss in ducts; d ynamic loss in ducts; air duct de sign: e qual f riction m ethod, s tatic r egain m ethod, ve locity reduction method.                                                                                              | 3  |
|    | Total                                                                                                                                                                                                                                                                                                                                            | 42 |

| S.<br>No. | Author(s) / Title / Publisher                                       | Year of<br>Publication/<br>Reprint |
|-----------|---------------------------------------------------------------------|------------------------------------|
| 1         | Stoecker, W.F., and Jones, J.W., "Elementary R efrigeration & A ir  | 2002                               |
|           | conditioning", McGraw Hill                                          |                                    |
| 2         | Dosset, R.J., Principles of Refrigeration, Pearson Education Asia   | 2002                               |
| 3         | Arora, C.P., "Refrigeration and Air conditioning", Tata-McGraw Hill | 2005                               |
| 4         | Prasad, M ., " Refrigeration a nd A ir c onditioning", New A ge     | 2005                               |
|           | International                                                       |                                    |
| 5         | ASHRAE Handbook (Fundamentals)                                      | 2013                               |

| NAME OF DEPTT./CENTRE:             |               | Departmentof Mechanical & Industrial Engineering |               |             |        |
|------------------------------------|---------------|--------------------------------------------------|---------------|-------------|--------|
| 1. Subject Code: M                 | IN-341        | Course Title:                                    | Thermal Syste | m Design    |        |
| 2. Contact Hours:                  |               | L: 3                                             | T: 1          | P: 0        |        |
| 3. Examination Duration (Hrs.):    |               | Theory: 3                                        | Practical: 0  |             |        |
| 4. Relative Weight:                | CWS: 25       | PRS: 0                                           | MTE: 25       | ETE: 50     | PRE: 0 |
| 5. Credits: 4<br>8. Pre-requisite: | 6. Ser<br>Nil | nester: Both                                     | 7.Subject A   | rea: DEC/DI | IC     |

9. Objective: This c ourse provides t he ba sic unde rstanding of m odeling a nd designing the thermal systems like power plant, HVAC etc.

| <b>S.</b> | Particulars                                                                     | Contact |
|-----------|---------------------------------------------------------------------------------|---------|
| No.       |                                                                                 | Hours   |
| 1         | Introduction: Thermal s ystems, engineering de sign, workable a nd op timal     | 4       |
|           | designs.                                                                        |         |
| 2         | Design C riteria: Maximum efficiency a nd e nergy c onservation, minimum        | 8       |
|           | cost/losses, multi-criteria, functional reliability of system components.       |         |
| 3         | Modeling and S imulation of T hermal S ystems: Types o f m odels w ith          | 12      |
|           | examples, mathematical modeling of processes and components, system models,     |         |
|           | identification of operating variables; simulation techniques.                   |         |
| 4         | Optimization: Maximum and minimum c onditions, optimization parameters,         | 12      |
|           | levels of opt imization, mathematical r epresentation of pr oblem, optimization |         |
|           | procedures including introduction to some non-traditional methods.              |         |
| 5         | Economic C onsiderations: Present and future work factors, gradient factors,    | 6       |
|           | rates of return, life cycle cost.                                               |         |
|           | Total                                                                           | 42      |

| S.<br>No. | Author(s) /Title / Publisher                                                                        | Year of<br>Publication/<br>Reprint |
|-----------|-----------------------------------------------------------------------------------------------------|------------------------------------|
| 1         | Hodge, B. K.and Taylor, R. P., "Analysis and Design of Energy Systems", Prentice Hall.              | 1999                               |
| 2         | Suryanarayana, N. V. and A rici,O.,"Design and S imulation of T hermal Systems", Penguin Books Ltd. | 2004                               |
| 3         | Jaluria, Y., "Design and Optimization of Thermal Systems", CRC Press.                               | 2007                               |
| 4         | Burmeister, L.C., "Elements of Thermal Fluid Systems", Prentice Hall.                               | 1998                               |
| 5         | Bejan, A., Tsaatsaronis,G. and Moran, M., "Thermal D esign and Optimization", Wiley.                | 1996                               |
| 6         | Stoecker, W. F., "Design of Thermal Systems", Tata McGraw Hills.                                    | 2011                               |

## NAME OF DEPARTMENT: Mechanical & Industrial Engineering

| 1.              | . Subject Code: MIN-342 Course Title: Environmemental Pollution & Co |              |                       |             | ution & Control |        |
|-----------------|----------------------------------------------------------------------|--------------|-----------------------|-------------|-----------------|--------|
| 2.              | Contact Hours :                                                      |              | L: 3                  | <b>T:</b> 1 | P: 0            |        |
| 3.              | Examination Duration                                                 | on (Hrs.) :  | Theory: 3             | ]           | Practical: 0    |        |
| 4.              | Relative Weight :                                                    | CWS: 25      | PRS: 0                | MTE: 25     | ETE: 50         | PRE: 0 |
| <b>5.</b><br>7. | Credits: <b>4</b><br>Pre – requisite: Nil                            | <b>6.</b> Se | emester : <b>Both</b> |             |                 |        |

8. Subject Area: DEC

#### 9. Objectives of Course:

Objective of the course is to expose students about the pollution caused by the thermal power plants, a utomobiles a nd t ransport s ystems; a nd pos sible c ontrol m easures t o reduce t he environmental pollution.

#### 10. Details of Course:

| S.  | Particulars                                                                           | Contact |
|-----|---------------------------------------------------------------------------------------|---------|
| No. |                                                                                       | Hours   |
| 1   | Introduction : Nature and extent of pollution problem, types of pollution.            | 2       |
| 2   | Air Pollutants : Air pollutants, o xides of ni trogen, s ulphur ox ides, particulate  |         |
|     | matter, oraganic compounds, carbon monoxide; their harmful effects.                   | 4       |
| 3   | Air Pollution S ources : Stationary s ources, e mission from stacks, m obile          | 6       |
|     | sources, pollutant formation in SI and CI engines and gas turbines.                   |         |
| 4   | Air Pollution Control: Stack emission control, inertial de vices, electro-static      |         |
|     | propitiators, particulate s crubbers, dr y and w et m ethods, f ilters. IC E ngine    | 10      |
|     | pollution control devices, thermal reactors, catalytic converters, particulate traps. |         |
| 5   | Thermal Pollution : Nature of thermal pollution; effect of thermal pollution on       |         |
|     | ecology, thermal plume, regions of plume, parameters relevant to thermal plume        | 10      |
|     | and their limit. Mechanics of condenser water discharge from t hermal power           |         |
|     | plants.                                                                               |         |
| 6   | Global Atmospheric Changes: Green house ef fect, green house ga ses,                  |         |
|     | Ozone depletion and control.                                                          | 8       |
|     | Total                                                                                 | 42      |

|  | S. | Name of Books / Authors / Publisher | Year of |
|--|----|-------------------------------------|---------|
|--|----|-------------------------------------|---------|

| No. |                                                                             | Publication |
|-----|-----------------------------------------------------------------------------|-------------|
| 1   | Air Pollution: Its Origin and Control; Kenneth Wark, Cecil F. Warner, Wayne | 1997        |
|     | T. Davis; Prentice Hall(3 <sup>rd</sup> Edn.); ISBN-10: 0673994163,         |             |
|     | ISBN-13: 978-0673994165                                                     |             |
| 2   | Internal C ombustion E ngine F undamentals; J ohn B enjamin H eywood;       | 1989        |
|     | McGraw Hill; ISBN-10: 0071004998, ISBN-13: 978-0071004992                   |             |
| 3   | Energy and the Environment; Robert A. Ristinen, Jack P. Kraushaar; Wiley;   | 2005        |
|     | (2 <sup>nd</sup> Edn.); ISBN-10: 0471739898, ISBN-13: 978-0471739890        |             |
| 4.  | Air Pollution Control Engineering; Norman C. Pereira, Norman C. Pereira,    | 2004        |
|     | Wei Yin Chen (Editors); Springer-Verlag; ISBN: 1588291618,                  |             |
|     | ISBN-13: 9781588291615                                                      |             |

| NA | ME OF DEPARTMENT:          | Mechani                             | ical & Indu | strial Engineering |        |
|----|----------------------------|-------------------------------------|-------------|--------------------|--------|
| 1. | Subject Code: MIN- 343     | 3 Course Title: <b>Power Plants</b> |             |                    |        |
| 2. | Contact Hours :            | L: 3                                | T: 1        | P: 0               |        |
| 3. | Examination Duration (Hrs. | ): Theory: 3                        |             | Practical: 0       |        |
| 4. | Relative Weight: CWS: 25   | PRS: 0                              | MTE: 25     | ETE: 50            | PRE: 0 |
| 5. | Credits: 4                 | 6. Semester : <b>Both</b>           | 7.          | Pre-requisite: Nil |        |

- 8. Subject Area: DEC
- **9.** Objectives of Course: To explain the working methodology of different power plants being used for generation of electrical energy.
- **10.** Details of Course:

| S. No. | Particulars                                                                    | Contact<br>Hours |
|--------|--------------------------------------------------------------------------------|------------------|
| 1.     | Introduction: Energy sources for generation of electric power, energy policy   | 4                |
|        | of India, present status and future trends, major power plants in India.       |                  |
| 2.     | Thermal Power Plants: Selection of site, general layout of the plant, major    | 8                |
|        | components- Boilers, E conomisers, Super-heaters, A ir pr e-heaters, fuels,    |                  |
|        | fuel and a sh h andling equipment's, High pressure B oilers, steam tur bines,  |                  |
|        | station heat balance and plant efficiency.                                     |                  |
| 3.     | Diesel Power Plant: Diesel engine, engine performance and operation, super     | 4                |
|        | charging, Diesel Electric power plant layout.                                  |                  |
| 4.     | Gas Turbine Power Plants: Gas turbine power plants, basic cycles, cycle        | 4                |
|        | calculation, the ideal and real operating cycles, components and layout.       |                  |
| 5.     | Hydro Power Plants: Classification of hydro-plants, selection of site, rain    | 6                |
|        | fall and run off, calculation of storage capacity, plant layout, estimation of |                  |
|        | power available, selection of hydraulic turbines and their governing.          |                  |
| 6.     | Nuclear Power Plants: Introduction, Atomic s tructure and radio-activities     | 6                |
|        | nuclear r eactions, binding e nergy, Nuclear R eactors, Types of r eactors,    |                  |
|        | Pressurized water reactors, boiling heater reactors, Heavy water-cooled and    |                  |
|        | moderated (CANDU) r eactor, Gas-cooled r eactors, Liquid m etal c ooled        |                  |
|        | reactors, Indian Nuclear power installations, comparison between Nuclear and   |                  |
|        | Thermal plants.                                                                |                  |
| 7.     | Non-Conventional Power Plants: Geothermal power plants, Tidal power            | 4                |
|        | plants, Wind power plants, solar power plants, M.H.D. Generators, OTEC         |                  |

| 8. | Power Plant E conomics & en vironmental as pect: Plant investment costs,     | 6  |
|----|------------------------------------------------------------------------------|----|
|    | fixed charges, Operation cost, energy cost, depreciation and operating costs |    |
|    | on the selection of equipments, incremental cost, comparison of fixed and    |    |
|    | operating costs, greenhouse effect, thermal pollution, other pollutants.     |    |
|    | Total                                                                        | 42 |

| S. No. | Author(s) / Title / Publisher                                       | Year of<br>Publication /<br>Reprint |
|--------|---------------------------------------------------------------------|-------------------------------------|
| 1.     | Black & Veatch, "Power plant Engineering", CBS Publisher.           | 2005                                |
| 2.     | El-Wakil, M.M., "Power plant Technology", McGraw-Hill Book Co.      | 2002                                |
| 3.     | Nag, P.K., "Power plant engineering", Tata MacGraw Hill.            | 2008                                |
| 4.     | Modern Power Station Practical, CEGB, Pergamon Publisher.           | 1992                                |
| 5.     | Norris & Therkelsen, "Heat Power", McGraw Hill.                     | 1999                                |
| 6.     | Rust, J.H., "Nuclear Power Plant Engineering", Haralson Pub. Co.    | 1999                                |
| 7.     | Potter, P.J., "Power Plant Theory & Design", Kreiger Publishing Co. | 1994                                |

| NAME OF DEPTT./CENTRE:                                           |              | Mechanical and Industrial Engineering<br>Department |       |               |               |
|------------------------------------------------------------------|--------------|-----------------------------------------------------|-------|---------------|---------------|
| 1. Subject Code: M                                               | IN-344       | Course Title:                                       | Indus | trial Comb    | ustion        |
| <ol> <li>Contact Hours:</li> <li>Examination Duration</li> </ol> | tion (Hrs.): | L: 3<br>Theory: 3                                   | T: 1  | P<br>Practica | : 0<br>1: 0   |
| 4. Relative Weight:                                              | CWS: 25      | PRS: 0 MTE:                                         | 25    | ETE: 50       | PRE: 0        |
| 5. Credits: 4                                                    | 6. Set       | mester: Both                                        |       | 7. Subject    | Area: DEC/DHC |

8. Pre-requisite: -

9. Objective: The course deals with the principles underlying the industrial combustion equipment.

| S. No. | Contents                                                                    | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Industrial Combustion, requirements and applications          |                      |
|        |                                                                             | 2                    |
| 2.     | <b>Combustion Fundamentals :</b>                                            |                      |
|        | i Thermodynamics of Combustion:                                             |                      |
|        | Combustion S toichiometry, evaluating enthalpy of r eacting s ystems,       |                      |
|        | enthalpy of formation, energy balance for reacting systems, enthalpy        |                      |
|        | of r eaction and heating va lues. Adiabatic flame t emperature.             |                      |
|        | Equilibrium c riteria, chemical pot ential, equation of r eaction           |                      |
|        | equilibrium, equilibrium constant, equilibrium composition and flame        | 6                    |
|        | temperature.                                                                |                      |
|        | ii Chemistry of Combustion                                                  |                      |
|        | Rate 1 aws and reaction orders, elementary r eactions, reaction             |                      |
|        | Molecularity, temperature and pressure dependence of r eaction rate,        |                      |
|        | Arrhenius law, chain reactions, and reaction mechanisms. Combustion         |                      |
|        | characteristics of hydrocarbons. NO <sub>x</sub> formation and its control. | 7                    |
|        |                                                                             |                      |
|        | iii Flame Processes:                                                        |                      |
|        | Different t ypes of f lames, laminar f lame s tructure, laminar flame       |                      |
|        | speed, effect of various chemical and physical parameters on flame          |                      |
|        | speed, Flammability Limits, Stability Limits.                               |                      |
|        | Turbulent P remixed F lames: A pplications, T urbulent F lame S peed,       |                      |
|        | Structure of T urbulent F lames, F lame S tabilization, T urbulent          |                      |

|    | Nonpremixed Flames.                                                                                                                                                                                                                                                                                                                                                                                                          | 7  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3. | Gas Fired Furnaces & Boilers<br>Gas fired furnaces, Energy Balance and Efficiency, Fuel Substitution, Gas<br>burners, Classifications, Design factors, Heat Transfer From Burners                                                                                                                                                                                                                                            | 7  |
| 4. | <b>Oil fired Furnaces &amp; Combustion Systems</b><br>Spray formation and droplet behavior, droplet size distribution, Fuel<br>Injectors, Oil fired systems, Spray combustion in furnaces and boilers.<br>Emissions from oil fired furnaces and boilers                                                                                                                                                                      | 6  |
| 5. | <b>Coal Fired Combustion Systems :</b><br>Combustion m echanism of s olid f uels, G rate bur ning s ystems, t raveling vibrating grate spreader stokers, pulverized coal burning systems, Fluidized bed combustion, atmospheric pressure fluidized bed combustion systems, circulating and pr essurized fluidized bed systems. Emissions f rom g rate burning systems, pulverized coal and fluidized bed combustion boilers. | 7  |
|    | Total                                                                                                                                                                                                                                                                                                                                                                                                                        | 42 |

| S. No. | Name of Authors /Books /Publisher                                  | Year of     |
|--------|--------------------------------------------------------------------|-------------|
|        |                                                                    | Publication |
| 1.     | Ragland, K. W. and Bryden, K. M., "Combustion Engineering," CRC    | 2011        |
|        | Press                                                              |             |
| 2.     | Baukal, C. E., "Industrial Burners Handbook" CRC Press;            | 2003        |
|        |                                                                    |             |
| 3.     | Fawzy, E.M. a nd Saad, E.H., "Fundamentals and Technology of       | 2002        |
|        | Combustion," CRC Press                                             |             |
| 4.     | Basu, P., K. C., Jestin L ouis, "Boilers a nd Burners D esign a nd | 1999        |
|        | Theory," Springer                                                  |             |
| 5.     | Glassman, I. and Yetter, R. "Combustion 4th E dition", Academic    | 2008        |
|        | Press                                                              |             |
| 6.     | Oka S., "Fluidized Bed Combustion", Marcel & Dekker                | 2004        |

| NAME OF DEPTT./CENTRE:              |         | Department of Mechanical and Industrial Engineering |             |                |        |
|-------------------------------------|---------|-----------------------------------------------------|-------------|----------------|--------|
| 1. Subject Code: M                  | IIN-345 | Course Title:                                       | Compressibl | e Flow         |        |
| 2 Contact Hours:                    | L: 3    | T: 1                                                | P: 0        |                |        |
| 3. Examination Duration (Hrs.): The |         | eory: 3                                             | Practical:  | 0              |        |
| 4. Relative Weight:                 | CWS: 25 | PRS: 0                                              | MTE: 25     | ETE: 50        | PRE: 0 |
| 5. Credits: 4                       | 6. Sei  | mester: Both                                        | 7.Subj      | ect Area: DEC/ | DHC    |
| 8. Pre-requisite:                   | Nil     |                                                     |             |                |        |

- 9. Objective: To impart know ledge of compressible flows essential for the design of nozzles, gas turbines, blowers, compressors, aero-planes, rockets and automobiles.
- 10. Details of Course:

| S. No. | Contents                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction:</b> Velocity o f s ound, distinction be tween          | 4                    |
|        | incompressible, c ompressible, s ubsonic, s upersonic, t ransonic a nd  |                      |
|        | hypersonic flows; Mach number, Mach angle and Mach cone.                |                      |
| 2.     | One Dimensional Isentropic Flow: General features, adiabatic and        | 8                    |
|        | isentropic flow of a perfect gas, choking in isentropic flow, operation |                      |
|        | of noz zles under varying pressure ratios, a pplications of i sentropic |                      |
|        | flow.                                                                   |                      |
| 3.     | Normal S hock Wave s: Distinction be tween nor mal a nd obl ique        | 9                    |
|        | shock waves, governing r elations of t he nor mal s hock, R ankine-     |                      |
|        | Hugoniot r elations, f ormation of s hock w aves, ope rating            |                      |
|        | characteristics of convergent-divergent nozzles.                        |                      |
| 4.     | Viscous C ompressible F low: Governing equations, a diabatic            | 6                    |
|        | viscous flow in constant area ducts, Fanno lines.                       |                      |
| 5.     | Frictionless C ompressible F low: Governing e quations, full            | 7                    |
|        | potential e quation, f low t hrough c onstant area duc ts with he at    |                      |
|        | transfer, Rayleigh lines.                                               |                      |
| 6.     | Steady Isothermal Flow in Long Pipe-lines: Governing equations          | 4                    |
|        | and features of steady isothermal flow in long pipelines.               |                      |
| 7.     | Simulation: Introduction to CFD tools for simulation of compressible    | 4                    |
|        | flows.                                                                  |                      |
|        | Total                                                                   | 42                   |

| S. No. | Author(s) / Title / Publisher                                                     | Year of     |
|--------|-----------------------------------------------------------------------------------|-------------|
|        |                                                                                   | Publication |
| 1.     | Liepmann, H.W., a nd Roshko, A., "Elements of G as D ynamics",                    | 2002        |
|        | Dover Publications                                                                |             |
| 2.     | John, J.E.A., and Keith, T.G., "Gas Dynamics", 3 <sup>rd</sup> Ed., Prentice-Hall | 2006        |
| 3.     | Anderson J r., J .D., "Modern C ompressible F low: W ith H istorical              | 2012        |
|        | Perspective", 3 <sup>rd</sup> Ed., Tata McGraw-Hill                               |             |
| 4.     | Zucrow, M.J., and H offman, J.D., "Gas D ynamics", J ohn Wiley &                  | 2001        |
|        | Sons                                                                              |             |
| 5.     | Rathakrishnan, E., "Gas Dynamics", 4 <sup>th</sup> Ed., Prentice-Hall of India    | 2012        |
| 6.     | Oosthuizen, P. H. a nd Carscallen, W. E. " Introduction t o                       | 2013        |
|        | Compressible Fluid Flow", 2 <sup>nd</sup> Ed., CRC Press                          |             |

| NAME OF DEPTT./C                | ENTRE:  | Mechanical and Industrial Engineering<br>Department |              |                  |        |
|---------------------------------|---------|-----------------------------------------------------|--------------|------------------|--------|
| 1. Subject Code: MI             | N-346   | Course Title:                                       | Waste Heat   | Recovery Syster  | ns     |
| 2. Contact Hours:               |         | L: 3                                                | T: 1         | P: 0             |        |
| 3. Examination Duration (Hrs.): |         | Theory: 3                                           | Practical: 0 |                  |        |
| 4. Relative Weight:             | CWS: 25 | PRS: 0                                              | MTE: 25      | ETE: 50          | PRE: 0 |
| 5. Credits: 4 6. Ser            |         | mester: Both                                        | 7. Su        | bject Area: DEC/ | DHC    |

- 8. Pre-requisite: Basic course on Heat transfer
- 9. Objective: The c ourse de als w ith t he s ources of w aste he at, a nd e quipment us ed f or t he utilization of waste heat.
- 10. Details of Course:

| S. No. | Contents                                                             | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------|----------------------|
| 1.     | Introduction : Waste Heat, Sources of waste heat, high temperature   | 5                    |
|        | heat recovery applications, waste heat recovery calculations.        |                      |
| 2.     | Recuperators: G as t o gas h eat ex changers, recuperators, rotary   | 12                   |
|        | regenerator, air pre-heaters, Heat pipe exchangers.                  |                      |
| 3.     | Regenerators: Gas or liquid to liquid Regenerators, Finned tube heat | 12                   |
|        | exchangers, shell and tube heat exchangers, waste heat boiler, Heat  |                      |
|        | pumps                                                                |                      |
| 4.     | Viscous Compressible Flow: Governing equations, adiabatic viscous    | 6                    |
|        | flow in constant area ducts, Fanno lines.                            |                      |
| 5.     | Economics: Waste Heat recovery economics general concepts, case      | 5                    |
|        | studies, examples                                                    |                      |
| 6.     | Case Studies: Case Studies of some industrial problems.              | 8                    |
|        | · ·                                                                  |                      |
|        | Total                                                                | 42                   |

| S.<br>No. | Name of Books / Authors / Publisher                                                                       | Year of<br>Publication |
|-----------|-----------------------------------------------------------------------------------------------------------|------------------------|
| 1         | Goldstick R .J.& T humann A ., "Principles of W aste H eat R ecovery"<br>Faimont Press, Digitised Version | 2008                   |

| 2 | Ganapathy, V., "Industrial B oilers and he at r ecovery generators. D esign | 2002 |
|---|-----------------------------------------------------------------------------|------|
|   | applications and calculations." CRC                                         |      |
| 3 | Olszewski M., "Utilization of Reject Heat", Marcel & Dekker Inc.            | 1980 |
|   |                                                                             |      |
| 4 | Matsula K., Kanasha, Y., Fushimi, C., Sutsummi K and Kishimoto, A.,         | 2013 |
|   | "Advanced energy savings and its applications in Industry", Springer        |      |
| 5 | Goldstick R .J.& T humann A ., "Waste H eat R ecovery H andbook,",          | 1986 |
|   | Fairmont Press                                                              |      |

| NAME OF DEPTT./CENTRE:                                                           |          | Department of Mechanical & Industrial Engineering |         |                      |            |
|----------------------------------------------------------------------------------|----------|---------------------------------------------------|---------|----------------------|------------|
| 1. Subject Code: MIN-349                                                         |          | Course Title: Fire Dynamics                       |         |                      |            |
| <ul><li>2. Contact Hours: L: 3</li><li>3. Examination Duration (Hrs.):</li></ul> |          | T: 1<br>Theory: 3 P                               |         | P: 0<br>Practical: 0 |            |
| 4. Relative Weight:                                                              | CWS: 25  | PRS: 0                                            | MTE: 25 | ETE: 50              | PRE: 0     |
| 5. Credits: 4                                                                    | 6. Semes | ster: Autumn/S                                    | pring   | 7.Subject Area       | a: DEC/DHC |

- 8. Pre-requisite: Nil
- 9. Objective: To introduce students to the fundamental concepts of fire dynamics a base-level understanding of the principals of fire dynamics, compartment fire and smoke movement.
- 10. Details of Course:

| S. No. | Contents                                                                                | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------------------------|----------------------|
| 1      | Introduction: Fuels and combustion processes; physical chemistry of                     | 3                    |
|        | combustion in fires; summary of the heat transfer equations of                          |                      |
|        | conduction, conection and radiation                                                     |                      |
| 2      | Premixed Flames: Limits of flammability; structure of premixed                          | 6                    |
|        | flame; heat loss and measurement of burning velocity; variation of                      |                      |
|        | burning velocity with composition, temperature, pressure, suppressant<br>and turbulence |                      |
| 3      | <b>Diffusion Flames and Fire Plumes:</b> Laminar and turbulent iet                      | 7                    |
| C C    | flames: flames from natural fire: buoyant plume, fire plume, upward                     | ,                    |
|        | flow; interaction of fire plume with compartment boundaries; effect of                  |                      |
|        | wind on fire plume                                                                      |                      |
| 4      | Steady Burning of Liquids and Solids: Burning of liquids: pool fire,                    | 4                    |
|        | burning of liquid droplets; burning of solids: synthetic polymers,                      |                      |
|        | wood, dusts and powders                                                                 |                      |
| 5      | Frictionless Compressible Flow: Governing equations, full potential                     | 6                    |
|        | equation, flow through constant area ducts with heat transfer,                          |                      |
|        | Rayleigh lines.                                                                         |                      |
| 6      | Ignition and Spread of Flames: Ignition of liquids and solids; Flame                    | 5                    |
|        | spread over liquids and solids;.                                                        |                      |
| 7      | Pre-flashover and Post-flashover C ompartment Fire: Growth of                           | 6                    |
|        | flash-over: n ecessary c onditions; ve ntilation r equirements; f actors                |                      |
|        | affecting t ime t o f lashover a nd fire growth; fully de veloped fire                  |                      |
|        | behavior; temperature in fully developed fire; fire resistance and fire                 |                      |
|        | severity.                                                                               |                      |
| 8      | Production and Movement of Smoke: Production and measurement                            | 5                    |
|        | of s moke particles; test f or s moke pr oduction pot ential; s moke                    |                      |
|        | movement; smoke control systems                                                         | 42                   |
|        | lotal                                                                                   | 42                   |

| S.<br>No. | Author(s) / Title / Publisher                                      | Year of<br>Publication/<br>Reprint |
|-----------|--------------------------------------------------------------------|------------------------------------|
| 1.        | Drysdale, D."Introduction to Fire Dynamics", John Wiley            | 2011                               |
| 2.        | Karlsson, B., Quintiere, J., "Enclosure Fire Dynamics", James; CRC | 2000                               |
|           | Press                                                              |                                    |
| 3         | Quintiere, J.G.,., "Fundamentals of Fire Phenomena", John Wiley    | 2006                               |
| 4         | Gorbet, G.E., and Pharr, J.L, Fire Dynamics; Pearson Education     | 2010                               |

| NAME OF DEPTT. /CENTRE: |                      | Mechanic     | cal & Indu                                                | strial Engine | ering         |        |
|-------------------------|----------------------|--------------|-----------------------------------------------------------|---------------|---------------|--------|
| 1.                      | Subject Code: MIN    | N-352        | Course Title: Experimental Methods in Ther<br>Engineering |               | s in Thermal  |        |
| 2.                      | Contact Hours:       |              | L: 3                                                      | <b>T:</b> 1   | P: 2/2        |        |
| 3.                      | Examination Duration | (Hrs.):      | Theory: 3                                                 |               | Practical: 0  |        |
| 4.                      | Relative Weight: CWS | S: 20 PH     | RS: 20                                                    | MTE: 20       | ETE: 40       | PRE: 0 |
| 5.                      | Credits: 4           | 6. Semester: | Both                                                      | 7. Sub        | ject Area: DE | C/DHC  |
| 8.                      | Pre-requisite: Nil   |              |                                                           |               |               |        |

**9. Objectives of Course:** The course is designed to give the undergraduate students the basic knowledge about the measurement systems and its components. Further, the various other issues related to above aspects have been discussed.

| S.  | Particulars                                                                             | Contact |
|-----|-----------------------------------------------------------------------------------------|---------|
| No. |                                                                                         | Hours   |
| 1   | Generalized C onfiguration of M easuring S ystem : Functional el ements of a            | 06      |
|     | basic measuring system; different types of measurands, description of functional        | 00      |
|     | elements. Input-output c onfiguration of a m easuring s ystem. Interfering a nd         |         |
|     | modifying inputs; methods for correction for interfering and modifying inputs.          |         |
| 2   | Characteristics of Instruments : Objective of studying the characteristics of the       | 04      |
|     | instruments. S tatic c haracteristics – accuracy, pr ecision, e rror, s ensitivity,     | 04      |
|     | hysterisis, threshold, drift, span, static stiffness etc. Dynamic Characteristics -     |         |
|     | time dom ain a nd f requency dom ain c haracteristics t erms. Input-output              |         |
|     | Impedance's and meaning of impedance mismatching. C oncept of mechanical                |         |
|     | loading.                                                                                |         |
| 3   | Measurement System Behaviour : Description of mathematical model for the                | 07      |
|     | generalized configuration of a m easurement system. Response characteristics of         | 07      |
|     | the system – Amplitude, frequency and phase response. Order of the systems,             |         |
|     | response of z ero, f irst a nd s econd o rder s ystems t o s tep, r amp and s inusoidal |         |
|     | inputs. Transfer function method to study the response of the system.                   |         |

| 4 | Uncertainty Analysis : Classification of e rrors systematic errors, random          | 0.2 |
|---|-------------------------------------------------------------------------------------|-----|
|   | errors, ille gitimate e rrors a nd s tatistical a nalysis o f e xperimental da ta,  | 03  |
|   | computation of maximum and rss error.                                               |     |
| 5 | <b>Principles of Transduction and Transducers :</b> Description of various types    | 08  |
|   | of t ransduction pr inciples. T ransducers b ased on variable r esistance, variable |     |
|   | inductance, variable c apacitance and piezo-electric effects. Displacement          |     |
|   | transducers - wire w ound pot entiometers, LVDT, s train gages, s train ga ge       |     |
|   | designation s ystem. D iaphragm t ype P ressure Transducers a nd ot her pressure    |     |
|   | measuring techniques.                                                               |     |
| 6 | Flow Meas urement: Flow vi sualization, shadowgraph; s chlieren and                 | 06  |
|   | interferometric t echniques; Pitot s tatic tube s; hot w ire a nemometers; Laser    |     |
|   | Doppler velometer; flow measurements using coriolis effect.                         |     |
| 7 | Temperature and H eat F lux Measurement: Thermoelectric s ensors; el ectric         | 05  |
|   | resistance s ensors; the rmistors; r adiations p yrometers; T emperature me asuring |     |
|   | problems in flowing fluids, dynamic compensation.                                   |     |
| 8 | <b>DAS an d Signal A nalysis :</b> Data a equisition system vi a c omputers. T he   | 02  |
|   | components of D ata ac quisition system, DAS Hardware, selection criteria f or      | 03  |
|   | choosing a DAS. T echniques for signal a nalysis. Signal c onditioners - filters,   |     |
|   | low, high, band pass and charge amplifiers.                                         |     |
|   | Total                                                                               | 42  |

| S.  | Name of Books / Authors / Publisher                                                  | Year of     |
|-----|--------------------------------------------------------------------------------------|-------------|
| No. |                                                                                      | Publication |
| 1   | Doeblin E O, and Dhanesh N M, "Measurements S ystem A pplication and                 | 2011        |
|     | Design", 6 <sup>th</sup> Ed., McGraw Hill                                            |             |
| 2   | Mechanical Measurement; Beckwith and Buck; Wesley;                                   | 2002        |
| 3   | Theory and Design for Mechanical Measurements; Richard S. Figiliola, 4 <sup>th</sup> | 2005        |
|     | Edn., Wiley India                                                                    |             |
| 4   | Instrumentation for Engineering Measurements; James W. Dally, W.F. Rilley            | 2003        |
|     | and K.G. McConnel; John Wiley (2 <sup>nd</sup> Edn.)                                 |             |
| 5   | Eckert R G and Goldstein R J, "Measurements in Heat Transfer", 2 <sup>nd</sup> Ed.,  | 1986        |
|     | Springer                                                                             |             |
| 6   | Goldstein, R. J., "Fluid Mechanics Measurement", Hemisphere Publishing               | 1983        |
|     | Company                                                                              |             |
| 7   | LAB View Manual                                                                      | 2012        |

| NAME OF DEPTT.      | /CENTRE:      | Mechanical and Industrial Engineerin<br>Department |             |                  | ing    |
|---------------------|---------------|----------------------------------------------------|-------------|------------------|--------|
| 1. Subject Code: M  | IIN-354       | Course Title:                                      | Surface Eng | gineering        |        |
| 2. Contact Hours:   | L: 3          | T: 1                                               |             | P: 0             |        |
| 3. Examination Dura | ation (Hrs.): | Theory: 3                                          | Рі          | ractical: 0      |        |
| 4. Relative Weight: | CWS: 25       | PRS: 0                                             | MTE: 25     | ETE: 50          | PRE: 0 |
| 5. Credits: 4       | 6. S          | emester: Both                                      | 7.Sut       | oject Area: GSE( | C      |
| 8. Pre-requisite:   | Nil           |                                                    |             |                  |        |

9. Objective: To impart knowledge of surface related phenomena and technologies.

| S. No. | Contents                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Concept and importance, classification of surface         | 3                    |
|        | modification techniques, advantages and their limitations.              |                      |
| 2.     | Surface Degradation: Causes, types and consequences of surface          | 8                    |
|        | degradation, forms of wear: adhesive, abrasive, surface fatigue,        |                      |
|        | corrosive, fretting, and erosive wear, classical governing laws related |                      |
|        | to wear, techniques to evaluate wear damage.                            |                      |
| 3.     | Materials for Surface Engineering: Materials characteristics, their     | 9                    |
|        | importance in surface engineering, wear resistant materials, selection  |                      |
|        | of materials for engineering the surfaces for specific applications,    |                      |
|        | structure and property relationship of coatings system, new coating     |                      |
|        | concepts including multi-layer structures, functionally gradient        |                      |
|        | materials (FGMs), intermetallic barrier coatings and thermal barrier    |                      |
|        | coatings.                                                               |                      |
| 4.     | Surface Modification T echniques: Principles and application of         | 12                   |
|        | weld surfacing: SMAW, SAW, GMAW, thermal spraying: flame                |                      |
|        | spraying, electric arc spraying, plasma spraying, detonation gun        |                      |
|        | spraying, and high velocity oxy fuel (HVOF) spraying; electro           |                      |

|    | deposition and electro less coatings, ion implantation, chemical vapour deposition (CVD) and physical vapour deposition (PVD).                                                                                        |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. | Laser and M icrowave a ssisted S urface Engineering: Laser cladding, alloying, glazing, laser and induction hardening, heat treatment of steel and remelting by laser; microwave glazing, microwave cladding.         | 6  |
| 6. | <b>Characterization and Quality Assurance:</b> Importance, introduction to different characterization techniques: physical, mechanical, and functional characterizations, surface finish, microhardness and strength. | 4  |
|    | Total                                                                                                                                                                                                                 | 42 |

| S. No. | Name of Books / Authors                                              | Year of<br>Publication |
|--------|----------------------------------------------------------------------|------------------------|
| 1.     | Burakowski, T., and Wierzchon, T., "Surface Engineering of Metals:   | 1999                   |
|        | Principles, Equipment, Technologies", CRC Press.                     |                        |
| 2.     | Burnell-Grey, J.S. and Datta, P.K. (eds), "Surface Engineering       | 1996                   |
|        | Casebook", Woodhead Publishing Limited.                              |                        |
| 3.     | Grainger, S., and Blunt, J. (eds.), "Engineering coatings-design and | 1998                   |
|        | application", Abington Publishing.                                   |                        |
| 4.     | Rickerby, D.S., and Matthews, A., (eds), "Advanced Surface           | 1991                   |
|        | Coatings: a Handbook of Surface Engineering", Blackie.               |                        |
| 5.     | Holmberg, K., and Matthews, A., "Coatings Tribology: Properties,     | 1994                   |
|        | Techniques and Applications in Surface Engineering", Elsevier        |                        |
|        | Science B.V.                                                         |                        |

| NAME OF DEPTT./CENTRE:                                           |           | Department of     | of Mechanical | & Industrial Engi | neering  |
|------------------------------------------------------------------|-----------|-------------------|---------------|-------------------|----------|
| 1. Subject Code: MIN                                             | -355      | Course Title:     | Building Ven  | tilation&Air-cond | itioning |
| <ol> <li>Contact Hours:</li> <li>Examination Duration</li> </ol> | n (Hrs.). | L: 3<br>Theory: 3 | T: 1<br>Pra   | P: 0<br>ctical: 0 |          |
| <ul><li>4. Relative Weight: CV</li></ul>                         | WS: 25    | PRS: 0            | MTE: 25       | ETE: 50           | PRE: 0   |
| 5. Credits: 4                                                    | 6. Ser    | nester: Autumn    | /Spring       | 7.Subject Area: G | SEC      |

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the students to the areas of air-conditioning and ventilation in buildings; fenestration and transmission of air in the buildings.

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1      | Introduction: History of refrigeration and air-conditioning; trends in | 1                    |
|        | modern buildings for thermal comfort, pollution free environment and   |                      |
|        | indoor traffic management                                              |                      |
| 2      | Vapour Compression Cycle : Carnot vapor compression Cycle; T-s         | 6                    |
|        | and P-h diagrams of simple vapour compression refrigeration cycle;     |                      |
|        | Compressor volumetric efficiency. Effect of suction and discharge      |                      |
|        | pressure, subcooling and superheating on performance.                  |                      |
| 3      | Psychrometery: Psychrometric properties, psychrometric chart,          | 5                    |
|        | simple and computerized psychrometrics, psychrometric processes;       |                      |
|        | Appreciation of indoor and outdoor conditions for a space in summer    |                      |
|        | and winter.                                                            |                      |
| 4      | Air C onditioning Processes: Summer and winter air-conditioning        | 6                    |
|        | processes; Sources of thermal load in summer and winter using Load     |                      |
|        | Estimation Chart; Sensible Heat Factor (SHF). Evaporative Cooling      |                      |
|        | Systems.                                                               |                      |
| 5      | Infiltration and Ventilation: Driving mechanism of infiltration and    | 5                    |
|        | ventilation; Indoor air quality; natural ventilation; Residential air  |                      |
|        | leakage; blower door test; Residential ventilation; Residential        |                      |
|        | ventilation requirements.                                              |                      |
| 6      | Fenestration: Fenestration components; determination of energy         | 4                    |
|        | flow; U-factor; solar heat gain and visible transmission; shading;     |                      |
|        | visual and thermal controls; air leakage; day lighting; selecting      |                      |
|        | fenestration: condensation resistance, occupant comfort and            |                      |
|        | acceptance.                                                            |                      |
| 7      | Building Cooling Load Calculations: Internal heat gain; system heat    | 6                    |
|        | gain; ventilation load; cooling and heating load estimate;             |                      |
|        | psychrometric calculations for heating and cooling load.               |                      |

| 8 | <b>Transmission and Distribution of Air:</b> AHU;Room air distribution; friction loss in ducts; dynamic loss in ducts; air duct design; space air diffusion.                                           | 5  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 9 | <b>Design C onditions:</b> Comfort air conditioning and effective temperature; comfort chart; choice of supply design conditions; Climate design conditions; generating design day data; clean spaces. | 4  |
|   | Total                                                                                                                                                                                                  | 42 |

| S.<br>No. | Author(s) / Title / Publisher                                       | Year of<br>Publication/<br>Reprint |
|-----------|---------------------------------------------------------------------|------------------------------------|
| 1         | Stoecker, W.F., and Jones, J.W., "Elementary Refrigeration & Air    | 2002                               |
|           | conditioning", McGraw Hill                                          |                                    |
| 2         | Dosset, R.J., Principles of Refrigeration, Pearson Education Asia   | 2002                               |
| 3         | Arora, C.P., "Refrigeration and Air conditioning", Tata-McGraw Hill | 2005                               |
| 4         | Prasad, M., "Refrigeration and Air conditioning", New Age           | 2005                               |
|           | International                                                       |                                    |
| 5         | ASHRAE Handbook (Fundamentals)                                      | 2013                               |

| NAME OF DEPTT./                                                  | CENTRE:      | Mechar<br>Depart | Mechanical and Industrial Engineering<br>Department |              |                  |
|------------------------------------------------------------------|--------------|------------------|-----------------------------------------------------|--------------|------------------|
| 1. Subject Code: M                                               | IN-357       | Course T         | itle: Com                                           | bustion Scie | nce & Technology |
| <ol> <li>Contact Hours:</li> <li>Examination Duration</li> </ol> | tion (Hrs.): | L: 3<br>Theory:  | T:<br>3                                             | 0<br>Practic | P: 0<br>al: 0    |
| 4. Relative Weight:                                              | CWS: 25      | PRS: 0           | MTE: 25                                             | ETE: 50      | PRE: 0           |
| 5. Credits: <b>3</b> 6.                                          |              | Semester: Au     | utumn                                               | 7. Su        | bject Area: GSEC |

8. Pre-requisite:

-

9. Objective: The course deals with the principles of combustion and their applications to the combustion systems..

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction:</b><br>Importance o f C ombustion, applications, br ief ove rview of combustion generated pollution                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                    |
| 2.     | <b>Thermodynamics of Combustion:</b><br>Combustion S toichiometry, enthalpy of f ormation, enthalpy of<br>reacting s ystems, energy balance f or r eacting systems, enthalpy of<br>reaction and heating values. Adiabatic flame temperature. Equilibrium<br>criteria, equilibrium c onstant, equilibrium c omposition and flame<br>temperature.                                                                                                                                                                                           | 6                    |
| 3.     | <b>Chemistry of Combustion</b><br>Rate 1 aws and reaction orders, elementary r eactions, reaction<br>Molecularity, temperature and pressure dependence of r eaction rate,<br>Arrhenius law, chain reactions, and reaction mechanisms. Steady state<br>and partial e quilibrium a pproximations. G eneral ox idative a nd<br>explosive c haracteristics of f uels, c hain br anching a nd explosion<br>criteria, Explosion limits of Hydrogen-O <sub>2</sub> CO-O, hydrocarbon $-O_2$<br>system, NO <sub>x</sub> formation and its control | 8                    |
| 4.     | <b>Flame Processes:</b><br>Rankine H ugonoit R elations, D eflagration and Detonation D ifferent<br>types of flames, laminar flame structure, laminar flame speed, effect<br>of va rious che mical a nd physical p arameters on flame s peed,<br>Flammability Limits, Stability Limits. Quenching a nd Flash Back,                                                                                                                                                                                                                        |                      |

|    | Design of Burners                                                              |    |
|----|--------------------------------------------------------------------------------|----|
|    | Turbulent P remixed F lames: A pplications, T urbulent F lame S peed,          |    |
|    | Structure of T urbulent F lames, F lame S tabilization, T urbulent             |    |
|    | Nonpremixed Flames.                                                            |    |
|    | Combustion Process in SI engines                                               | 10 |
| 5. | Diffusion Flames:                                                              |    |
|    | Applications of di ffusion f lames, s tructure of di ffusion f lames,          |    |
|    | Burke and Schumann development.                                                |    |
|    | Burning of condensed Phases, liquid droplet combustion in quiescent            |    |
|    | environment, effect of convection, spray combustion.                           |    |
|    | Combustion in CI engines                                                       |    |
|    | 5                                                                              | 8  |
| 6  | Combustion Generated Emissions:                                                |    |
|    | Environmental consideration of combustion, Formation of $NO_x$ and             |    |
|    | its c ontrol, Particulate ma tter, SO <sub>x</sub> , Staged bur ner, catalytic |    |
|    | converters, particulate traps                                                  | 8  |
|    | Total                                                                          | 42 |

| S. No. | Name of Authors /Books /Publisher                                 | Year of     |
|--------|-------------------------------------------------------------------|-------------|
|        |                                                                   | Publication |
| 1.     | Glassman, I. and Yetter, R. "Combustion," 4th E dition, A cademic | 2008        |
|        | Press                                                             |             |
| 2.     | Turns, S. R., "An Introduction t o C ombustion, c oncepts a nd    | 2011        |
|        | applications," 3rd edition, McGraw Hill                           |             |
|        |                                                                   |             |
| 3.     | Kuo, K. K., "Principles of Combustion," 2nd edition, John Wiley   | 2005        |
| 4.     | Ragland, K. W. and Bryden, K. M., "Combustion Engineering," CRC   | 2011        |
|        | Press                                                             |             |
| 5.     | Baukal, C. E., "Industrial Burners Handbook", CRC Press;          | 1999        |
| 6.     | Fawzy E. M., a nd S aad E. H., "Fundamentals a nd T echnology of  | 2002        |
|        | Combustion", Elsevier                                             |             |

| NAME OF DEPTT./CENTRE: | Mechanical & Industrial Engineerin |  |  |
|------------------------|------------------------------------|--|--|
|                        | Department                         |  |  |

| 1. Subject Code: M  | IN-445       | Course Title: | Value E | ngineering      |         |
|---------------------|--------------|---------------|---------|-----------------|---------|
| 2. Contact Hours:   |              | L: 3          | T: 1    | P: 0            |         |
| 3. Examination Dura | tion (Hrs.): | Theory: 3     |         | Practical: 0    |         |
| 4. Relative Weight: | CWS: 25      | PRS: 0 MTE: 2 | 25      | ETE: 50         | PRE: 0  |
| 5. Credits: 4       | 6. Se        | mester: Both  | 7       | . Subject Area: | DEC/DHC |

8. Pre-requisite: Nil

9. Objective: To impart basic knowledge of value engineering in order to search for the key areas of improvement in products, processes, services and systems.

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Value engineering concepts, advantages, applications     | 5                    |
|        | in product development, process improvement, service improvement       |                      |
|        | and system design, problem recognition, role in productivity           |                      |
| 2.     | Analysis of F unctions: Anatomy of f unction, use, a ntique, c ost,    | 10                   |
|        | esteem and exchange values, primary ve rsus s econdary v ersus         |                      |
|        | tertiary/unnecessary functions, functional analysis: FAST (Function    |                      |
|        | Analysis S ystem T echnique) a nd qua ntitative e valuation of i deas, |                      |
|        | case studies.                                                          |                      |
| 3.     | Value Engineering Techniques: Selecting products and operations        | 18                   |
|        | for VE action, timing; VE programmes, determining and evaluating       |                      |
|        | functions(s), assigning r upee e quivalents, developing a lternate     |                      |
|        | means t o r equired f unctions(s), decision m aking f or opt imum      |                      |
|        | alternative, use of decision matrix, make or buy decisions, measuring  |                      |
|        | profits, reporting results and follow up.                              |                      |
| 4.     | Implementation: Action plan, record progress, report pr ogress,        | 3                    |
|        | review meetings, problems in implementation, human factors.            |                      |
| 5.     | Managing VE: Level of VE in the organization, size and skill of VE     | 6                    |
|        | staff, small pl ant V E a ctivity ma nagement s upports; A udit of     |                      |
|        | savings.                                                               |                      |
|        | Total                                                                  | 42                   |

| S. No. | Name of Books / Authors                                                | Year of     |
|--------|------------------------------------------------------------------------|-------------|
|        |                                                                        | Publication |
| 1.     | Miles, L.D., "Techniques of V alue A nalysis a nd E ngineering",       | 1989        |
|        | Eleanor Miles Walker                                                   |             |
| 2.     | Park, R.J. "Value Engineering : A Plan for Invention", St. Lucie Press | 1999        |
| 3.     | Michaels, J.V., and Wood, W.P., "Design to Cost", Wiley Interscience   | 2004        |
| 4.     | Tufty, H .G., " Compendium on V alue E ngineering", T he Indo          | 1983        |
|        | American Society                                                       |             |
| 5.     | Jagannathan, "Getting More at Less Cost", Tata McGraw Hill             | 1992        |

| NAME | COF DEPTT. /CEN    | Mechanical & Industrial Engineering |              |                        |                  |                     |
|------|--------------------|-------------------------------------|--------------|------------------------|------------------|---------------------|
| 1.   | Subject Code: N    | /IIN-500                            | Course       | e Title: <b>Inst</b> i | rumentation and  | l Measuring Systems |
| 2.   | Contact Hours:     |                                     | L: 3         | T:1                    | P: 2/2           |                     |
| 3.   | Examination Durat  | ion (Hrs.):                         | Theory: 3    | Р                      | ractical: 0      |                     |
| 4.   | Relative Weight: C | WS: 20                              | PRS: 20      | MTE: 20                | ETE: 40          | PRE: 0              |
| 5.   | Credits: 4         | 6. Set                              | mester: Both | ,                      | 7. Subject Area: | DEC/DHC             |
| 8.   | Pre-requisite: Nil |                                     |              |                        |                  |                     |

9. Objective: The course is intended for the post graduate students of mechanical engineering disciplines to give them a thorough understanding of a measuring system, different transduction principles, error analysis response etc. and various other issues related to instrumentation system.

| S.  | Particulars                                                                       | Contact |  |  |
|-----|-----------------------------------------------------------------------------------|---------|--|--|
| No. |                                                                                   | Hours   |  |  |
| 1   | Significance of M easurement an d I nstrumentation: Introduction;                 | 5       |  |  |
|     | generalized c onfiguration and f unctional s tages of m easuring s ystems. The    |         |  |  |
|     | transducer and i ts e nvironment; an ove rview; s ensing p rocess and ph ysical   |         |  |  |
|     | laws. Types o f m easurement pr oblems. Transducer classification and their       |         |  |  |
|     | modeling; information, energy and incremental models                              |         |  |  |
| 2   | Characteristics of Instruments: Objective of studying the characteristics of      | 3       |  |  |
|     | the instruments. Static characteristics, Static Calibration, design and selection |         |  |  |
|     | of components of a measuring system.                                              |         |  |  |
| 3   | Dynamic R esponse of I nstruments: Mathematical m odel of a m easuring            | 5       |  |  |
|     | system, response of general form of instruments to various test inputs; time-     |         |  |  |
|     | domain and frequency domain analysis.                                             |         |  |  |
| 4   | Errors in Measurement and Its Analysis: Causes and types of experimental          | 4       |  |  |
|     | errors; s ystematic a nd r andom e rrors. U ncertainty analysis; c omputation of  |         |  |  |
|     | overall un certainty; estimation for d esign and selection for a lternative te st |         |  |  |
|     | methods.                                                                          |         |  |  |
| 5 | Transducers an d T ransduction P rinciples: Developments i n s ensors,           | 8  |  |  |  |  |  |
|---|----------------------------------------------------------------------------------|----|--|--|--|--|--|
|   | detectors and transducer technology; displacement transducers; force, torque     |    |  |  |  |  |  |
|   | and motion sensors; pi ezoelectric t ransducers; capa city t ype t ransducers;   |    |  |  |  |  |  |
|   | Strain gage transducers; accelerometers, pressure transducers based on elastic   |    |  |  |  |  |  |
|   | effect of volume and connecting tubing.                                          |    |  |  |  |  |  |
| 6 | Data A cquisition and Signal Processing: Systems for data acquisition and        | 5  |  |  |  |  |  |
|   | processing; modules and computerized data system; digitization rate; time and    |    |  |  |  |  |  |
|   | frequency domain representation of signals, and Nyquist criterion.               |    |  |  |  |  |  |
| 7 | Flow Meas urement: Flow vi sualization, shadowgraph; s chlieren and              | 6  |  |  |  |  |  |
|   | interferometric t echniques; Pitot s tatic tube s; h ot w ire anemometers; Laser |    |  |  |  |  |  |
|   | Doppler velometer; flow measurements using coriolis effect.                      |    |  |  |  |  |  |
|   | Temperature and Heat Flux Measurement: Thermoelectric sensors; electric          | 6  |  |  |  |  |  |
|   | resistance sensors; thermistors; radiations pyrometers; Temperature measuring    |    |  |  |  |  |  |
|   | problems in flowing fluids, dynamic compensation.                                |    |  |  |  |  |  |
|   | Total                                                                            | 42 |  |  |  |  |  |

| S.  | Name of Books / Authors / Publisher                                                 | Year of     |
|-----|-------------------------------------------------------------------------------------|-------------|
| No. |                                                                                     | Publication |
| 1.  | Doeblin E O, and Dhanesh N M, "Measurements System Application and                  | 2011        |
|     | Design", 6 <sup>th</sup> Ed., McGraw Hill                                           |             |
| 2.  | Theory and Design for Mechanical Measurements; Richard S. Figiliola, 4th            | 2005        |
|     | Edn.; 2005, Wiley India                                                             |             |
| 3.  | Harry LT., "Transducers in Mechanical and Electronic Design", Marcel                | 1986        |
|     | Dekker, CRC Press                                                                   |             |
| 4.  | Marangoni R D and Lienhard J H, "Mechanical Measurements by Beckwith                | 2006        |
|     | T G", 6 <sup>th</sup> Ed., Prentice Hall                                            |             |
| 5.  | Eckert R G and Goldstein R J, "Measurements in Heat Transfer", 2 <sup>nd</sup> Ed., | 1986        |
|     | Springer                                                                            |             |
| 6.  | Goldstein, R. J., "Fluid Mechanics Measurement", Hemisphere Publishing              | 1983        |
|     | Company                                                                             |             |

#### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering



- 8. Pre-requisite: Nil
- 9. Objective: To provide knowledge and details of the means of computer aided manufacturing and various functions supporting the automated manufacturing.
- 10. Details of Course:

| S.  | Contents                                                                           | Contact |
|-----|------------------------------------------------------------------------------------|---------|
| No. |                                                                                    | Hours   |
| 1   | Introduction: Introduction to manufacturing systems and their performance          | 04      |
|     | analysis; Introduction t o a utomation; Introduction t o c omputer i ntegrated     |         |
|     | manufacturing (CIM).                                                               |         |
| 2   | Numerical Control (NC): Introduction, numerical control – its growth and           | 10      |
|     | development, c omponents of NC s ystem, i nput de vices, c ontrol s ystems -       |         |
|     | point to point, straight cut, and continuous path NC, open loop and closed         |         |
|     | loop NC systems, NC interpolations – linear, circular, helical, parabolic and      |         |
|     | cubic interpolation, applications of NC systems, merits and demerits.              |         |
| 3   | Extensions of N C: Concepts of c omputer numerical c ontrol ( CNC),                | 06      |
|     | machining center, and direct numerical control (DNC), and their advantages.        |         |
| 4   | Robotics: Robot anatomy a nd r elated a ttributes, r obot c ontrol s ystems –      | 06      |
|     | limited sequence, playback with point to point, playback with continuous and       |         |
|     | intelligent control; End effectors - gripper, tools; Sensors in robotics - tactile |         |
|     | sensors, pr oximity, opt ical s ensors a nd machine vi sion; A pplications of      |         |
|     | industrial robots, robot programming.                                              |         |
| 5   | Material H andling a nd S torage: Overview of m aterial ha ndling                  | 06      |
|     | equipments, a utomated m aterial ha ndling equipments - AGVs, c onveyor            |         |
|     | systems, pe rformance a nalysis of m aterial ha ndling systems, automated          |         |
|     | material storage systems - ASRS and carousel storage, analysis of automated        |         |
|     | storage systems.                                                                   |         |

| 6 | Manufacturing Support Functions: Introduction to group technology (GT),     | 10 |
|---|-----------------------------------------------------------------------------|----|
|   | computer a ided pr ocess pl anning ( CAPP), m aterial r equirement planning |    |
|   | MRP (MRP), capacity planning, scheduling etc.                               |    |
|   | Total                                                                       | 42 |

| S.  | Name of Authors / Books / Publisher                                  | Year of     |
|-----|----------------------------------------------------------------------|-------------|
| No. |                                                                      | Publication |
|     |                                                                      | / Reprint   |
| 1   | Groover, M. P., "Automation, P roduction s ystems and C omputer      | 2007        |
|     | Integrated Manufacturing", 3 <sup>rd</sup> Ed., Prentice-Hall.       |             |
| 2   | Singh, N ., "Systems A pproach t o C omputer Integrated D esign and  | 1996        |
|     | Manufacturing", John Wiley & Sons.                                   |             |
| 3   | Chang, TC., W ysk, R. A. a nd W ang, HP. " Computer A ided           | 2005        |
|     | Manufacturing", 3 <sup>rd</sup> Ed., Prentice Hall.                  |             |
| 4   | Rembold, U ., N naji, B . O . a nd S torr A ., " Computer Integrated | 1994        |
|     | Manufacturing", Addison Wesley.                                      |             |
| 5   | Besant, C. B. a nd Lui, C. W. K., "Computer A ided D esign a nd      | 1991        |
|     | Manufacture",                                                        |             |
|     | Ellis Horwood Ltd.                                                   |             |
| 6   | Rao, P. N., T iwari, N. K. a nd K undra, T. K., "Computer A ided     | 1993        |
|     | Manufacturing", Tata McGraw Hill.                                    |             |
| 7   | Koren, Y. "Computer Control of Manufacturing Systems", McGraw Hill.  | 1983        |
| 8   | Lynch, M., "Computer Numerical Control for Machining", McGraw-Hill.  | 1992        |
| 9   | Sava, M. and Pusztai, J., "Computer Numerical Control Programming",  | 1990        |
|     | Prentice Hall.                                                       |             |

#### NAME OF DEPARTMENT: Mechanical & Industrial Engineering

| 1. | Subject Code: MIN-502<br>Control |          | Course Title: Robotics and |           |                |    |
|----|----------------------------------|----------|----------------------------|-----------|----------------|----|
| 2. | Contact Hours : L: <b>3</b> T    | :1       | P: 2/2                     |           |                |    |
| 3. | Examination Duration (Hrs.):     | Theory 3 |                            | Practical | 0              |    |
| 4. | Relative Weight :CWS 20          | PRS 20   | 0 MTE                      | 20 ETE    | 40 PRE         | 0  |
| 5. | Credits: 4                       | 6. Semes | ter: Spring                | 7. Sul    | bject Area: PC | CC |
| 8. | Pre-requisite: NIL               |          |                            |           |                |    |

- 9. Objectives of Course: To get exposure about basic robot kinematics, dynamics, control and programming.
- 10. Details of Course:

| S. No. | Contents                                                                     | Contact |
|--------|------------------------------------------------------------------------------|---------|
| 1      |                                                                              | Hours   |
| 1      | Introduction: D efinition, Structure, C lassification and S pecifications of | 02      |
|        | Robots, Industrial Robots.                                                   |         |
| 2      | Robot Elements and Control: Manipulators, Drives, Sensors, End Effectors,    | 5       |
|        | Configuration, F orce/Torque R elationship, T rajectory P lanning, P osition |         |
|        | Control, Feedback System, Digital Control                                    |         |
| 3      | Modeling of R obots: Coordinate F rames, M apping a nd T ransformation;      | 10      |
|        | Direct K inematic M odel; Inverse K inematics; M anipulator D ifferential    |         |
|        | Motion; Static Analysis; Jacobian                                            |         |
| 4      | Manipulator D ynamics: A cceleration of a r igid bod y, m ass di stribution, | 10      |
|        | Newtons equation, i terative Newton E uler d ynamic formulation, Lagrangian  |         |
|        | formulation of manipulator dynamics, Bond graph modeling of manipulators,    |         |
|        | Trajectory Planning.                                                         |         |
| 5      | Linear and Non Linear Control of Manipulators: control law partitioning,     | 10      |
|        | trajectory f ollowing c ontrol, multi input multi out put c ontrol s ystems, |         |
|        | Cartesian based control scheme.                                              |         |
| 6      | Force Control of manipulators: hybrid position/force control                 | 03      |
| 7      | Robot P rogramming: Robot P rogramming for M anufacturing a nd O ther        | 02      |
|        | Applications, Robot Integration with CAD and CAM.                            |         |
|        | Total                                                                        | 42      |

| S. No. | Name of Authors / Books / Publisher                                             | Year of     |
|--------|---------------------------------------------------------------------------------|-------------|
|        |                                                                                 | Publication |
| 1      | Craig John J., "Introduction to robotics: Mechanics & Control", Addison-Wesley  | 1986        |
| 2      | Niku Saeed B., Introduction to Robotics: Analysis, Systems, Applications, PHI,  | 2001        |
|        | New Delhi                                                                       |             |
| 3      | Schilling R. J., "Fundamentals of Robotics Analysis and Control", Prentice Hall | 1990        |
|        | Inc                                                                             |             |
| 4      | Mittal R. K. and Nagrath I. J., "Robotics and Control", Tata McGraw Hill, New   | 2003        |
|        | Delhi                                                                           |             |
| 5      | Ghosal A shitava, "Robotics: F undamental C oncepts a nd A nalysis", Oxford     | 2006        |
|        | University Press                                                                |             |
| 6      | Merzouki R., Samantaray A. K., Pathak P.M., Bouamama B. Ould, Intelligent       | 2013        |
|        | Mechatronic Systems: Modeling, Control and Diagnosis, Springer                  |             |

NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering



- 8. Pre-requisite: Nil
- 9. Objective: To introduce the advanced concepts of state space approach in control system stability, c ontrollability and obs ervability i ssues a nd s ynthesis of i ndustrial c ontrol systems.
- 10. Details of Course:

| S.  | Contents                                                                   | <b>Contact Hours</b> |
|-----|----------------------------------------------------------------------------|----------------------|
| No. |                                                                            |                      |
| 1   | Mathematical Mod els of L inear S ystems: Linear s ystems and state        | 4                    |
|     | equations, linearization of non linear equations, linearizing functions,   |                      |
|     | linearizing differential equations                                         |                      |
| 2   | Linear Algebra: Vector spaces, linear dependence and independence,         | 4                    |
|     | bases, c hange of basis, rank and de generacy, n orms, G ram-Schmidt       |                      |
|     | orthonormalization, subspaces and projection theorem                       |                      |
| 3   | State Variable Analysis: State variable representation, conversion of      | 6                    |
|     | state va riable m odel t o t ransfer f unction, c haracteristic e quation, |                      |
|     | eigenvalues, eigen- vectors, c onversion of t ransfer f unction t o        |                      |
|     | canonical state variable models, solution to state equations,              |                      |
| 4   | Stability o f C ontrol Systems: B ounded i nput, bounde d out put          | 6                    |
|     | stability, zero input and asymptotic stability of continuous data system,  |                      |
|     | Lyapunov s tability, Lyapunov's di rect m ethod, e xternal s tability,     |                      |
|     | relationship between stability types                                       |                      |
| 5   | Controllability and O bservability: C ontrollability t ests f or LTI       | 5                    |
|     | systems, m odal controllability a nd obs ervability, c ontrollability a nd |                      |
|     | observability of time varying systems, discrete time systems               |                      |
| 6   | System Realizations: Minimal realization, specific realization, Markov     | 4                    |
|     | parameters, balanced realizations                                          |                      |
| 7   | State F eedback and Observers: S tate f eedback for S ISO s ystems,        | 5                    |
|     | multivariable canonical forms and feedback, observers, state estimator-    |                      |

|   | multivariable case                                                           |    |
|---|------------------------------------------------------------------------------|----|
| 8 | <b>Optimal Control and Estimation</b> : The principle of optimality, optimal | 5  |
|   | estimator                                                                    |    |
| 9 | Pole Placement and Model Matching: Unity feedback configuration,             | 3  |
|   | implementable transfer function, multi variable unity feedback system,       |    |
|   | multivariable model matching                                                 |    |
|   | Total                                                                        | 42 |

| S.  | Name of Authors/ Books / Publisher                                               | Year of                   |
|-----|----------------------------------------------------------------------------------|---------------------------|
| No. |                                                                                  | <b>Publication/Reprin</b> |
|     |                                                                                  | t                         |
| 1   | Ogata, K., "Modern Control Engineering", Prentice Hall of India.                 | 2002                      |
| 2   | Raven, F.H., "Automatic control Theory", McGraw Hill.                            | 1995                      |
| 3   | Kuo, B.C., "Automatic Control System", 5 <sup>th</sup> , Prentice Hall of India. | 1995                      |
| 4   | Chen, C.T., "Linear S ystem T heory & D esign", 3 <sup>rd</sup> Edition, O xford | 1999                      |
|     | University Press.                                                                |                           |
| 5   | Harrison, H.L. and Bollinger, J. G., "Automatic Controls", International         | 1970                      |
|     | Text Book Company.                                                               |                           |
| 6   | Bay, J.S., "Fundamentals of Linear State Space Systems", McGraw Hill.            | 1999                      |
| 7   | Norman, S.N., "Control Systems Engineering", John Wiley and Sons.                | 2003                      |

#### NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering

| 1. | Subject Code: MIN-5  | 09     | Course Titl   | le: Extende | d Finite    | Element ] | Methods   |     |
|----|----------------------|--------|---------------|-------------|-------------|-----------|-----------|-----|
| 2. | Contact Hours : L:   | 3      | T: 1          | P           | <b>):</b> 0 |           |           |     |
| 3. | Examination Duration | ı (Hrs | s.) : Theory: | 3 Pra       | actical:0   | I         |           |     |
| 4. | Relative Weight: CV  | WS 2   | 25 PRS (      | 00 MTE      | 25          | ETE 50    | PRE 00    |     |
| 5. | Credits: <b>4</b>    | 6      | 5. Semester:  | Autumn/S    | Spring      | 7. Subj   | ect Area: | PEC |

- 8. Pre-requisite: Nil
- 9. O bjective: To introduce the recent developments in field of finite element analysis for a better engineering design.
- 10. Details of Course:

| S. No. | Contents                                                                       | Contact |
|--------|--------------------------------------------------------------------------------|---------|
|        |                                                                                | Hours   |
| 1      | Basic C oncepts of F inite E lement Met hods: Introduction, w eighted          | 4       |
|        | residual and weak formulations, variational methods, numerical problems.       |         |
| 2      | Finite Element in 1-D: Basis steps of finite element analysis, Applications    | 6       |
|        | to solid mechanics, heat transfer and fluid flow problems.                     |         |
| 3      | Finite E lement in 2-D: Single variable problems in 2-D, applications to       | 8       |
|        | solid mechanics and heat transfer problems, numerical integration, higher      |         |
|        | order shape functions, plane stress and plane strain problems.                 |         |
| 4      | Basics of Extended Finite Element Method (XFEM): Brief introduction,           | 8       |
|        | partition of uni ty finite e lement me thod (PUFEM), generalised finite        |         |
|        | element me thod (GFEM), introduction t o X FEM, bl ending elements,            |         |
|        | concept of level sets and enrichment                                           |         |
| 5      | Engineering Applications: XFEM on element l evel: s hape f unctions,           | 8       |
|        | displacement, strain, element stiffness matrix, XFEM for weak and strong       |         |
|        | discontinuities e .g. e.g. s tatic cracks, c rack growth, bi -materials, phase |         |
|        | change problems.                                                               |         |
| 6      | Advanced C oncepts of X FEM: C oncept of ph antom nodes, tracking the          | 8       |
|        | crack path, embedded elements, interface elements, introduction to cohesive    |         |
|        | zone m odels, embedded el ements, crack initiation/propagation, smeared        |         |
|        | cracks.                                                                        |         |
|        | Total                                                                          | 42      |

| <b>S.</b> | Name of Authors /Books /Publisher                                               | Year of                    |
|-----------|---------------------------------------------------------------------------------|----------------------------|
| No.       |                                                                                 | <b>Publication/Reprint</b> |
| 1         | Rao, S.S., "The F inite E lement M ethod in E ngineering", 4 <sup>th</sup> Ed., | 2005                       |
|           | Elsevier Science.                                                               |                            |
| 2         | Reddy, J.N., "An Introduction to Finite Element Methods", 3 <sup>rd</sup> Ed.,  | 2005                       |
|           | Tata McGraw-Hill.                                                               |                            |
| 3         | Fish, J., and Belytschko, T., "A First Course in Finite Elements",              | 2007                       |
|           | John Wiley and Sons.                                                            |                            |
| 4         | Chaskalovic J., Finite Element Methods for Engineering Sciences,                | 2008                       |
|           | Springer.                                                                       |                            |
| 5         | Mohammadi, S., "Extended F inite E lement M ethod", B lackwell                  | 2008                       |
|           | Publisher.                                                                      |                            |

#### NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering

| 1. | Subject Code:    | MIN-511A       | Course      | e Title: <b>Modeli</b> | ng and Simulati | ion    |   |
|----|------------------|----------------|-------------|------------------------|-----------------|--------|---|
| 2. | Contact Hours:   | L: 3           |             | T: 1                   | P: 2/2          |        |   |
| 3. | Examination Du   | ration (Hrs.): | Theor       | y <b>3</b>             | Practical       | 0      |   |
| 4. | Relative Weight  | age: CWS       | 15 PRS      | 15 MTE                 | 30 ETE          | 40 PRE | 0 |
| 5. | Credits: 4       | 6              | . Semester: | Spring7. Sub           | ject Area: PCC  | 1      |   |
| 8. | Pre-requisite: N | il             |             |                        |                 |        |   |

9. Objective: To cover concepts, techniques and tools for modeling and simulation of thermal systems.

#### 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                   | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction to Modeling</b> : Concept of system, continuous and discrete systems, types of models, steps in simulation study.                                                                                                                                                                          | 2                    |
| 2.     | <b>Mathematical P reliminaries:</b> Review of ve ctor cal culus, Cartesian tensors, ve ctor s paces a nd l inear t ransformations; Interpolation a nd extrapolation; Numerical differentiation and integration.                                                                                            | 6                    |
| 3.     | <b>Discrete and Continuous systems:</b> Continuous and discrete systems from fluid mechanics and heat t ransfer; C haracteristics of di screte s ystems, eigenvalue p roblems; C haracteristics of continuous s ystems b ased on differential equations; Inverse problems.                                 | 6                    |
| 3.     | <b>Mathematical M odeling of T hermal P rocesses</b> : C onservation 1 aws, mass, m omentum a nd e nergy b alance; C lassification of governing equations, boundary conditions; Dimensional analysis, model development for va rious t hermal pr ocesses a nd s ystem; D ynamics of t hermo-fluid systems. | 10                   |
| 4.     | <b>Simulation of T hermal S ystems:</b> Numerical m ethods f or s olution of partial and ordinary differential equations; Numerical solution of linear and nonlinear a lgebraic e quations; N umerical s imulation of s teady s tate a nd                                                                  | 12                   |

|    | dynamic systems.                                                                                                                                                                                               |    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. | <b>Optimization of Thermal S ystems:</b> Introduction t o opt imization, formulation of obj ective f unction, c onstrained single a nd m ultivariable optimization, dynamic integer and geometric programming. | 6  |
|    | Total                                                                                                                                                                                                          | 42 |

**Laboratory C omponent:** Students will be r equired t o de velop m athematical m odels a nd computer programs for numerical simulation of various thermal systems.

| S. No. | Name of Authors / Books / Publishers                                                                                                                                         | Year of<br>Publication/Repri<br>nt |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.     | Jaluria, Y., "Design and Optimization of Thermal Systems", 2 <sup>nd</sup> Ed., CRC Press.                                                                                   | 2007                               |
| 2.     | Bejan, A., Tsatsaronic, G., and Moran, M., "Thermal Design and Optimization", John Wiley & Sons.                                                                             | 1995                               |
| 3.     | Close, C. M., and Frederick, D. K., "Modeling and Analysis of Dynamic<br>Systems", John Wiley & Sons.                                                                        | 2001                               |
| 4.     | Jaluria, Y. "Computer Methods for Engineering with MATLAB<br>Applications", 2 <sup>nd</sup> Edition, CRC Press.                                                              | 2011                               |
| 5.     | Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.,<br>"Numerical Recipes: The Art of Scientific Computing", Third Edition,<br>Cambridge University Press | 2007                               |

NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering

1. Subject Code: MIN-511B Course Title: Modeling and Simulation



- 8. Pre-requisite: Nil
- 9. Objective: To cover concepts, techniques and tools for modeling and simulation of thermal systems.
- 10. Details of Course:

| S.  | Contents                                                                                 | Contact |  |  |  |  |
|-----|------------------------------------------------------------------------------------------|---------|--|--|--|--|
| NO. |                                                                                          | Hours   |  |  |  |  |
|     | <b>Introduction:</b> Systems and models, examples of models, models for systems and      | 4       |  |  |  |  |
|     | signals.                                                                                 |         |  |  |  |  |
| 2   | Physical m odeling: Principles of physical m odeling, b asic r elationship, bond         | 4       |  |  |  |  |
|     | graphs, and computer aided modeling.                                                     |         |  |  |  |  |
| 3   | Mathematical modeling: Estimating transient r esponse, s pectra and f requency           | 6       |  |  |  |  |
|     | functions, parameter estimation in dynamic models, system identification as a tool       |         |  |  |  |  |
|     | for model building.                                                                      |         |  |  |  |  |
| 4   | Numerical m ethods: Ordinary di fferential e quations (ODE); Euler's M ethod,            | 12      |  |  |  |  |
|     | Trapezoidal M ethod, Runge-Kutta M ethod, P redictor-Corrector M ethod, B oundary        |         |  |  |  |  |
|     | Value Problems, Shooting Method, Finite Difference Method, Elliptic partial differential |         |  |  |  |  |
|     | equations (PDE), Parabolic PDE (Explicit Forward Euler Method, Implicit Backward         |         |  |  |  |  |
|     | Euler Method, Crank-Nicholson Method, Two-Dimensional Parabolic PDE), Hyperbolic         |         |  |  |  |  |
|     | PDE (Explicit Central Difference Method, Two-Dimensional Hyperbolic PDE)                 |         |  |  |  |  |
| 5   | Simulation and Simulation application: Numerical prototyping as modeling for             | 10      |  |  |  |  |
|     | design and s ynthesis us ing c omputational t ools, Introduction t o t echniques f or    |         |  |  |  |  |
|     | validation of mode ls, Simulation of e lectromechanical, thermo-mechanical,              |         |  |  |  |  |
|     | hydraulic and pneumatic elements.                                                        |         |  |  |  |  |
| 6   | Modeling an d S imulation f or Optimization: Introduction t o t he c oncept of           | 6       |  |  |  |  |
|     | optimization, t he ba sic t erminology and not ations; m odeling pr ocess; a nd          |         |  |  |  |  |
|     | illustration with modeling of engineering problems. Graphical solution process;          |         |  |  |  |  |

| problems with – bounded (single or multiple) and unbounded solutions. Local and global opt ima; ne cessary and sufficient opt imality conditions for unconstrained |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| and constrained multivariate functions.                                                                                                                            |    |
| Total                                                                                                                                                              | 42 |

| S.  | Name of Authors/ Books / Publisher                                               | Year of              |
|-----|----------------------------------------------------------------------------------|----------------------|
| No. |                                                                                  | <b>Publication</b> / |
|     |                                                                                  | Reprint              |
| 1   | Gordon, G., "System Simulation", Prentice Hall.                                  | 1978                 |
| 2   | Lennart, L. and Torkel, G., "Modeling of Dynamic Systems" Prentice Hall.         | 1994                 |
| 3   | Bhonsle, S.R. and Weinmann, K.J., "Mathematical Modeling for Design of           | 1998                 |
|     | Machine Components", Prentice Hall.                                              |                      |
| 4   | D'Souza, A .F., a nd G arg, V .K., " Advanced D ynamics: M odeling a nd          | 1983                 |
|     | Analysis", Prentice-Hall.                                                        |                      |
| 5   | Mukherjee, A ., K armaker, R . and Samantaray, A .K., "Bond G raph i n           | 2007                 |
|     | Modeling, Simulation and Fault Identification", I & K International.             |                      |
| 6   | S. S. Rao; Engineering Optimization; 4 <sup>th</sup> Edition, John Wiley & Sons. | 2009                 |
| 7   | K. Deb; Optimization for Engineering Design; Prentice Hall of India.             | 2005                 |
| 8   | K. D eb; M ulti-objective O ptimization using E volutionary A lgorithms; John    | 2003                 |
|     | Wiley & Sons.                                                                    |                      |

#### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering

| 1. | Subject Code: MIN-515          | Course T    | itle: Manuf | acturing S    | Systems Analysis    |
|----|--------------------------------|-------------|-------------|---------------|---------------------|
| 2. | Contact Hours: L: 3            | <b>T:</b> 1 | P: 0        |               |                     |
| 3. | Examination Duration (Hrs.): T | heory       | 3           | Practical     | 0                   |
| 4. | Relative Weightage: CWS 25     | PRS         | 0 MTE       | <b>25</b> ETE | 50 PRE 0            |
| 5. | Credits: 4 6. Sen              | nester: Sp  | ring        | 7. Subject    | t Area <b>: PEC</b> |
| 8. | Pre-requisite: <b>Nil</b>      |             |             |               |                     |

- 9. Objective: To teach students various tools and techniques used for the performance analysis of manufacturing systems.
- 10. Details of Course:

| S.  | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contact |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours   |
| 1   | <b>Introduction:</b> Definitions of m anufacturing w ith i nput-output m odel, definition of s ystem, basic pr oblems c oncerning s ystems and s ystem de sign procedure modes of manufacturing ich/batch/flow and multi product small                                                                                                                                                                                                                                             | 4       |
|     | batch manufacturing.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 2   | <b>System Modeling Issues:</b> Centralized versus distributed control; Real-time vs. discrete eve nt cont rol; Forward vs . ba ckward s cheduling a pproaches w ith finite/infinite c apacity l oading; Modeling of a bsorbing s tates and de adlocks; Conflicts; Concurrency, and synchronization etc.                                                                                                                                                                            | 8       |
| 3   | <b>System M odeling Tools an d Techniques:</b> Introduction to mathematical modeling, optimization, and simulation; Issues related with deterministic and stochastic models; Continuous and discrete mathematical modeling methods - discrete ev ent, monte carlo method; Basic concepts of Markov chains and processes; The M/M/1 and M/M/m queue; Models of manufacturing systems - including t ransfer l ines and f lexible manufacturing systems, introduction t o Petri nets. | 15      |

| 4 | Performance Analysis: Transient analysis of manufacturing systems, analysis      | 15 |
|---|----------------------------------------------------------------------------------|----|
|   | of a f lexible machining center; Product flow analysis; Rank or der c lustering; |    |
|   | Process flow charting; MRPI & II, kanban, OPT, JIT-pull and JIT-push, line of    |    |
|   | balance, effects of machine failure, set-ups, and ot her disruptions on s ystem  |    |
|   | performance; Calculation of performance measures - throughput, in-process        |    |
|   | inventory, due dates, MTL, capacity, and machine utilization etc.; Critique of   |    |
|   | high inventory, long lead time systems; Shop floor control issues.               |    |
|   | Total                                                                            | 42 |

| S.  | Name of Authors / Books / Publisher                                | Year of      |
|-----|--------------------------------------------------------------------|--------------|
| No. |                                                                    | Publication/ |
|     |                                                                    | Reprint      |
| 1.  | Askin, R. G., a nd S tandridge, C. R., "Modeling a nd Analysis of  | 1993         |
|     | Manufacturing Systems", John Wiley & Sons.                         |              |
| 2.  | Gershwin, S. "Manufacturing Systems Engineering", Prentice-Hall.   | 1994         |
| 3.  | Hitomi, K., "Manufacturing Systems Engineering", Taylor & Francis. | 1998         |
| 4.  | Viswanadham N . a nd Narahari Y. "Performance M odeling of         | 1992         |
|     | Automated Manufacturing Systems", Prentice-Hall                    |              |
| 5.  | Hopp, W. J., and Spearman, M. L., "Factory Physics : Foundation of | 1996         |
|     | Manufacturing Management", McGraw Hill.                            |              |
| 6.  | Chang, TC., W ysk, R. A. a nd Wang, HP. "Computer A ided           | 2005         |
|     | Manufacturing", 3 <sup>rd</sup> Ed., Prentice Hall.                |              |

#### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering

- Subject Code: MIN-516 Course Title: Artificial Intelligence 1. 2. Contact Hours: L:3 T:1 **P: 0** Practical Examination Duration (Hrs.): Theory 3. 3 0 Relative Weightage: CWS MTE **25** 50 PRS ETE PRE 4. 25 0 0 Credits: 6. Semester: Spring 7. Subject Area: PEC 5. 4
- 8. Pre-requisite: Nil
- 9. Objective: This course is designed to provide basic knowledge of artificial intelligence. The emphasis is on the teaching of various techniques on know ledge representation and search engines with important applications of AI.
- 10. Details of Course:

| S.  | Contents                                                                                      | Contact |
|-----|-----------------------------------------------------------------------------------------------|---------|
| No. |                                                                                               | Hours   |
| 1   | Overview of History and Goals of AI: Artificial Intelligence Definition,                      | 3       |
|     | components, scope, a nd application areas; Turing's t est; Review of A I success and failure. |         |
| 2   | State Spaces, Production Systems, and Search: State space representation                      | 8       |
|     | of pr oblems; Problem s olving us ing s earch; Definition a nd e xamples of                   |         |
|     | production systems; Heuristic s earch t echniques i.e. generate-and-test, hill                |         |
|     | climbing, best-first search, constraint satisfaction and mean-ends analysis.                  |         |
| 3   | Knowledge Representation: Definition of knowledge; Issues in knowledge                        | 9       |
|     | representation; Procedural vs declarative knowledge a nd t heir                               |         |
|     | representation; Predicate logic, production rules, semantic nets, and frames;                 |         |
|     | Meta-knowledge.                                                                               |         |
| 4   | Reasoning and I nference S trategies: Forward vs backward r easoning;                         | 10      |
|     | Depth first, breadth first, min-max etc.; Non-monotonic r easoning;                           |         |
|     | Symbolic r easoning un der unc ertainty; Probability a nd Baye's t heorem;                    |         |
|     | Certainty factors, Dempster-Shafer theory; Fuzzy logic etc.                                   |         |
| 5   | Expert Systems and their Applications: Justification, structure, knowledge                    | 12      |
|     | sources; Expert knowledge acquisition; Expert system languages; E S                           |         |
|     | building tools/shells; Applications of AI in CAD, CAPP, process selection,                    |         |
|     | GT, M RP II, adaptive c ontrol, robotics, process c ontrol, fault di agnosis,                 |         |
|     | failure analysis, etc.                                                                        |         |
|     | Total                                                                                         | 42      |

| S. No. | Name of Authors / Books / Publisher                                              | Year of              |
|--------|----------------------------------------------------------------------------------|----------------------|
|        |                                                                                  | <b>Publication</b> / |
|        |                                                                                  | Reprint              |
| 1      | Rich, E., Knight, K. and Nair, S. B., "Artificial Intelligence", 3 <sup>rd</sup> | 2010                 |
|        | Ed., Tata McGraw Hill.                                                           |                      |
| 2      | Russell, S. and Norvig, P., "Artificial Intelligence: A Modern                   | 2009                 |
|        | Approach", 3 <sup>rd</sup> Ed., Prentice-Hall.                                   |                      |
| 3      | Dean, T. L., Allen, J., and Aloimonos, Y. "Artificial Intelligence:              | 1995                 |
|        | Theory and Practice", Benjamin/Cummings P ublishing                              |                      |
|        | Company.                                                                         |                      |
| 4      | Genesereth, M. R. and N ilsson, N., "Logical F oundations of                     | 1987                 |
|        | Artificial Intelligence", Morgan Kaufmann.                                       |                      |

#### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering

1. Subject Code: MIN-517 Course Title: Automated Materials Handling Systems

| 2. | Contact Hours:         | L: 3             | T: 1   | P: 0             |       |
|----|------------------------|------------------|--------|------------------|-------|
| 3. | Examination Duration ( | Hrs.): Theory    | 3      | Practical 0      |       |
| 4. | Relative Weightage: CW | VS <b>25</b> PRS | 0 MTE  | 25 ETE 50        | PRE 0 |
| 5. | Credits: 4             | 6. Semester: \$  | Spring | 7. Subject Area: | PEC   |

- 8. Pre-requisite: Nil
- 9. Objective: To introduce various a utomated m aterial ha ndling e quipment a nd their utilization.
- 10. Details of Course:

| S.  | Contents                                                                    | Contact |
|-----|-----------------------------------------------------------------------------|---------|
| No. |                                                                             | Hours   |
| 1   | Introduction of Material Handling: Overview of MHE, consideration           | 04      |
|     | in M HS de sign, twenty principles of material handling, the unit load      |         |
|     | concept.                                                                    |         |
| 2   | Material T ransport S ystems: Industrial trucks, automated guided           | 06      |
|     | vehicle systems, monorails a nd other rail guided vehicles, conveyor        |         |
|     | systems, cranes and hoists.                                                 |         |
| 3   | Evaluation a nd S election of M aterial H andling L ayout: D esign of       | 14      |
|     | bins and hoppers – flow patterns, measurement of flow properties, design    |         |
|     | methods, f eeders, di schargers, s ilos, c hutes a nd g ates; Bulk material |         |
|     | sampling a nd w eighing s ystems, blending of bul k m aterials,             |         |
|     | transportation interface – rail and water. monitoring and control.          |         |
| 4   | Analysis of Material Transport Systems: Rate of deliveries, required        | 06      |
|     | number of vehicles, economics of material handling systems.                 |         |
| 5   | Automated S torage & Retrieval S ystems (AS/RS): Functions of               | 12      |
|     | AS/RS, operations of AS/RS, A S/RS components, types of A S/RS,             |         |
|     | design of an AS/RS, system throughput, size parameters determination of     |         |
|     | AS/RS.                                                                      |         |
|     | Total                                                                       | 42      |

| S.  | Name of Authors / Books / Publisher                                  | Year of     |
|-----|----------------------------------------------------------------------|-------------|
| No. |                                                                      | Publication |
|     |                                                                      | / Reprint   |
| 1   | Allegri, T. H., "Material Handling Principles and Practice", Krieger | 1992        |
|     | Publishing Company.                                                  |             |
| 2   | Meyers, F. E. and Stephens, M. P. "Manufacturing Facilities Design   | 2000        |
|     | and Material Handling", Prentice Hall.                               |             |
| 3   | Adam, N. D., Brown, T. W., Rowland, V. D. and Misenheimer, F.        | 1996        |
|     | P., "Warehouse & Distribution A utomation H andbook", M cGraw-       |             |
|     | Hill.                                                                |             |
| 4   | Tompkins, J. A., White, J. A., Bozer, Y. A. and Tanchoco, J. M,      | 2010        |
|     | "Facilities Planning", 4 <sup>th</sup> Ed., John Willey & Sons.      |             |
| 5   | Sule, D. R., "Manufacturing F acilities-Location, P lanning, a nd    | 2008        |
|     | Design", 3 <sup>rd</sup> Ed., CRC Press.                             |             |

#### NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering

| 1. | Subject Code: MIN-520        | Course Title: Adva | anced Thermodynami                              | cs   |
|----|------------------------------|--------------------|-------------------------------------------------|------|
| 2. | Contact Hours: L: 3          | <b>T: 1</b>        | P: 0                                            |      |
| 3. | Examination Duration (Hrs.): | Theory <b>3</b>    | Practical <b>0</b>                              |      |
| 4. | Relative Weightage: CWS 25   | PRS 0 MTE          | <b>25</b> <sub>ETE</sub> <b>50</b> <sub>P</sub> | RE 0 |
| 5. | Credits: <b>4</b> 6. Se      | mester: Autumn     | 7. Subject Area: P                              | CC   |
| 8. | Pre-requisite: Nil           |                    |                                                 |      |

9. Objective: To impart knowledge of the advanced aspects of classical thermodynamics.

10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                       | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Review of I and II Laws of Thermodynamics</b> : Transient flow analysis, entropy balance, entropy generation.                                                                                                                               | 5                    |
| 2.     | <b>Exergy Analysis</b> : Concepts, exergy balance, exergy transfer, exergetic efficiency, exergy analysis of power and refrigeration cycles.                                                                                                   | 9                    |
| 3.     | <b>Real Gases and Mixtures</b> : Equations of state, thermodynamic property relations, residual property functions, properties of saturation states.                                                                                           | 6                    |
| 4.     | <b>Thermodynamic Properties of Homogeneous Mixtures</b> : Partial molal<br>properties, chemical potential, fugacity and fugacity coefficient, fugacity<br>relations for real gas mixtures, ideal solutions, phase equilibrium, Rault's<br>law. | 8                    |
| 5.     | <b>Reacting Systems</b> : I and II law analysis of reacting systems, absolute<br>entropy and the third law, fuel cells, chemical energy, exergetic efficiency<br>of reacting systems, chemical equilibrium, equilibrium flame temperature.     | 14                   |
|        | Total                                                                                                                                                                                                                                          | 42                   |

| S. No. | Name of Authors/ Books / Publisher                                    | Year of<br>Publication/Re<br>print |
|--------|-----------------------------------------------------------------------|------------------------------------|
| 1.     | Wark, K., "Advanced Thermodynamics for Engineers", John Wiley & Sons. | 1995                               |

| 2. | Bejan, A., "Advanced Engineering Thermodynamics", 3 <sup>rd</sup> Ed., John Wiley & Sons.                                 | 2006 |
|----|---------------------------------------------------------------------------------------------------------------------------|------|
| 3. | Annamalai, K. and Puri, I.K., "Advanced Thermodynamics Engineering",<br>CRC Press.                                        | 2001 |
| 4. | Moran, M. J., and Shapiro, H. N., "Fundamentals of Engineering<br>Thermodynamics", 6 <sup>th</sup> Ed., John Wiley & Sons | 2007 |

#### NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering



9. Objective: To impart knowledge on advanced analytical tools for fluid flow analysis.

#### 10. Details of Course:

| S.No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Contact Hours</b> |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.    | Review of Basic Concepts: Concept of continuum, types of fluid, tensor analysis.                                                                                                                                                                                                                                                                                                                                              | 3                    |
| 2.    | <b>Basic Laws in Integral Form</b> : Reynold's transport theorem, mass, momentum and energy equations in integral form and their applications.                                                                                                                                                                                                                                                                                | 5                    |
| 3.    | <b>Differential Fluid Flow Analysis</b> : Continuity equation, Navier-Stokes equations and exact solutions, energy equation.                                                                                                                                                                                                                                                                                                  | 7                    |
| 4.    | <b>Ideal Fluid Flow Analysis</b> : Two dimensional flow in rectangular and polar coordinates; Continuity equation and the stream function; Irrotationality and the ve locity potential f unction; V orticity a nd c irculation; P lane pot ential flow a nd t he c omplex pot ential f unction; S ources, s inks, doubl ets a nd vortices; F low over bodi es and d'Alembert's paradox; A erofoil theory and its application. | 8                    |
| 5.    | <b>Low Reynolds Number Flow</b> : A pproximation of Navier-Stokes e quation, approximate solutions of Navier-Stokes e quation, Stokes and Oseen flows, hydrodynamic theory of lubrication.                                                                                                                                                                                                                                    | 4                    |
| 6.    | Large R eynolds N umber Flow: Prandtl's bounda ry l ayer e quations,<br>Blasius s olutions, F alkner-Skan s olutions, m omentum i ntegral e quation,<br>Halstein and Bohlen method, thermal boundary layers.                                                                                                                                                                                                                  | 8                    |
| 7.    | Compressible Fluid Flow: One dimensional isentropic flow, Fanno and                                                                                                                                                                                                                                                                                                                                                           | 7                    |

| Rayleigh flows, chocking phenomenon, normal and oblique shocks. |    |
|-----------------------------------------------------------------|----|
| Total                                                           | 42 |

| S.N. | Name of Authors / Books / Publishers                                                                                        | Year of<br>Publication/Repr<br>int |
|------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.   | Kundu, P. K., and Cohen, I. M., "Fluid Mechanics", 4 <sup>th</sup> Ed., Academic Press.                                     | 2008                               |
| 2.   | Panton, R. L., "Incompressible Flow", 3 <sup>rd</sup> Ed., John Wiley & Sons.                                               | 2005                               |
| 3.   | Murlidhar, K., and Biswas, G., "Advanced Engineering Fluid Mechanics", 2 <sup>nd</sup> Ed., Narosa Publishing House.        | 2005                               |
| 4.   | Batchlor, G.K., "Introduction to Fluid dynamics", Cambridge University Press.                                               | 2000                               |
| 5.   | White, F. M., "Viscous Fluid Flow", 3 <sup>rd</sup> Ed., McGraw Hill.                                                       | 2006                               |
| 6.   | Munson, B. R., Young, D. F., and Okiishi, T. H., "Fundamentals of Fluid Mechanics". 6 <sup>th</sup> Ed., John Wiley & Sons. | 2009                               |

#### NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering

| 1. | Subject Code: MIN-522       | Course Title: Advan | ced Heat Transfe  | r                   |
|----|-----------------------------|---------------------|-------------------|---------------------|
| 2. | Contact Hours: L: 3         | T: 1                | P: 0              |                     |
| 3. | Examination Duration (Hrs.) | : Theory <b>3</b>   | Practical         | 0                   |
| 4. | Relative Weightage: CWS     | 25 PRS 0 MTE        | 25 <sub>ETE</sub> | 50 <sub>PRE</sub> 0 |
| 5. | Credits: <b>4</b>           | 6. Semester: Autumn | 7. Subject Area:  | РСС                 |
| 8. | Pre-requisite: Nil          |                     |                   |                     |

9. Objective: It provides the knowledge of advanced techniques for analysis of heat transfer processes in thermal systems.

#### 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Contact Hours</b> |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Heat C onduction</b> : F ourier's l aw, t hermal c onductivity of m atter, he at diffusion e quation f or i sotropic a nd a nisotropic m edia, bounda ry and initial conditions; One-dimensional steady-state conduction through plane wall, c ylinder a nd s phere, c onduction w ith t hermal e nergy generation, heat t ransfer f rom e xtended s urfaces, r adial f ins a nd f in opt imization; Multidimensional-dimensional s teady-state he at c onduction; T ransient conduction – lumped capacitance method and its validity, plane wall and radial s ystems w ith c onvection, s emi-infinite s olid, muti-dimensional transient heat conduction. | 12                   |
| 2.     | <b>Heat Convection</b> : Boundary layers concepts, laminar and turbulent flows, conservation e quation, non -dimensional a nalysis, bounda ry l ayer equations, R eynolds a nalogy f or t urbulent f lows; F orced c onvection inside t ubes a nd duc ts – correlations f or l aminar a nd t urbulent f orces convection; F orced c onvection over r e xterior s urfaces – bluff bodi es, packed be ds, t ube bundl es i n c ross f low, f ree j et; N atural c onvection; Combined f ree and f orced convection; C ombined c onvection a nd radiation.                                                                                                        | 11                   |
| 3.     | <b>Heat Transfer with Phase Change</b> : Nucleate, film and pool boiling, boiling in forced convection; Filmwise and dropwise condensation; Heat pipes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                    |

| 4.    | <b>Thermal R adiation:</b> Fundamental c oncepts, r adiation i ntensity a nd i ts relation to emission, irradiation and radiosity, blackbody radiation, Planck distribution, Wien's di splacement la w, Stefan-Boltzmann l aw, s urface emission, surface absorption, reflection, and transmission, Kirchoff's law, gray s urface; R adiation exchange be tween surfaces, Poljack's and Gehbart's m ethods a nd vi ew f actor, bl ackbody r adiation e xchange, radiation e xchange be tween di ffuse gray s urfaces i n a n e nclosure w ith absorbing and emitting media; Flame Radiation, solar Radiation. | 10 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5.    | Numerical M ethods in H eat T ransfer: Finite di fference m ethod for<br>numerical simulation of steady state and transient heat transfer problems,<br>iterative m ethods f or s olution of m ulti-dimensional pr oblems, time<br>integration methods.                                                                                                                                                                                                                                                                                                                                                        | 4  |
| Total | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42 |

| S.<br>No. | Name of Authors / Books / Publishers                                                                                  | Year of<br>Publication/Reprin<br>t |
|-----------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.        | Kreith, F. and Bohn, M. S., "Principles of Heat Transfer", 6 <sup>th</sup> Ed.,                                       | 2007                               |
|           | Thomson Learning.                                                                                                     |                                    |
| 2.        | Burmeister, L. C., "Convective Heat Transfer", 2 <sup>nd</sup> Ed., John Wiley & Sons.                                | 1993                               |
| 3.        | Kays, W. M., Crawford, M. E., and Weigand, B., "Convective Heat and Mass Transfer", 4 <sup>th</sup> Ed., McGraw Hill. | 2004                               |
| 4         | Ozisik, M. N., "Heat Conduction", 2 <sup>nd</sup> Ed., John Wiley & Sons.                                             | 1993                               |
| 5.        | Siegel, R., and Howell, J. K., "Thermal Radiation Heat Transfer", Taylor & Francis.                                   | 2002                               |

NAME OF DEPTT. /CENTRE: **Department of Mechanical and Industrial Engineering** 1. Subject Code: **MIN-523** Course Title: Gas Turbines and Compressors 2. Contact Hours: L: 3 T:1 **P: 0** 3. Examination Duration (Hrs.): Theory: 3 **Practical: 0** Relative Weightage: CWS: 25 4. **PRS: 0** MTE: 25 ETE: 50 **PRE: 0** Spring 7. Subject Area: DEC/DHC 5. Credits: 4 6. Semester:

8. Pre-requisite: Nil

- 9. Objective: It is intended to give a thorough understanding of gas turbines, compressors, gas turbine cycles, energy and fluid flow dynamics, and power plants based on gas turbines.
- 10. Details of Course:

| S.  | Contents                                                                                                                                                                                                                                                                                                                                                        | Contact |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No. |                                                                                                                                                                                                                                                                                                                                                                 | Hours   |
| 1.  | Introduction: Development, classification and field of application of gas turbines.                                                                                                                                                                                                                                                                             | 3       |
| 2.  | <b>Gas T urbine C ycles:</b> Ideal and actual c ycles, multi-stage compression, r eheating, regeneration, combined and cogeneration.                                                                                                                                                                                                                            | 6       |
| 3.  | <b>Energy Transfer and Fluid Flow Characteristics:</b> Energy transfer between fluid and rotor, axi-symmetric flow in compressors and gas turbines.                                                                                                                                                                                                             | 6       |
| 4.  | <b>Centrifugal C ompressors:</b> Principles of ope ration, c ompressor l osses, a diabatic efficiency, slip factor, pressure c oefficient, pow er uni t, de sign c onsideration f or impeller and diffuser systems, performance characteristics.                                                                                                                | 6       |
| 5.  | Axial F low C ompressors: Elementary t heory, vortex t heory, de gree o f r eaction, simple de sign, elementary air-foil t heory, i solated airfoil and cascade t heory, three dimensional f low, stages, stage ef ficiency and overall ef ficiency, p erformance characteristics.                                                                              | 6       |
| 6.  | <b>Turbines:</b> Axial f low and r adial f low t urbines, i mpulse a nd r eaction t urbines, fundamental r elations a nd ve locity t riangles, elementary vor tex the ory, limiting factors in turbine de sign, a pplication of a irfoil theory to the s tudy of flow through turbine bl ades, a erodynamic a nd t hermodynamic de sign c onsiderations, bl ade | 10      |

|    | materials, blade attachment and blade cooling.                                                                                                                                                                                       |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7. | <b>Gas Turbine Power Plants:</b> Fuel and fuel feed systems, combustion systems-design considerations a nd f lame s tabilization, r egenerator t ypes a nd de sign, gas t urbine power plant performance and matching, applications. | 5  |
|    | Total                                                                                                                                                                                                                                | 42 |

| S.  | Name of Authors / Books / Publishers                                                      | Year of     |
|-----|-------------------------------------------------------------------------------------------|-------------|
| No. |                                                                                           | Publication |
|     |                                                                                           | /Reprint    |
| 1.  | Saravanamuttoo, H.I.H., R ogers, G.F.C., C ohen, H. and Straznicky, P.V., "Gas            | 2008        |
|     | Turbine Theory", 6 <sup>th</sup> Ed., Pearson Prentice Hall.                              |             |
| 2.  | Bathie, W. W., "Fundamentals of Gas Turbines", 2 <sup>nd</sup> Ed., John Wiley & Sons.    | 1995        |
| 3.  | Boyce, M. P., "Gas Turbine Engineering Handbook", 3 <sup>rd</sup> Ed., Gulf Professional  | 2006        |
|     | Publishing.                                                                               |             |
| 4.  | Lefebvre, H. and Ballal, D. R., "Gas Turbine Combustion", 3 <sup>rd</sup> Ed., CRC Press. | 2010        |

| NAME OF DEPTT./CENTRI                                                 | E: Department  | of Mechanical                    | & Industrial E | ngineering |
|-----------------------------------------------------------------------|----------------|----------------------------------|----------------|------------|
| 1. Subject Code: MIN-524                                              | Course Title:  | Two Phase Flow and Heat Transfer |                | ransfer    |
| <ol> <li>Contact Hours:</li> <li>Examination Duration (Hrs</li> </ol> | L: 3           | T: 1<br>Pr.                      | P: 0           |            |
| 5. Examination Duration (HIS                                          | s.). Theory: 5 | FT                               | actical: 0     |            |
| 4. Relative Weightage: CW                                             | S: 25 PRS: 0   | <b>MTE: 25</b>                   | ETE: 50        | PRE: 0     |
|                                                                       |                |                                  |                |            |

- 8. Pre-requisite: Nil
- 9. Objective: The course has been designed to give a thorough understanding of basic mechanism involved in two phase flow and heat transfer with special emphasis on boiling and condensation processes..
- 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction :</b> Types of flow; volumetric concentration; void fraction; volumetric flux; relative velocity; drift velocity; flow regimes; flow maps; analytical models.                                                                                           | 05                   |
| 2.     | <b>Homogeneous F low:</b> One dimensional steady homogeneous equilibrium flow; homogeneous friction factor; turbulent flow friction factor.                                                                                                                             | 08                   |
| 3.     | <b>Separated Flow:</b> Slip; Lockhart-Martinelli method for pressure drop calculation; pressure drop for flow with boiling; flow with phase change.                                                                                                                     | 07                   |
| 4.     | <b>Drift Flow Model:</b> General theory; gravity flows with no wall shear; correction to simple theory; Armond or Bankoff flow parameters.                                                                                                                              | 08                   |
| 5.     | <b>Boiling:</b> Regimes of boiling; nucleation; gas nucleation in bulk liquid; growth of bubbles; motion at a heating surface; heat transfer rates in pool boiling; forced convection boiling; heat transfer correlations; maximum heat flux or burnout; metal boiling. | 07                   |
| 6      | <b>Condensation:</b> Nusselt theory; boundary layer treatment of laminar film condensation; experimental results for vertical and horizontal tubes; condensation inside a horizontal tube, condensation outside a horizontal tube.                                      | 07                   |
|        | Total                                                                                                                                                                                                                                                                   | 42                   |

| S.  | Author(s) / Title / Publisher | Year of              |
|-----|-------------------------------|----------------------|
| No. | Author(s) / Title / Tublisher | <b>Publication</b> / |

|    |                                                                                                                | Reprint |
|----|----------------------------------------------------------------------------------------------------------------|---------|
| 1. | Wallis, G.B., "One Dimensional Two Phase Flow," McGraw Hill                                                    | 1969    |
| 2. | Butterworth, D. and Hewitt, G.F., "Two-phase Flow and Heat<br>Transfer", Oxford                                | 1977    |
| 3. | Collier, J.G., "Convective Boiling and Condensation," McGraw Hill                                              | 1982    |
| 4. | Rohsenow, W.M., Hartnett, J.P. and Ganic, E.N. (Ed.), "Handbook of<br>Heat Transfer Fundamentals," McGraw Hill | 1998    |
| 5. | Tong, L. S. and Tang, Y.S., "Boiling Heat Transfer and Two-phase<br>Flow," Taylor & Francis                    | 1997    |
|    | Whalley, P.B., "Two-Phase Flow and Heat Transfer," Oxford Press                                                | 1996    |
| 6. | Whalley, P.B., "Boiling, Condensation, and Gas-Liquid Flow,"<br>Clarendon Press, Oxford                        | 1987    |
| 7. | Chisholm, D., "Two-phase Flow in Pipe Lines and Heat Exchangers,"<br>Longman Inc. New York.                    | 1969    |

| NAM | E OF DEPTT. /CEI   | NTRE:                      | Mecha  | nical & Ind | ustrial Engineer | ing     |
|-----|--------------------|----------------------------|--------|-------------|------------------|---------|
| 1.  | Subject Code:      | Course Title: Solar Energy |        |             |                  |         |
| 2.  | Contact Hours:     |                            | L: 3   | <b>T:</b> 1 | P: 0             |         |
| 3.  | Examination Dura   | ation (Hrs.):              | Theory | 3           | Practical: 0     |         |
| 4.  | Relative Weighta   | ge: CWS: 25                | PRS: 0 | MTE: 25     | ETE: 50          | PRE: 0  |
| 5.  | Credits: 4         | 6. Semester:               | Autumr | /Spring     | 7. Subject Area: | DEC/DHC |
| 8.  | Pre-requisite: Nil |                            |        |             |                  |         |

9. Objective: To impart knowledge of solar energy with respect to its availability, utilization and economic viability.

#### 10. Details of Course:

| S. No. | Particulars                                                                                                                                                                                                                                                                            | Contact<br>Hours |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.     | <b>Introduction:</b> Energy demand and supply, energy crisis, conventional and non-<br>conventional energy resources, solar energy applications.                                                                                                                                       | 2                |
| 2.     | <b>Solar radiation:</b> Sun, solar radiations, attenuation by atmosphere, solar radiation on earth, measurement, presentation and utilization of data.                                                                                                                                 | 6                |
| 3.     | <b>Heat transfer concepts:</b> Radiation characteristics of surface and bodies, absorbance, reflectance and transmittance, selective surface, sky radiation and wind convection.                                                                                                       | 6                |
| 4.     | <b>Flat plate collectors:</b> General description of flat plate collectors, general characteristics, performance, short term and long term performance, design.                                                                                                                        | 8                |
| 5.     | <b>Focusing collectors:</b> General description of focusing solar collectors, concentrators, receivers and orienting systems, general characteristics, performance, materials, design.                                                                                                 | 5                |
| 6.     | <b>Energy storage:</b> Energy storage in solar process system, different types of storages, characteristics and capacity of storage medium, solar pond.                                                                                                                                | 5                |
| 7.     | <b>Solar heating and cooling:</b> Passive heating and cooling, nocturnal radiations, green house concept, ponds, active heating and cooling, solar water heaters, absorption cooling, combined solar heating and cooling systems, performance, economics of solar heating and cooling. | 4                |

| 8.    | <b>Solar Process Modeling:</b> Solar process systems and components, component models, system models.                                                              | 2  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 9.    | <b>Solar Photovoltaics:</b> Description and principle of working, performance characteristics, efficiency of solar cells, module design, PV systems, applications. | 4  |
| Total | ·                                                                                                                                                                  | 42 |

| S. No. | Name of Books / Authors/ Publisher                                                                                                             | Year of<br>Publication |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1.     | Duffie, J.A. and Beckman, W.A., "Solar Engineering of Thermal Processes", 4 <sup>th</sup> Ed., John Wiley & Sons, Inc.                         | 2013                   |
| 2.     | Soteris A . K alogirou, " Solar E nergy E ngineering: P rocesses and S ystems", Academic Press                                                 | 2009                   |
| 3.     | Goswami, D.Y., K reith, F., and K reider J., "Principles of S olar E nergy", 2 <sup>nd</sup> Ed., Taylor & Francis                             | 2000                   |
| 4.     | Sukhatme, S.P. and Naik, J.K., "Solar Energy: Principles of Thermal Collection and storage", 3 <sup>rd</sup> Ed., Tata McGraw - Hill Education | 2009                   |
| 5.     | Garg, H.P., & Prakash, J., "Solar E nergy : Fundamentals and A pplications", Tata McGraw - Hill Education                                      | 2012                   |
| 6.     | Tiwari, G.N., "Solar E nergy Fundamentals, Design, M odelling a nd Applications", Narosa publishing House                                      | 2002                   |

| NAME OF DEPTT./CEN              | Department of Mechanical and Industrial Engineering |               |              |                  |        |
|---------------------------------|-----------------------------------------------------|---------------|--------------|------------------|--------|
| 1. Subject Code: MIN-           | 526                                                 | Course Title: | Advanced Ga  | s Dynamics       |        |
| 2. Contact Hours:               |                                                     | L: 3          | T: 1         | P: 0             |        |
| 3. Examination Duration (Hrs.): |                                                     | Theory: 3     | Practical: 0 |                  |        |
| 4. Relative Weightage:          | CWS: 25                                             | PRS: 0        | MTE: 25      | ETE: 50          | PRE: 0 |
| 5. Credits: 4                   | 6. Sen                                              | nester: Both  | 7.Subj       | ect Area: DEC/DI | łC     |

#### 8. Pre-requisite: Nil

- 9. Objective: To provide knowledge of advanced topics in gas dynamics related to shock waves, perturbations and methods of characteristics.
- 10. Details of Course:

| S.  | Contents                                                                                                                                                                                                                                                                              | Contact |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No. |                                                                                                                                                                                                                                                                                       | Hours   |
| 1.  | <b>Basic E quations:</b> Application of the general differential e quation o f c ontinuity, momentum a nd e nergy t o c ompressible i nviscid f luids, c ompressible B ernoulli equation, irrotational flow, velocity potential and stream function.                                  | 6       |
| 2.  | <b>Shock Waves in Supersonic Flow:</b> A review of normal shock relations, Mach waves, equations f or f inite s trength obl ique s hock waves, R ankine-Hugoniot r elations, extended Prandtl relation, hodograph shock polars, reflection and interaction of shock, curved shocks.   | 7       |
| 3.  | <b>Small Perturbation T heory:</b> Linearization, s mall pe rturbation e quation, pr essure coefficient, s ubsonic f low pa st a w ave s haped wall, ge neral s olution of s upersonic flows, supersonic flow past a wave – shaped wall, elements of supersonic thin aerofoil theory. | 9       |
| 4.  | <b>Similarity Rules:</b> Similarity r ules be tween two-dimensional s ubsonic c ompressible flows a nd i ncompressible f lows, G othert r ule, P randtlGlauert r ule, a pplication t o supersonic flows.                                                                              | 6       |

| 5. | <b>Hodograph Method for Subsonic Flow:</b> Hodograph equations for two-dimensional subsonic flows, Chaplygin's equation, the tangent gas approximation of Karman and Tsien for subsonic flows, Karman-Tsien formula for pressure correction, comparison with Prandtl-Glauert rule | 7  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6. | Method of Characteristics for Supersonic Flow: Method of characteristics for two dimensional s upersonic f lows, t he c haracteristic c urves, e quation of hodog raph characteristics, characteristics network, computational methods.                                           | 7  |
|    | Total                                                                                                                                                                                                                                                                             | 42 |

| S.  | Author(s) / Title / Publisher                                                                | Year of     |
|-----|----------------------------------------------------------------------------------------------|-------------|
| No. |                                                                                              | Publication |
|     |                                                                                              | /Reprint    |
| 1.  | Anderson Jr., J.D., "Modern Compressible Flow: With Historical Perspective", 3 <sup>rd</sup> | 2012        |
|     | Ed., Tata McGraw-Hill                                                                        |             |
| 2.  | Liepmann, H.W. and Roshko, A., "Elements of Gas Dynamics", Dover Publication.                | 2002        |
| 3.  | Rathakrishnan, E., "Applied Gas Dynamics", John Wiley & Sons.                                | 2010        |
| 4.  | John, J. E. A. and Keith, T. G., "Gas Dynamics", 3 <sup>rd</sup> Ed., Prentice Hall.         | 2006        |
| 5.  | Zucker, R. D. and Biblarz, O., "Fundamentals of Gas Dynamics", 2 <sup>nd</sup> Ed., John     | 2002        |
|     | Wiley & Sons.                                                                                |             |
| 6.  | Oosthuizen, P. H. and Carscallen, W. E. "Introduction to Compressible Fluid Flow",           | 2013        |
|     | 2nd Ed., CRC Press                                                                           |             |
|     |                                                                                              |             |

| NAME OF DEPTT./CENTRE:          |         | Department of Mechanical and Industrial Engineering |                                              |    |               |        |
|---------------------------------|---------|-----------------------------------------------------|----------------------------------------------|----|---------------|--------|
| 1. Subject Code: MIN-527        |         | Course Title:                                       | Computational Fluid Dynamics and<br>Transfer |    | mics and Heat |        |
| 2. Contact Hours:               |         | L: 3                                                | T:                                           | 1  | P: 0          |        |
| 3. Examination Duration (Hrs.): |         | Theory: 3                                           | Practical: 0                                 |    |               |        |
| 4. Relative Weightage: (        | CWS: 25 | PRS: 0                                              | MTE:                                         | 25 | ETE: 50       | PRE: 0 |
| 5. Credits: 4 6. Sen            |         | nester: Both                                        | 7.Subject Area: DEC/DHC                      |    |               |        |

- 8. Pre-requisite: Nil
- 9. Objective: To impart knowledge of the basic tools for numerical simulation of fluid flow and heat transfer processes.
- 10. Details of Course:

| S.<br>No. | Contents                                                                                                                                                                                                                                              | Contact<br>Hours |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.        | <b>Introduction:</b> Conservation e quations; M ass, m omentum a nd e nergy equations; Conservative forms of the equations and general description.                                                                                                   | 3                |
| 2.        | <b>Classification and Overview of Numerical Methods:</b> Classification into various types of e quations parabolic el liptic and hyperbolic; B oundary and i nitial c onditions; Overview of numerical methods.                                       | 3                |
| 3.        | <b>Finite Difference Method:</b> Introduction, finite difference approximations, Taylor series expansion, pol ynomial f itting, a pproximation of boundary conditions, a pplications t o conduction and advection-diffusion problems.                 | 5                |
| 4.        | <b>Finite Volume Method:</b> Basic methodology, finite volume discretization, approximation of s urface a nd vol ume integrals, i nterpolation m ethods – central, upw ind a nd h ybrid formulations and comparison for convection-diffusion problem. | 4                |
| 5.        | <b>Finite E lement M ethod:</b> Introduction t o R ayleigh-Ritz, Galerkin and least s quare methods, interpolation functions, one and two dimensional elements, applications.                                                                         | 4                |
| 6.        | <b>Methods of Solution:</b> Solution of finite difference equations, iterative methods, matrix inversion methods, ADI method, operator splitting, fast Fourier transform, applications.                                                               | 4                |

| 7.  | <b>Time integration Methods:</b> Single and multilevel methods; predictor-corrector methods; stability analysis; Applications to transient conduction and advection-diffusion problems. | 4  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8.  | Numerical G rid G eneration: Basic i deas, t ransformation a nd m apping, uns tructured grid generation.                                                                                | 3  |
| 9.  | <b>Navier-Stokes E quations:</b> Explicit a nd implicit me thods; S IMPLE type me thods; fractional step methods                                                                        | 4  |
| 10. | <b>Phase Change Problems:</b> Different approaches for moving boundary, variable time step method, enthalpy method.                                                                     | 4  |
| 11. | <b>Turbulence modeling:</b> Reynolds a veraged N avier-Stokes e quations, R ANS modeling, DNS and LES.                                                                                  | 4  |
|     | Total                                                                                                                                                                                   | 42 |

| S.<br>No. | Name of Authors / Books / Publishers                                                            | Year of<br>Publication<br>/Reprint |
|-----------|-------------------------------------------------------------------------------------------------|------------------------------------|
| 1.        | Anderson, D .A., T annehill, J .C. a nd P letcher, R .H., " Computational F luid                | 2011                               |
|           | Mechanics and Heat Transfer", 3 <sup>rd</sup> Ed., Taylor & Francis                             |                                    |
| 2.        | Anderson, J.D., Jr., "Computational Fluid Dynamics", McGraw Hill.                               | 1995                               |
| 3.        | Ferziger, J. H. and Peric, M., "Computational Methods for Fluid Dynamics", 3 <sup>rd</sup> Ed., | 2003                               |
|           | Springer.                                                                                       |                                    |
| 4.        | Versteeg, H. and Malalasekra, M., "An Introduction to Computational Fluid                       | 2007                               |
|           | Dynamics: The Finite Volume Method", 2 <sup>nd</sup> Ed., Pearson Education                     |                                    |
| 5.        | Reddy, J. N. and Gartling, D. K., "The Finite Element Method in Heat Transfer and               | 2010                               |
|           | Fluid Dynamics", 3 <sup>rd</sup> Ed., CRC Press.                                                |                                    |
| 6.        | Chung, T. J., "Computational Fluid Dynamics". 2 <sup>nd</sup> Ed., Cambridge University         | 2010                               |
|           | Press                                                                                           |                                    |
| 7.        | Patankar, S. V., "Numerical Heat Transfer and Fluid Flow", Taylor and Francis                   | 1980                               |

| NAM | E OF DEPTT. /CENTRE:       |        | Mech                                | anical & I | ndustrial E   | ngineerir | ıg     |
|-----|----------------------------|--------|-------------------------------------|------------|---------------|-----------|--------|
| 1.  | Subject Code: MIN-528      |        | Course Title: Boundary Layer Theory |            |               |           |        |
| 2.  | Contact Hours:             |        | L: 3                                | ,          | Г: 1          | P: 0      |        |
| 3.  | Examination Duration (Hrs. | ):     | Theor                               | y: 3       | Practio       | cal: 0    |        |
| 4.  | Relative Weightage: CWS:   | 25 PI  | RS: 0                               | MTE: 2     | 5 ETE         | : 50      | PRE: 0 |
| 5.  | Credits: 4                 | 6. Ser | nester:                             | Spring7. S | Subject Area: | DEC/DI    | HC     |
| 8.  | Pre-requisite: Nil         |        |                                     |            |               |           |        |

9. Objective: The course is intended to provide of boundary layer in fluid flow and to inapt a clean clear physical understanding analytical ability for prediction; investigation and control of the boundary layers.

#### 10. Details of Course:

| S.  | Particulars                                                                                                                                                                   | Contact |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No. |                                                                                                                                                                               | Hours   |
| 1   | Introduction: Ideal and r eal fluids, the con cept of bounda ry l ayer; Navier- Stokes                                                                                        | 6       |
|     | equations, t he l imiting c ases of l ayer and s mall R eynolds num ber, e nergy equation;                                                                                    |         |
|     | Exact solutions of N-S Equation                                                                                                                                               |         |
| 2   | <b>Laminar Boundary Layer E quation:</b> Two dimensional e quations; di splacement and momentum thickness; general properties of the boundary layer equations; skin friction. | 8       |
| 3   | <b>Similarity solutions:</b> Wedge flow and its particular cases; flow past a cylinder; two dimensional flow in straight channel                                              | 6       |
| 4   | Approximate M ethods: Karman-Pohlhausen m ethods; N umerical m ethods; A xially                                                                                               | 6       |
|     | symmetrical boundary layer: Circular jet; body of revolution; Manglers transformation                                                                                         |         |
| 5   | Stability of laminar flow: Transition to turbulence; Turbulent flow fundamentals                                                                                              | 4       |
| 6   | Boundary L ayer C ontrol: Different me thods; f law over a flat pl ate w ith uniform                                                                                          | 4       |
|     | section                                                                                                                                                                       | 1       |
| 7   | Turbulent Boundary Layer: Two-dimensional e quation; P randtl's mixing la yer                                                                                                 | 4       |
|     | theory; K arman's h ypothesis; U niversal ve locity distribution; flow over a flat plate;                                                                                     |         |
|     | skin friction drag.                                                                                                                                                           |         |
| 8   | Thermal Boundary layer: Two-dimensional equations; forced and natural convection                                                                                              | 4       |
|     | over flat plate; natural convective flow over a vertical plate; effect of Prandt'l number.                                                                                    |         |
|     | Total                                                                                                                                                                         | 42      |
| S.  | Name of Books / Authors / Publisher                                         | Year of     |
|-----|-----------------------------------------------------------------------------|-------------|
| No. |                                                                             | Publication |
| 1   | Schlichting H., "Boundary Layer Theory", Springer-Verlag                    | 2004        |
| 2.  | Rozenhead L., "Laminar Boundary Layers", Dover Publications                 | 1988        |
| 3   | Hinze J.O., "Turbulence", McGraw Hill                                       | 1975        |
| 4   | Kays W.M. and Crawford M.E., "Convective Heat & Mass Transfer", McGraw Hill | 1993        |
| 5.  | Wellty J., Wicks C.E. and Wilson R.E., "Fundamentals of Momentum Heat and   | 2007        |
|     | Mass Transfer", John Wiley & Sons                                           |             |
| 6   | White F M, "Viscous fluid flow" 3 <sup>rd</sup> Edition;McGraw hill co.     | 2011        |

| NAM | E OF DEPTT. /CENTRE:        | Mechar          | nical & Indu        | ıstrial Engineerin | g      |
|-----|-----------------------------|-----------------|---------------------|--------------------|--------|
| 1.  | Subject Code: MIN-529       | Course '        | Title: <b>Turbu</b> | lent Flows         |        |
| 2.  | Contact Hours:              | L: 3            | <b>T:</b> 1         | P: 0               |        |
| 3.  | Examination Duration (Hrs.) | : Theory: 3     |                     | Practical: 0       |        |
| 4.  | Relative Weightage: CWS: 2  | 25 PRS: 0       | MTE: 25             | ETE: 50            | PRE: 0 |
| 5.  | Credits: <b>4</b> 6.        | Semester: Sprin | g                   | 7. Subject Area:   | PEC    |
| 8.  | Pre-requisite: Fluid Mecha  | nics            |                     |                    |        |

9. Objective: To provide essential physical understanding and analytical, experimental, modeling and computational tools for the analysis of turbulent flows.

| S. No. | Particulars                                                                                                                                                                       |   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1.     | Introduction: Introduction to turbulence and equations of fluid motion.                                                                                                           | 3 |
| 2.     | <b>Statistical descriptions of turbulent flows:</b> random nature of turbulence, random variables, probability distributions, and averaging techniques.                           | 5 |
| 3.     | <b>Experimental techniques for measurement of turbulent flows:</b> hot-wire and hot-film anemometry, laser Doppler Velocimetry, and Particle image velocimetry.                   | 5 |
| 4.     | <b>Dynamics of turbulence:</b> scales of turbulent motion, energy cascade, Kolmogorov hypothesis, structure function, two-point correlations, Fourier modes and velocity spectra. | 7 |
| 5.     | Homogeneous and isotropic turbulence: implications of isotropy, energy decay, energy spectrum, homogeneous shear flows.                                                           | 5 |
| 6.     | Anisotropic turbulence: wall bounded flows (channel flow, pipe flow, boundary layers) and free shear flows (jets and mixing layers), coherent structures.                         | 7 |
| 7.     | <b>Turbulence modeling:</b> RANS modeling, eddy viscosity models, algebraic Reynolds stress models and near-wall models.                                                          | 5 |

| 8. | <b>Direct numerical simulation and large eddy simulation</b> : filterning, subgrid scale models (smagorinsky and dynamic models), LES in wave number space. | 5  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Total                                                                                                                                                       | 42 |

| S. No. | Name of Books / Authors/ Publisher                                                                | Year of<br>Publication<br>/ Reprint |
|--------|---------------------------------------------------------------------------------------------------|-------------------------------------|
| 1.     | Pope, S.B., "Turbulent Flows", Cambridge University Press.                                        | 2000                                |
| 2.     | Bernard, P., and Wallace, J.A., "Turbulent Flow", John Wiley & Sons Inc.                          | 2002                                |
| 3.     | Libby, P. A., "An Introduction to Turbulence", Taylor & Francis.                                  | 1996                                |
| 4.     | Mathieu, J., and Scott, J., "Introduction to Turbulent Flow", Cambridge University Press.         | 2000                                |
| 5.     | Biswas, G., and Eswaran, V., "Turbulent Flows", Narosa Publishing House.                          | 2002                                |
| 6.     | Piquet, J., Richards, J.A., Jia, X., "Turbulence Flows: Models and Physics", Springer-<br>Verlag. | 2001                                |
| 7.     | Tennekes, H., and Lumley, J.L., "A First Course in Turbulence", MIT Press.                        | 1972                                |

| NAME OF DEPTT./CENTRE         | : Department of     | Department of Mechanical & Industrial Engineering |                 |         |  |
|-------------------------------|---------------------|---------------------------------------------------|-----------------|---------|--|
| 1. Subject Code: MIN-530      | Course Title:       | <b>Cold Preservation of Food</b>                  |                 |         |  |
| 2. Contact Hours:             | L: 3                | T: 1                                              | P: 0            |         |  |
| 3. Examination Duration (Hrs. | ): Theory: 3        | Practical: 0                                      |                 |         |  |
| 4. Relative Weightage: CWS    | : 25 PRS: 0         | MTE: 25                                           | ETE: 50         | PRE: 0  |  |
| 5. Credits: 4                 | 6. Semester: Autumn | /Spring                                           | 7.Subject Area: | DEC/DHC |  |

- 8. Pre-requisite: Nil
- 9. Objective: To expose students to the various aspects of cold preservation techniques for the perishable commodities. Topics on N ewer techniques of Food Preservation have also been included.
- 10. Details of Course:

| S. No. | Contents                                                                                                                                          | <b>Contact Hours</b> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction:</b> Necessity of f ood p reservation; general t echniques;                                                                       | 05                   |
|        | cold preservation of food.                                                                                                                        |                      |
| 2      | <b>Dialogical A</b> greater Live and do ad foods, hislagy of food medyots                                                                         | 10                   |
| 2.     | <b>biological A specis:</b> Live and de ad 100ds; biology of 100d products<br>such as fruits vegetables milk meat and fish: effect of temperature | 10                   |
|        | on f ood i noredients: r espiration r ates of f ood products: c ontrolled                                                                         |                      |
|        | atmospheric storage: diseases and deterioration of foods.                                                                                         |                      |
|        | 1 6,                                                                                                                                              |                      |
| 3.     | <b>Cold P reservation of Food:</b> Short and l ong t erm p reservation;                                                                           | 09                   |
|        | methods of chilling, freezing and freeze drying; heat and mass transfer                                                                           |                      |
|        | analysis of cooling and freezing.                                                                                                                 |                      |
| 4.     | Cold S torages: Necessity a nd pr esent s tatus i n t he c ountry; s ite                                                                          | 10                   |
|        | selection, bui Iding c onstructional f eatures, I oad calculation,                                                                                |                      |
|        | equipment, selection, safety consideration, insurance and management                                                                              |                      |
|        | of c old s torages; s torage of s ome i mportant f ood pr oducts; m odem                                                                          |                      |
| _      | trends in cold storage practices.                                                                                                                 |                      |
| 5.     | <b>Refrigerated Food H andling:</b> Preparation f or cooling/ f reezing;                                                                          | 08                   |
|        | packaging of foods; modes of transportation l and, s ea and a ir; t heir                                                                          |                      |
|        | thermal, load and equipment; marketing of refrigerated food.                                                                                      |                      |
|        | Total                                                                                                                                             | 42                   |

| S.<br>No. | Author(s) / Title / Publisher                                       | Year of<br>Publication/<br>Reprint |
|-----------|---------------------------------------------------------------------|------------------------------------|
| 1         | StoeckerW.F.,"Refrigeration and Air-conditioning", McGraw Hill      | 2002                               |
| 2.        | Moravek J., "Air Conditioning Systems: Principles, Equipment, and   | 2000                               |
|           | Service", AHRI, , Prentice Hall                                     |                                    |
| 3         | "ASHRAE Handbooks", ASHRAE.                                         | 2013                               |
| 4         | Wang, S. "Handbook of A ir C onditioning a nd Refrigeration", T ata | 2000                               |
|           | McGraw Hill Education                                               |                                    |
| 5.        | Arora, C.P., "Refrigeration and Air conditioning", Tata-McGraw Hill | 2005                               |

| NAME OF DEPTT./CENTRE:                                                   | Mechanical &      | k Industrial E | Ingineering        |        |
|--------------------------------------------------------------------------|-------------------|----------------|--------------------|--------|
| 1. Subject Code: MIN-531                                                 | Course Title:     | Hydrodynai     | nic Machines       |        |
| <ol> <li>Contact Hours:</li> <li>Examination Duration (Hrs.):</li> </ol> | L: 3<br>Theory: 3 | T: 1<br>Pr     | P: 0<br>actical: 0 |        |
| 4. Relative Weightage: CWS: 2                                            | 25 PRS:0          | MTE: 25        | ETE: 50            | PRE: 0 |
| 5. Credits: <b>4</b> 6. 5                                                | Semester: Autumn  | n 7.Sub        | ject Area: PEC     |        |

- 8. Pre-requisite: Nil
- 9. Objective: To expose students to various strategic issues related to Hydrodynamic machine such as Turbines, Pumps etc.

| S.  | Particulars                                                                          | Contact |
|-----|--------------------------------------------------------------------------------------|---------|
| No. |                                                                                      | Hours   |
| 1   | Introduction: Basic f luid m echanics of t urbo-machinery; t he t orque-             | 8       |
|     | momentum and the head- momentum equations; one-dimensional theory and                |         |
|     | its limitations; two- dimensional theory of flow through axial and radial-flow       |         |
|     | machines; three-dimensional effects.                                                 |         |
| 2   | Classification of Hydrodynamic m achines: Classification of turbines and             | 2       |
|     | pumps, various forms of runners.                                                     |         |
| 3   | Impulse T urbines: General t heory of i mpulse m achines; pe rformance               | 8       |
|     | characteristics; de sign of r unner; buc ket s hape a nd s ize; de sign of noz zles; |         |
|     | regulation mechanisms; penstock design.                                              |         |
| 4   | Reaction T urbines: General t heory of reaction machines; p erformance               | 10      |
|     | characteristics; t ypes; F rancis and K aplan t urbines; r unner de sign; bl ade     |         |
|     | design; design of the spiral casing; guide vanes and draft tube design; theory of    |         |
|     | cavitation flows in hydrodynamic runners.                                            |         |
| 5   | Hydrodynamic Pumps: Classification of pumps and various forms of pump                | 8       |
|     | impellers; g eneral t heory of cent rifugal pum ps; pe rformance characteristics;    |         |
|     | design of casings and diffusers; cavitation effects in impellers.                    |         |
| 6   | Hydrodynamic T ransmissions: General f eatures; pr imary and secondary               | 6       |
|     | units of the systems; fluid c ouplings and t orque c onverters; general theory;      |         |
|     | performance characteristics; basic design considerations;                            |         |
|     | Total                                                                                | 42      |

| S.  | Author(s) /Title / Publisher                                             | Year of              |
|-----|--------------------------------------------------------------------------|----------------------|
| No. |                                                                          | <b>Publication</b> / |
|     |                                                                          | Reprint              |
| 1.  | Logan, E., Turbomachinery: Basic theory and applications, CRC Press      | 2009                 |
| 2.  | Gopalakrishnan, G., A Treatise on T urbomachines, S citech P ublication, | 2002                 |
|     | Chennai                                                                  |                      |
| 3   | Dixon, S., L., Fluid mechanics and thermodynamics of turbomachinery,     | 2005                 |
|     | 5th Ed., Elsevier                                                        |                      |
| 4   | Stepanoff, A., J., Centrifugal & Axial Flow pumps: Theory, design and    | 1957                 |
|     | Application, John Wiley                                                  |                      |
| 5.  | Daugherty, R., L., Hydraulic turbines with a chapter on Centrifugal      | 1920                 |
|     | pumps, McGraw-Hill                                                       |                      |
| 6.  | Karassik, I., J., Pump Handbook, 3rd Edition, McGraw-Hill International  | 2001                 |
|     | Edition                                                                  |                      |

| NAME OF DEPTT./CENTRE:          | Departmento   | entof Mechanical & Industrial Engineering |               |        |  |
|---------------------------------|---------------|-------------------------------------------|---------------|--------|--|
| 1. Subject Code: MIN-532        | Course Title: | Renewable E                               | nergy Systems |        |  |
| 2. Contact Hours:               | L: 3          | T: 1                                      | P: 0          |        |  |
| 3. Examination Duration (Hrs.): | Theory: 3     | Pra                                       | ctical: 0     |        |  |
| 4. Relative Weightage: CWS: 25  | 5 PRS: 0      | MTE: 25                                   | ETE: 50       | PRE: 0 |  |
| 5. Credits: 4 6. S              | emester: Both | 7.Subject A                               | area: RASE    |        |  |

8. Pre-requisite: Nil

9. Objective: This c ourse w ill provide an ex posure r egarding R enewable E nergy Systems towards sustainable development of the society.

| S.  | Particulars                                                                            | Contact |
|-----|----------------------------------------------------------------------------------------|---------|
| No. |                                                                                        | Hours   |
| 1   | Introduction: Energy and development, energy demand and availability, energy crisis,   | 6       |
|     | conventional a nd non -conventional sources, r enewable a nd non-renewable en ergy     |         |
|     | resources, environmental impact of conventional energy usage, basic concepts of heat   |         |
|     | and fluid flow useful for energy systems.                                              |         |
| 2   | Solar E nergySystems: Solar r adiations da ta, solar energy collection, storage and    | 7       |
|     | utilization, solar w ater he ating, solar air h eating, solar power ge neration, solar |         |
|     | refrigeration and air conditioning, solar energy system economics.                     |         |
| 3   | Micro And Small Hydro Energy Systems: Resource as sessment of micro and small          | 6       |
|     | hydro power, micro, mini and small hydro power systems, economics, pump as turbine,    |         |
|     | special engines for low heads, velocity head turbines, hydrams, water mills.           |         |
| 4   | Biomass Energy Systems: Availability of biomass- agro, forest, animal, municipal and   | 6       |
|     | other residues; Bioconversion technologies; cooking fuels, biogas, producer gas, power |         |
|     | alcohol from biomass; Power generation, internal engine modifications and performance, |         |
|     | system economics.                                                                      |         |
| 5   | Wind Energy Systems: Wind data, horizontal and vertical axis wind mills, wind farms,   | 6       |
|     | performance and economics of wind energy.                                              |         |
|     |                                                                                        | 1       |

| 6 | Geothermal Energy Systems: Vapor dom inated, liquid dom inated and pe trothermal     | 3  |
|---|--------------------------------------------------------------------------------------|----|
|   | systems; Hybrid systems.                                                             |    |
| 7 | <b>Energy from t he O ceans:</b> OTEC s ystems, open and closed types; W ave ene rgy | 4  |
|   | conversion systems; Tidal energy conversion systems.                                 |    |
| 8 | Integrated E nergy Systems: Concept of i ntegration of c onventional a nd non -      | 4  |
|   | conventional en ergy resources and systems; i ntegrated energy s ystem de sign and   |    |
|   | economics.                                                                           |    |
|   | Total                                                                                | 42 |

| S.<br>No. | Author(s) /Title / Publisher                                                                                     | Year of<br>Publication/<br>Reprint |
|-----------|------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1         | Duffie, J.A. a nd B eckman, W.A., "Solar Engineering of T hermal Processes", John Wiley.                         | 2006                               |
| 2         | Bungay, H.R., "Energy, the Biomass Option", John Wiley.                                                          | 1981                               |
| 3         | Fowler, K.M., "Energy & Environment", McGraw Hill.                                                               | 1984                               |
| 4         | Sukhatme, S. P. a nd N ayak, J. K., "Solar Energy: pr inciples of t hermal collection and storage", McGraw Hill. | 2009                               |
| 5         | Boyle, G., "Renewable Energy – Power for a Sustainable Future", 2 <sup>nd</sup> Ed., Oxford University Press.    | 2010                               |

| NAME OF DEPTT./CENTRE:          | Department of Mechanical & Industrial Engineering |              |                  |                     |
|---------------------------------|---------------------------------------------------|--------------|------------------|---------------------|
| 1. Subject Code: MIN-533        | Course Title:                                     | Refrigeratio | on & Air-conditi | oning System Design |
| 2. Contact Hours:               | L: 3                                              | T: 1         | P: 0             |                     |
| 3. Examination Duration (Hrs.): | Theory: 3                                         | P            | ractical: 0      |                     |
| 4. Relative Weightage: CWS: 25  | PRS: 0                                            | MTE: 25      | ETE: 50          | PRE: 0              |
| 5. Credits: 4 6. Ser            | mester: Autumr                                    | n/Spring     | 7.Subject Area   | : DEC/DHC           |
| 8. Pre-requisite: Nil           |                                                   |              |                  |                     |

9. Objective: To introduce the students the basic design principles of refrigeration and Air conditioning equipment and component such as evaporators, condensers, capillary tubes, expansion valves, etc.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                         | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1      | <b>Load C alculations:</b> Solar heat gains through structures; review of refrigeration and air conditioning load calculations.                                                                                                                                                                                                                                                                  | 3                    |
| 2      | <b>Refrigeration S ystems:</b> Vapour compression; multiple evaporator<br>and compound compression system with and without inter cooling;<br>dual compressors; cascade systems; Vapour absorption system-<br>analysis.<br>Solid carbon dioxide; principle of production; three stage system with<br>water and flash inter-cooler; pressure snow chambers; regenerative<br>liquid; binary system. | 6                    |
| 3      | <b>Compressors:</b> Performance characteristics and capacity control of reciprocating, rotary and centrifugal compressors; screw compressors; hermetically sealed units; analysis of centrifugal compressors. Compressor Design.                                                                                                                                                                 | 5                    |
| 4      | <b>Condensers:</b> Water —cooled and air-cooled condensers; overall heat transfer coefficients; fouling factor; performance characteristics and design; performance and heat transfer processes in evaporative condenser.                                                                                                                                                                        | 5                    |
| 5      | <b>Evaporators:</b> Flooded and dry expansion type evaporators, liquid chiller, overall performance of evaporators and design of evaporators.                                                                                                                                                                                                                                                    | 4                    |
| 6      | <b>Expansion Devises:</b> Capillary tubes; system design factors; pressure and temperature distribution; ASHRAE simplified calculation                                                                                                                                                                                                                                                           | 4                    |

|    | procedure.<br>Expansion valves; operation and performance calculation of<br>thermostatic expansion valve; application of constant pressure<br>expansion valve. |    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7  | <b>Thermal Comfort:</b> Human thermoregulation; energy balance; thermal exchange with environment                                                              | 3  |
| 8  | <b>Indoor E nvironmental H ealth an d A ir C ontaminants:</b> Airborne contaminants: particles, gaseous contaminants, outdoor air ventilation and health;      | 5  |
| 9  | <b>Pressure Drop and Heat Transfer:</b> Two phase flow; flow regimes; maps; pressure drop in evaporator and condensers; Martinelli relation                    | 4  |
| 10 | Applications an d Sys tem D esign: Ice manufacture; Design of refrigerated ware houses. datacentre and clean room.                                             | 3  |
|    | Total                                                                                                                                                          | 42 |

| S.<br>No. | Author(s) / Title / Publisher                                       | Year of<br>Publication/<br>Reprint |
|-----------|---------------------------------------------------------------------|------------------------------------|
| 1         | StoeckerW.F.,"Refrigeration and Air-conditioning", McGraw Hill      | 2002                               |
| 2.        | Moravek J., "Air Conditioning Systems: Principles, Equipment, and   | 2000                               |
|           | Service", AHRI, , Prentice Hall                                     |                                    |
| 3         | "ASHRAE Handbooks", ASHRAE.                                         | 2013                               |
| 4         | Wang, S."Handbook of Air Conditioning and Refrigeration",           | 2000                               |
|           | TataMcGraw Hill Education                                           |                                    |
| 5.        | Arora, C.P., "Refrigeration and Air conditioning", Tata-McGraw Hill | 2005                               |

| NAME OF DEPTT./CENTE       | RE: Department     | Department of Mechanical & Industrial Engineering |                           |         |  |
|----------------------------|--------------------|---------------------------------------------------|---------------------------|---------|--|
| 1. Subject Code: MIN-534   | Course Title:      | Air-conditioning and Ventilation                  |                           | ion     |  |
| 2. Contact Hours:          | L: 3               | T: 1                                              | P: 0                      |         |  |
| 3. Examination Duration (H | rs.): Theory: 3    | Practical: 0                                      |                           |         |  |
| 4. Relative Weightage: CW  | VS: 25 PRS: 0      | MTE: 25                                           | ETE: 50                   | PRE: 0  |  |
| 5. Credits: 4              | 6. Semester: Autum | n/Spring                                          | 7.Subject Area <b>: I</b> | DEC/DHC |  |

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the students the basic physiological principles, comfort charts, air conditioning systems and the design of piping and ducts.
- 10. Details of Course:

| S. No. | Contents                                                                  | <b>Contact Hours</b> |
|--------|---------------------------------------------------------------------------|----------------------|
| 1      | <b>Psychrometery:</b> moist air properties; mass transfer and evaporation | 6                    |
|        | of water into moist air; theory of psychrometer; correlation of w.b.t.    |                      |
|        | with temperature of adiabatic saturation; Lewis number; construction      |                      |
|        | of psychrometric chart.                                                   |                      |
| 2      | Physiological P rinciples: Comfort; thermal interchanges with             | 4                    |
|        | environment; physiological body regulatory processes against heat or      |                      |
|        | cold ; high and low temperature hazards; extreme environmental            |                      |
|        | conditions; heat stress index; ASHRAE comfort standards.                  |                      |
| 3      | Simultaneous H eat an d M ass T ransfer: Direct contact transfer          | 6                    |
|        | equipment; simple air washer and indirect evaporative cooling contact     |                      |
|        | mixture principle; enthalpy potential; basic equation for direct contact  |                      |
|        | transfer equipment; graphical and analytical methods for heat and         |                      |
|        | mass transfer analysis of air washers with heated and chilled water       |                      |
|        | sprays; cooling towers.                                                   |                      |
| 4      | Extended S urface H eat T ransfer A pparatus: Cooling and                 | 8                    |
|        | Dehumidifying coils, Design of finned surfaces, Adsorption cooling        |                      |
|        | systems.                                                                  |                      |
| 5      | Ventilation: Necessity; ventilation standards; natural and mechanical     | 6                    |
|        | ventilation; forces for natural ventilation; general ventilation rules;   |                      |
|        | advantages of mechanical ventilation; various methods; ejector            |                      |
|        | systems ; determining ventilation requirement; use of decay equation.     |                      |
| 6      | Air C leaning: Physical and chemical vitiation of air; permissible        | 4                    |
|        | concentration of air contaminants; mechanical and electronic air          |                      |

|   | cleaners; dry and wet filters; air sterilization; odour control.       |    |
|---|------------------------------------------------------------------------|----|
| 7 | Steam H eating Systems: Elements of steam, water and warm-air          | 4  |
|   | heating systems; radiators and convectors. Design of an year-round air |    |
|   | conditioning system.                                                   |    |
| 8 | Piping and Ducts: Pressure drops in piping and fittings; design of     | 4  |
|   | water and refrigerant piping; Air conditioning duct design methods.    |    |
|   | Total                                                                  | 42 |

| S.<br>No. | Author(s) / Title / Publisher                                       | Year of<br>Publication/<br>Reprint |
|-----------|---------------------------------------------------------------------|------------------------------------|
| 1         | Stoecker, W.F., and Jones, J.W., "Elementary Refrigeration & Air    | 2002                               |
|           | conditioning", McGraw Hill                                          |                                    |
| 2         | Dosset, R.J., Principles of Refrigeration, Pearson Education Asia   | 2002                               |
| 3         | Arora, C.P., "Refrigeration and Air conditioning", Tata-McGraw Hill | 2005                               |
| 4         | Prasad, M., "Refrigeration and Air conditioning", New Age           | 2005                               |
|           | International                                                       |                                    |
| 5         | ASHRAE Handbook (Fundamentals)                                      | 2013                               |

| NAME OF DEPTT./CENTRE          | : Mechanical        | Iechanical & Industrial Engineering |                |        |
|--------------------------------|---------------------|-------------------------------------|----------------|--------|
| 1. Subject Code: MIN-535       | Course Title:       | Cryogenic Syst                      | tems           |        |
| 2. Contact Hours:              | L: 3                | T: 1                                | P: 0           |        |
| 3. Examination Duration (Hrs.) | ): Theory: 3        | Prac                                | tical: 0       |        |
| 4. Relative Weightage: CWS     | : 25 PRS: 0         | MTE: 25                             | ETE: 50        | PRE: 0 |
| 5. Credits: 4                  | 6. Semester: Spring | 7. Subje                            | ct Area: DEC/D | HC     |

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the student to the field of low temperature engineering (*cryogenics*) which has a pplications in rocket propulsion, e lectronics, biological and medical science, food preservation, mechanical design and etc.

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1      | Introduction: Introduction, H istorical ba ckground, P resent a rea    | 4                    |
|        | involving cryogenics                                                   |                      |
| 2      | Low T emperature Properties of E ngineering Materials:                 | 4                    |
|        | Mechanical pr operties, Thermal pr operties, Electrical and Magnetic   |                      |
|        | Properties, Properties of cryogenic fluids                             |                      |
| 3      | Gas-Liquefaction Sys tem: Joule-Thomson ef fect, Adiabatic             | 6                    |
|        | expansion, S imple Linde-Hampson s ystem, P recooled Linde-            |                      |
|        | Hampson s ystem, Linde dua l-pressure s ystem, Cascade s ystem,        |                      |
|        | Claude system, Kapitza system, Collins helium liquefaction system,     |                      |
| 4      | Critical C omponents of L iquefaction Sy stem: Effect of he at         | 6                    |
|        | exchanger effectiveness on system performance, Effect of compressor    |                      |
|        | and expander efficiency on s ystem pe rformance, Effect of h eat       | 1                    |
|        | transfer to the system                                                 | 1                    |
| 5      | Cryogenic Refrigeration System: Philips refrigerator, Importance of    | 6                    |
|        | regenerator e ffectiveness for P hilips re frigerator, Gifford-McMohan | 1                    |
|        | refrigerator                                                           |                      |
| 6      | Measurement S ystems f or L ow T emperatures: Temperature              | 4                    |
|        | measurement, Flow rate measurement, Liquid level measurement.          |                      |
|        |                                                                        |                      |

| 7 | Cryogenic S torage and t ransfer S ystems: Cryogenic fluid s torage                                                                                                                                                                                                                                                                           | 4  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | vessels, insulations, cryogenic transfer systems                                                                                                                                                                                                                                                                                              |    |
| 8 | <b>Vacuum T echnology:</b> Importance of V acuum t echnology in cryogenics, F low r egimes i n va cuum s ystems, C onductance i n vacuum s ystems, C alculation of pum p-down t ime f or a v acuum systems, C omponents o f a va cuum s ystems, Mechanical va cuum pumps, Diffusion pumps, Ion pumps, Cryopumping. V acuum gauges and valves. | 8  |
|   | Total                                                                                                                                                                                                                                                                                                                                         | 42 |

| S.<br>No. | Author(s) / Title / Publisher                                    | Year of<br>Publication/<br>Reprint |
|-----------|------------------------------------------------------------------|------------------------------------|
| 1.        | Barron R.F.,"Cryogenic Systems", Oxford University Press         | 1985                               |
| 2.        | Timmerhaus K.D. and Flunn T M,"Cryogenic Process Engineering",   | 1989                               |
|           | Plenum Press                                                     |                                    |
| 3.        | Fundamentals of Cryogenic Engineering, PHI                       | 2010                               |
| 4.        | Cryogenic Heat Transfer, Taylor & Francis Ltd                    | 1999                               |
| 5.        | Cryogenic Mixed Refrigerant Processes, Springer-Verlag New York  | 2008                               |
|           | Inc.                                                             |                                    |
| 6.        | Kays, W.M., and London, A.L., "Compact Heat Exchangers", Krieger | 1998                               |
|           | Publishing Company.                                              |                                    |

| E OF DEPTT. /CENTH   | RE:                                                                                                                                    | Mechani                                                                                                                                                                             | cal & Indus                                                                                                                                                                                                     | strial Engineering                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subject Code: MIN-   | 536 Cours                                                                                                                              | se Title: Con                                                                                                                                                                       | vective Hea                                                                                                                                                                                                     | t & Mass Transfer                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                |
| Contact Hours:       |                                                                                                                                        | L: 3                                                                                                                                                                                | <b>T:</b> 1                                                                                                                                                                                                     | P: 0                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                |
| Examination Duration | n (Hrs.):                                                                                                                              | Theory: 3                                                                                                                                                                           |                                                                                                                                                                                                                 | Practical: 0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |
| Relative Weightage:  | CWS: 25                                                                                                                                | PRS: 0                                                                                                                                                                              | MTE: 25                                                                                                                                                                                                         | ETE: 50                                                                                                                                                                                                                        | PRE: 0                                                                                                                                                                                                                                                                                         |
| Credits: 4           | 6. Semester:                                                                                                                           | Both                                                                                                                                                                                | 7. Subj                                                                                                                                                                                                         | ect Area: RASE                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                |
|                      | E OF DEPTT. /CENTH<br>Subject Code: <b>MIN</b> -<br>Contact Hours:<br>Examination Duration<br>Relative Weightage:<br>Credits: <b>4</b> | E OF DEPTT. /CENTRE:<br>Subject Code: <b>MIN-536</b> Cour<br>Contact Hours:<br>Examination Duration (Hrs.):<br>Relative Weightage: <b>CWS: 25</b><br>Credits: <b>4</b> 6. Semester: | E OF DEPTT. /CENTRE: Mechanic<br>Subject Code: MIN-536 Course Title: Con<br>Contact Hours: L: 3<br>Examination Duration (Hrs.): Theory: 3<br>Relative Weightage: CWS: 25 PRS: 0<br>Credits: 4 6. Semester: Both | E OF DEPTT. /CENTRE:Mechanical & IndustrySubject Code:MIN-536Course Title:Convective HearContact Hours:L: 3T: 1Examination Duration (Hrs.):Theory: 3Relative Weightage:CWS: 25PRS: 0MTE: 25Credits:46. Semester:Both7. Subject | E OF DEPTT. /CENTRE:Mechanical & Industrial EngineeringSubject Code:MIN-536Course Title:Convective Heat & Mass TransferContact Hours:L: 3T: 1P: 0Examination Duration (Hrs.):Theory: 3Practical: 0Relative Weightage:CWS: 25PRS: 0MTE: 25ETE: 50Credits: 46. Semester:Both7. Subject Area:RASE |

8. Pre-requisite: Nil

- 9. Objective: The course discusses exclusively the various aspects of the convective heat and mass transfer.
- 10. Details of Course:

| S.<br>No. | Particulars                                                                                                                                                                            | Contact<br>Hours |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.        | <b>Introduction</b> : Concepts and Conservation Principles & Laws, Differential formulations of the basic laws: Equations of continuity, Equation of momentum, energy, mass & Entropy. | 9                |
| 2.        | Approximate Solutions: Integral Equation, Laminar Boundary Layers,<br>Laminar Heat Transfer in Ducts                                                                                   | 8                |
| 3.        | Natural/Free convection: Internal & External Flow, Dimensional Analysis<br>& Similarity Principles                                                                                     | 8                |
| 4.        | Turbulence fundamentals & Turbulence Boundary layer flow                                                                                                                               | 5                |
| 6.        | Boiling & Condensation                                                                                                                                                                 | 4                |
| 7.        | Convective Mass Transfer & Molecular Diffusion                                                                                                                                         | 4                |
| 8.        | Simultaneous Heat & Mass Transfer                                                                                                                                                      | 4                |
|           | Total                                                                                                                                                                                  | 42               |

| S.No. | Name of Books / Authors / Publisher                                                                    | Year of<br>Publication |
|-------|--------------------------------------------------------------------------------------------------------|------------------------|
| 1.    | Kays, W. M., Crawford, M. E., and Weigand, B. "Convective H eat and M ass Transfer", Tata McGraw Hill. | 2005                   |
| 2.    | Latif M Jiji, "Heat Convection", 2 <sup>nd</sup> Edn,, Springer                                        | 2009                   |
| 3.    | Bejan, A, Convection Heat Transfer, 3 <sup>rd</sup> Edn, John Wiley & Son Inc                          | 2004                   |
| 4.    | Kakac, S and Yener, Y, Convective Heat Transfer, 2 <sup>nd</sup> Edn, CRCPress                         | 1995                   |
| 4.    | Burmeister L.C., "Convection Heat Transfer", John Wiley & Son Inc.                                     | 1993                   |
| 5.    | Arpaci, V. S., and Larsen, P. S., "Convection Heat Transfer", Prentice Hall, Inc.                      | 1984                   |

| NAME OF DEPTT. /CENTRE: |                              | Mechanical & Indu             | Mechanical & Industrial Engineering |  |  |  |
|-------------------------|------------------------------|-------------------------------|-------------------------------------|--|--|--|
| 1.                      | Subject Code: MIN-537        | Course Title: I.C. Engines    |                                     |  |  |  |
| 2.                      | Contact Hours: L: 3          | T: 1                          | P: 0                                |  |  |  |
| 3.                      | Examination Duration (Hrs.): | Theory: 3                     | Practical: 0                        |  |  |  |
| 4.                      | Relative Weightage: CWS: 25  | PRS: 0 MTE: 25                | ETE: 50 PRE: 0                      |  |  |  |
| 5.                      | Credits: 4                   | Semester: <b>Both</b> 7. Subj | ect Area: <b>DEC/ DHC</b>           |  |  |  |
| 8.                      | Pre-requisite: Undergraduate | e level course on Engineerin  | g Thermodynamics                    |  |  |  |

9. Objective: The course is advanced level course of IC Engines and deals with the analysis of engine processes

| S.  | Particulars                                                                                                                                                              | Contact |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
| No. |                                                                                                                                                                          | Hours   |  |  |  |  |
| 1   | Introduction: Introduction and Historical Perspective.                                                                                                                   | 2       |  |  |  |  |
| 2   | Thermodynamic an alysis of I C Engines C ycle: Properties of w orking f luid,                                                                                            | 7       |  |  |  |  |
|     | thermodynamic charts, and unburned mixture charts burned mixture and, fuel air cycle                                                                                     |         |  |  |  |  |
|     | analysis, Real cycles, availability analysis of engine processes.                                                                                                        |         |  |  |  |  |
| 3   | <b>Gas E xchange Processes:</b> Inlet a nd exhaust pr ocesses i n t he f our s troke cycle, volumetric efficiency quasi-static and dynamic effects, flow through valves. | 11      |  |  |  |  |
|     | Scavenging in the two- stroke cycle engines scavenging parameters and models, actual                                                                                     |         |  |  |  |  |
|     | scavenging pr ocesses, f low t hrough por ts. S upercharging a nd t urbocharging, ba sic                                                                                 |         |  |  |  |  |
|     | relationships, c ompressors, t urbines c haracteristics, m atching of c ompressor, t urbines                                                                             |         |  |  |  |  |
|     | and engine characteristics.                                                                                                                                              |         |  |  |  |  |
| 4   | Combustion in SI Engines: Essential features of the process, thermodynamic analysis                                                                                      | 6       |  |  |  |  |
|     | of S I e ngine c ombustion, c ombustion pr ocess characterization, c yclic va riations i n                                                                               |         |  |  |  |  |
|     | combustion.                                                                                                                                                              |         |  |  |  |  |
| 5   | Combustion in Compression: Ignition Engines: Essential features of process, types of                                                                                     | 8       |  |  |  |  |
|     | diesel combustion systems, phe nomenological model of compression- ignition engine                                                                                       |         |  |  |  |  |
|     | combustion. F uel s pray be haviour, s pray s tructure, a tomization, s pray pe netration                                                                                |         |  |  |  |  |
|     | droplet size distribution, spray evaporation, ignition delay.                                                                                                            |         |  |  |  |  |

| 6 | <b>Pollutant Formation and Control:</b> Nature and extant of problem, Nitrogen Oxides.     | 8  |
|---|--------------------------------------------------------------------------------------------|----|
|   | Kinetics of NO formation, $NO_x$ formation in spark- ignition engines, $NO_x$ formation in |    |
|   | CI engines. Carbon monoxide, Unburned hydrocarbon emissions. Particulate emissions         |    |
|   | exhaust gas treatment, catalytic converters, three way catalysts, particulate traps.       |    |
|   | Total                                                                                      | 42 |

| S.  | Name of Books / Authors / Publisher                                             | Year of     |
|-----|---------------------------------------------------------------------------------|-------------|
| No. |                                                                                 | Publication |
| 1   | Heywood J.B., "Internal Combustion Engine Fundamentals", McGraw Hill            | 1988        |
| 2.  | Stiesch, G., "Modeling Engine Spray and Combustion Processes", Springer-Verlag. | 2003        |
| 3   | Ferguson C.R.,"Internal Combustion Engines", John Wiley                         | 2000        |
| 4   | Oppenheim, A.K., "Combustion in Piston Engines" Springer                        | 2004        |
| 5.  | Pundir, B.P., "I C Engines Combustion and Emissions" Narosa                     | 2010        |

| NAME OF DEPTT. /CENTRE: |                  | Mech          | anical                                                     | & Indu | strial En | gineer     | ng    |        |
|-------------------------|------------------|---------------|------------------------------------------------------------|--------|-----------|------------|-------|--------|
| 1.                      | Subject Code:    | MIN-538       | Course Title: <u>I.C. Engine Combustion Pr</u><br>Modeling |        |           | Processes  |       |        |
| 2.                      | Contact Hours:   |               | L: 3                                                       |        | T: 1      | P:         | 0     |        |
| 3.                      | Examination Dur  | ation (Hrs.): | Theor                                                      | ·y: 3  | ł         | Practical: | 0     |        |
| 4.                      | Relative Weighta | ge: CWS: 25   | PRS: 0                                                     | MT     | E: 25     | ETE:       | 50    | PRE: 0 |
| 5.                      | Credits: 4       | 6.            | Semester:                                                  | Both   | 7. Subje  | ect Area:  | DEC/E | ЭНС    |

- 8. Pre-requisite: Course on I.C. Engines at U.G. level / MI 537
- 9. Objective: The course is intended to expose the students to the most widely used mathematical models for in-cylinder spray and combustion processes. These processes are most important for fuel economy and pollutant emissions.
- 10. Details of Course:

| S.  | Particulars                                                                                                                                                                                                               | Contact |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No. |                                                                                                                                                                                                                           | Hours   |
| 1.  | Essential features of combustion process in S.I. and C.I. engines, Flame structure and speed, spray structure, auto ignition                                                                                              | 4       |
| 2.  | Engine Combustion Modeling – An overview                                                                                                                                                                                  | 2       |
| 3.  | Modeling Fluid Motions in Engines, intake jet flow, swirl generation during induction squish, prechamber flows, crevice flow and blow by                                                                                  | 6       |
| 4.  | Modeling Flame Propagation and Heat Release in Engines, laminar burning speed,<br>flame propagation relations, heat release in diesel engines, zero dimension burning<br>rate function free gas jet theory, packet models | 8       |
| 5.  | Knock, fundamentals, kinetic modeling of hydrocarbon combustion, autoignition, knock models                                                                                                                               | 6       |
| 6.  | Modeling Spray, spray equation, droplet kinematics, spray atomization, droplet breakup droplet/droplet and spray wall interactions, fuel vaporization                                                                     | 8       |
| 7.  | Modeling pollutant formation in SI and CI engines, Models for NOx, CO and soot formation                                                                                                                                  | 8       |
|     | Total                                                                                                                                                                                                                     | 42      |

| S. No. | Name of Books / Authors / Publisher                                                                                                                                           | Year of<br>Publication |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1.     | Wood, H., "Internal Combustion Engine Fundamentals", McGraw Hill Inc.                                                                                                         | 1988                   |
| 2.     | Stiesch, G., "Modeling Engine Spray and Combustion Processes", Springer-Verlag.                                                                                               | 2003                   |
| 3.     | Merker, G. P, "Simulating Combustion," Springer                                                                                                                               | 2006                   |
| 4.     | Sirignano, W. A., "Fluid Dynamics and Transport of Droplets & Sprays",<br>Cambridge University Press                                                                          | 2000                   |
| 5.     | Warnatz, J., Mass, U., and Dirbble, R. W., "Combustion: Physical and Chemical<br>Fundamentals, Modeling and simulation, Experiments, Pollutant Formation",<br>Springer-Verlag | 2001                   |

## NAME OF DEPTT. /CENTRE: Mechanical & Industrial Engineering

### 1. Subject Code: MIN-539 Course Title: Micro & Nano Scale Thermal Engineering

| 2. | Contact Hours:    | L: 3         |           | <b>T:1</b> | P: 0         |                     |
|----|-------------------|--------------|-----------|------------|--------------|---------------------|
| 3. | Examination Dura  | tion (Hrs.): | Theo      | ry: 3      | Practical: 0 |                     |
| 4. | Relative Weightag | ge: CWS: 25  | PRS: 0    | MTE: 25    | ETE: 50      | PRE: 0              |
| 5. | Credits: 4        | 6.           | Semester: | Spring     | 7. Subje     | ct Area: <b>PEC</b> |

#### 8. Pre-requisite: Course on Fluid Mechanics, Heat & Mass Transfer

- 9. Objective: To provide understanding of heat transfer and fluid flow at the micro-and nano-scale.
- 10. Details of Course:

| S. No. | Particulars                                                                                                                                                                                                                                                                                              | Contact<br>Hours |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.     | <b>Introduction:</b> Basic statistical thermodynamics, quantum theory, and kinetic theory, Photon and electron transport processes.                                                                                                                                                                      | 5                |
| 3.     | <b>Thermal characteristics</b> : Thermal properties at the nano scale –heat capacity & thermal conductivity, Thermoelectricity and applications.                                                                                                                                                         | 5                |
| 4.     | <b>Microfluidics</b> : Intermolecular forces, states of matter, liquid and gas flows, continuum assumption, governing equations, Constitutive relations, slip theory, surface tension and interfacial energy, Young-Laplace equation, wetting and contact angles, capillary flows, Electrokinetic flows. | 8                |
| 5.     | <b>Convection heat transfer</b> : Fundamentals, Laminar convection –Internal flow, Boiling and condensation, Single-phase heat transfer in micro channels, Two-phase flow heat transfer in micro channels continued.                                                                                     | 6                |
| 6.     | <b>Radiation heat transfer</b> : Fundamentals of thermal radiation, Radiative properties of nano materials, Nano photonics and applications.                                                                                                                                                             | 6                |
| 7.     | Sensors: Microscale thermal sensors and actuators, Nanofluids, Micro fluidic component: micro pump, micro valve, micro flow sensor, micro mixture                                                                                                                                                        | 8                |
| 8.     | <b>Micro Fabrications</b> : Micro fabrication techniques, Photolithography, Etching, Oxidation, spin coating, micro molding, polymer micro fabrication                                                                                                                                                   | 4                |
|        | Total                                                                                                                                                                                                                                                                                                    | 42               |

| S. No. | Author(s) / Title / Publisher                                                                                                               |      |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| 1.     | Zhuomin, M.Z., "Nano/Microscale Heat Transfer", McGraw Hill.                                                                                | 2007 |  |  |  |
| 2.     | Nguyen, N.T., Werely, S.T., "Fundamental & application of micro fluidics", Artech House Inc.                                                | 2002 |  |  |  |
| 3.     | Brian Kirby, "Micro- and Nano scale Fluid Mechanics: Transport in Micro fluidic Devices ", Cambridge University Press.                      | 2010 |  |  |  |
| 4.     | Zhuomin, Z., "Microscale Energy Transport", MacGraw hill co.                                                                                | 2007 |  |  |  |
| 5.     | Tien, C.L., Majumdar, A., and Gerner, F.M., "Microscale Energy Transport",Taylor& Francis.                                                  | 2003 |  |  |  |
| 6.     | Celata, G.P., "Heat Transfer and Transport Phenomena in Microscale", Begell House.                                                          | 2004 |  |  |  |
| 7.     | Kakac, S., Vasiliev, L.L., B ayazitoglu, Y ., Y ener, Y ., "Microscale H eat T ransfer:<br>Fundamentals and Applications", Springer-Verlag. | 2005 |  |  |  |
| 8.     | Madou, M.J.," Fundamental of Micro fabrication", CRC press.                                                                                 | 2005 |  |  |  |

| NAM | E OF DEPTT. /CENTRE:                         | Mecha        | anical & Ind | lustrial Enginee | ring   |
|-----|----------------------------------------------|--------------|--------------|------------------|--------|
| 1.  | Subject Code:MIN-540Course Title: Combustion |              |              |                  |        |
| 2.  | Contact Hours:                               | L: 3         | <b>T:</b> 1  | P: 0             |        |
| 3.  | Examination Duration (Hrs.):                 | Theor        | y: 3         | Practical: 0     |        |
| 4.  | Relative Weightage: CWS: 25                  | 5 PRS: 0     | MTE: 25      | ETE: 50          | PRE: 0 |
| 5.  | Credits: 4                                   | 6. Semester: | Both 7. Su   | bject Area: DEC  | /DHC   |
| 8.  | Pre-requisite: Nil                           |              |              |                  |        |

9. Objective: To expose students to the basic principles involved in the combustion phenomenon and to enhance their understanding of various practical combustion systems and problems.

| S  | Particulars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No | I al uculai 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hours   |
| 1  | <b>Introduction:</b> Importance of combustion, combustion equipment hostile fire problems, pollution problems arising from combustion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2       |
| 2  | <b>Thermodynamics of Combustion:</b> Enthalpy of formation, enthalpy of reaction, heating values, f irst a nd s econd l aw a nalysis of r eacting s ystems, c hemical e quilibrium, equilibrium composition, adiabatic and equilibrium flame temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6       |
| 3  | <b>Kinetics of C ombustion:</b> Law of m ass act ion, reaction rate, simple and complex reactions, r eaction or der a nd m olecularity, Arhenius Law, activation e nergy, C hain reaction s teady s tate and pa rtial e quilibrium a pproximations. C hain e xplosion, Explosion limits and ox idation c haracteristics of hydrogen, c arbon monoxide a nd hydrocarbons.                                                                                                                                                                                                                                                                                                                                          | 8       |
| 4  | <b>Flames: Premixed Flames:</b> structure and propagation of flames in homogeneous gas mixtures; simplified Rankine Hugoniot relations; properties of hugoniot curve; analysis of deflagration and detonation branches, properties of Chapman Jouguet wave. Laminar flame s tructure; theories of flame propagation and c alculation of flame s peeds, flame speed measurements. Stability limits of la minar f lames; flammability limits a nd quenching di stance; bu mer de sign. M echanisms of flame s tabilization i n laminar a nd turbulent f lows; f lame que nching. D iffusion f lames; c omparison of d iffusion w ith premixed flame. Combustion of gaseous fuel jets Burke and shumann development. | 12      |

| 5  | Burning of C ondensed P hase: General m ass b urning considerations, c ombustion of                | 6  |
|----|----------------------------------------------------------------------------------------------------|----|
|    | fuel droplet in a quiescent and convective environment. Introduction to combustion of              |    |
|    | fuel sprays.                                                                                       |    |
| 6  | <b>Ignition:</b> Concepts of i gnition, c hain i gnition, t hermal s pontaneous i gnition, f orced | 4  |
|    | ignition.                                                                                          |    |
| 7. | Combustion G enerated P ollution & its Control: Introduction, ni trogen ox ides                    | 4  |
|    | thermal f ixation of a tmospheric ni trogen pr ompt N O, t hermal N $O_x$ formation a nd           |    |
|    | control in combustors Fuel $NO_x$ and control, p ost —combustion destruction of $NO_x$ ,           |    |
|    | Nitrogen di oxide c arbon m onoxide oxi dation — quenching, h ydro carbons, s ulphur               |    |
|    | oxides                                                                                             |    |
|    | Total                                                                                              | 42 |

| S.  | Name of Books / Authors / Publisher                                                 | Year of     |
|-----|-------------------------------------------------------------------------------------|-------------|
| No. |                                                                                     | Publication |
| 1.  | Glassman, I,"Combustion", 4 <sup>th</sup> edition Academic Press                    | 2008        |
| 2.  | Turns, S. R., "An Introduction t o C ombustion, c oncepts a nd a pplications," 3r d | 2011        |
|     | edition, McGraw Hill                                                                |             |
| 3   | Kuo, K. K., "Principles of Combustion," 2nd edition, John Wiley                     | 2008        |
|     |                                                                                     |             |
| 4   | Law, C.K., "Combustion Physics," Cambridge University Press                         | 2006        |
| 5.  | Williams F.A.,"Combustion Theory", Addison Wesley                                   | 1993        |

| NAME OF DEPTT. /CENTRE: |                      |              | Mechan   | ical & Indust    | rial Engineering |        |
|-------------------------|----------------------|--------------|----------|------------------|------------------|--------|
| 1.                      | Subject Code: M      | IN-541       | Course T | Title: Bio – flu | id Mechanics     |        |
| 2.                      | Contact Hours:       |              | L: 3     | <b>T:</b> 1      | P: 0             |        |
| 3.                      | Examination Duration | on (Hrs.):   | Theory:  | 3                | Practical: 0     |        |
| 4.                      | Relative Weightage:  | CWS: 25      | PRS: 0   | MTE: 25          | ETE: 50          | PRE: 0 |
| 5.                      | Credits: 4           | 6. Semester: | Spring   | 7. S             | ubject Area: PEC | 1<br>, |

#### 8. Pre-requisite: Fluid Mechanics

- 9. Objective: To provide an understanding fluid dynamical phenomena in biological systems in general, and human physiological system (such as cardio-vascular, pulmonary, ocular, renal and musculo-skeletal) in particular.
- 10. Details of Course:

| S. No. | o. Particulars                                                                                                                                                                                                                                    |    |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| 1.     | Introduction: Overview of basic anatomy and physiology from fluid flow perspective.                                                                                                                                                               | 4  |  |  |
| 2.     | <b>Review of basic equations and constitutive models</b> : mass and momentum conservation, models for non-Newtonian fluids.                                                                                                                       | 4  |  |  |
| 3.     | <b>Blood rheology and mechanics of circulation:</b> composition, structure and flow properties of blood, structure, flow and pressure characteristics of the blood flow in cardio-vascular system, flow of non-Newtonian fluids in elastic tubes. | 7  |  |  |
| 4.     | Arterial wave propagation: oscillatory and pulsatile flow, pulse waves, behaviour at bifurcations, wave propagation in flexible tubes.                                                                                                            | 7  |  |  |
| 5.     | <b>Flow through the pulmonary system:</b> structure and function of pulmonary system, fluid exchange processes, fluid mechanics of breathing.                                                                                                     | 5  |  |  |
| 6.     | Flow and lubrication in musculo-sketetal system: hemodynamics of red blood cells, synovial fluid in joints.                                                                                                                                       | 5  |  |  |
| 7.     | Flow through the porous media: oxygen diffusion from blood to tissues, flow in ocular and renal system.                                                                                                                                           | 5  |  |  |
| 8.     | <b>Computational biofluid mechanics:</b> computational methods for flow and wave propagation through elastic tubes, flow through porous media                                                                                                     | 5  |  |  |
|        | Total                                                                                                                                                                                                                                             | 42 |  |  |

| S. No. | Name of Books / Authors / Publisher                                                                                      |      |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
| 1.     | Fung, Y. C., "Biomechanics: Circulation", Springer-Verlag.                                                               | 2010 |  |  |  |  |
| 2.     | Chandran, K. B., Yoganathan, A., and Rittgers, S., "Fluid Mechanics in the Human Circulation", Pearson Education.        | 2005 |  |  |  |  |
| 3.     | Humphrey, J. D., and Delange, S. L., "An Introduction to Biomechanics", Springer-<br>Verlag.                             | 2004 |  |  |  |  |
| 4.     | Fournier, R. L. L., "Basic Transport Phenomena in Biomedical Engineering, CRC press, 3 <sup>rd</sup> Edition.            | 2011 |  |  |  |  |
| 5.     | Mazumdar, J. N., "Biofluid Mechanics", World Scientific.                                                                 | 1992 |  |  |  |  |
| 6.     | Pedley, T. J., "Fluid M echanics of Large Blood V essels", C ambridge University Press.                                  | 2008 |  |  |  |  |
| 7.     | Caro, C. G., P edley, T. J., S chroter, R. C., S eed, W. A., "Mechanics of the Circulation", Cambridge University Press. | 2012 |  |  |  |  |

| NAME OF DEPTT. /CENTRE: |                      |                                               | Mecha  | nical & Ind | ustrial Enginee  | ring    |
|-------------------------|----------------------|-----------------------------------------------|--------|-------------|------------------|---------|
| 1.                      | Subject Code: MI     | Code: MIN-542 Course Title: Energy Management |        |             |                  |         |
| 2.                      | Contact Hours:       |                                               | L: 3   | <b>T:</b> 1 | P: 0             |         |
| 3.                      | Examination Duration | n (Hrs.):                                     | Theory | : 3         | Practical: 0     |         |
| 4.                      | Relative Weightage:  | CWS: 25 F                                     | PRS: 0 | MTE: 25     | ETE: 50          | PRE: 0  |
| 5.                      | Credits: 4           | 6. Semester:                                  | Autum  | n/Spring    | 7. Subject Area: | DEC/DHC |
| 0                       | D                    |                                               |        |             |                  |         |

- 8. Pre-requisite: Nil
- 9. Objective: To impart knowledge of concepts and techniques required for energy management.
- 10. Details of Course:

| S.  | Particulars                                                                         | Contact |
|-----|-------------------------------------------------------------------------------------|---------|
| No. |                                                                                     | Hours   |
| 1   | Introduction: Energy scenario, various forms of energy, energy management and       | 3       |
|     | its importance, recent trends in energy conservation.                               |         |
| 2   | Energy Auditing and Instrumentation: Definition, methodology, analysis of past      | 8       |
|     | trends (plan data), closing the energy balance, laws of thermodynamics, measuring   |         |
|     | instruments, portable and online instruments.                                       |         |
| 3   | Energy Economics: Simple payback period, time value of money, IRR NPV, life         | 6       |
|     | cycle costing, cost of saved energy, cost of energy generated.                      |         |
| 4   | Monitoring an d T argeting: Defining m onitoring and t argeting, elements of        | 4       |
|     | monitoring a nd t argeting, da ta a nd i nformation, a nalysis t echniques, e nergy |         |
|     | consumption, production, cumulative sum of differences.                             |         |
| 5   | Energy Efficiency in T hermal U tilities: Boilers, steam s ystem, f urnaces         | 10      |
|     | insulation and refractories, FBC boilers, cogeneration, waste heat recovery.        |         |
| 6   | Energy Efficiency in electrical U tilities: Electrical s ystems, electric mot ors,  | 11      |
|     | compressed air system, HVAC and refrigeration systems, fans and blowers, pumps      |         |
|     | and pumping systems, cooling towers, lighting system, diesel generating system.     |         |
|     | Total                                                                               | 42      |

| S.  | Name of Books / Authors / Publisher                                               | Year of     |
|-----|-----------------------------------------------------------------------------------|-------------|
| No. |                                                                                   | Publication |
| 1.  | Witte, L.C., S chmidt, P.S., B rown, D.R.,"Industrial E nergy M anagement a nd    | 1988        |
|     | Utilization", Hemisphere Publishing Corporation. Springer-Verlag                  |             |
| 2.  | Clive Beggs, "Energy: Management, Supply and Conservation", Routledge             | 2012        |
| 3.  | Capehart, B.L., Turner, W.C., Kennedy, W.J., "Guide to Energy Management", 7th    | 2011        |
|     | Ed., Fairmont Press.                                                              |             |
| 4.  | Turner, W.C. and Doty, S., "Energy Management Handbook", 7th Ed., Fairmont Press. | 2009        |
|     |                                                                                   |             |
| 5.  | Kreith, F. and Yogi Goswami, D., "Handbook of Energy Efficiency and Renewable     | 2007        |
|     | Energy", CRC Press.                                                               |             |
|     |                                                                                   |             |

| NAME OF DEPTT./CEN        | TRE:    | Mechanical & Industrial Engineering |               |               |        |
|---------------------------|---------|-------------------------------------|---------------|---------------|--------|
| 1. Subject Code: MIN-54   | 43      | Course Title:                       | Fluid Power I | Engineering   |        |
| 2. Contact Hours: L:      | 3       | T: 1                                |               | P: 0          |        |
| 3. Examination Duration ( | Hrs.):  | Theory: 3                           | Pra           | ctical: 0     |        |
| 4. Relative Weightage: C  | CWS: 25 | PRS: 0                              | MTE: 25       | ETE: 50       | PRE: 0 |
| 5. Credits: 4             | 6. Sen  | nester: Both                        | 7. Subj       | ect Area: DEC |        |

8. Pre-requisite: Nil

9. Objective: To provide the basic knowledge of hydraulic and pneumatic power systems.

| S.  | Particulars                                                                          | Contact |
|-----|--------------------------------------------------------------------------------------|---------|
| No. |                                                                                      | Hours   |
| 1.  | Introduction : Types of Fluid power control systems and its components, Physical     | 05      |
|     | properties of hydraulic fluids and governing equations                               |         |
| 2.  | Pumps and Valves : Classification, Working and performance of gear, vane, piston     | 08      |
|     | pumps and their selection, Pressure intensifiers, Direction control valves, Pressure |         |
|     | control valves, Flow control valves, Servo valves, Pressure switches,                |         |
| 3.  | Hydraulic A ctuators: Linear and r otary a ctuators, G ear, vane and pi ston         | 05      |
|     | motors, Performance of Hydraulic motors, Hydrostatic transmission                    |         |
| 4.  | Hydraulic Circuit Design and Analysis: Control of single-acting and                  | 04      |
|     | double-acting cylinders, Study of various circuits like regenerative, unloading      |         |
|     | counterbalance, speed control etc., maintenance of hydraulic circuits.               |         |
| 5.  | Pneumatic Control Systems: Air preparation and components, Compressors               | 05      |
|     | and conditioners, Air control valves and actuators.                                  |         |
| 6   | Pneumatic C ircuit D esign and A nalysis: Design c onsiderations, P ressure          | 04      |
|     | and energy loss, Basic pneumatic systems, Vacuum and accumulator systems,            |         |
|     | Circuit analysis.                                                                    |         |
| 7   | Fluid Logic Control System: Principles, Basic fluidic devices, fluid, sensors,       | 05      |
|     | Boolean algebra, fluidic control of fluid powers systems.                            |         |
| 8   | Electrohydraulic Servo Control System : Electric components and controls,            | 06      |
|     | Dual c ylinder s equence ci rcuits, Electro h ydraulic s ervo s ystem a nd t heir    |         |
|     | analysis, Programmable logic controllers.                                            |         |
|     | Total                                                                                | 42      |

| S.  | Author(s) / Title / Publisher                                                                                              | Year of      |
|-----|----------------------------------------------------------------------------------------------------------------------------|--------------|
| No. |                                                                                                                            | Publication/ |
|     |                                                                                                                            | Reprint      |
| 1   | Anthony E sposito, F luid P ower with A pplications, 6t h E dition, P earson                                               | 2007         |
|     | Prentice Hall, New Delhi                                                                                                   |              |
| 2.  | S. R. Mazumdar, Oil Hydraulic Systems- Principles and Maintenance, 25 <sup>th</sup><br>Reprint, Tata McGraw Hill New Delhi | 2012         |
| 3.  | Dudley A., Pippenger and John J. Pease, Basic Fluid Power, Prentice Hall<br>Inc., New Jearsy.                              | 1987         |
| 4.  | S. R. Mazumdar, Pneumatic Systems- Principles and Maintenance, 28 <sup>th</sup> Reprint<br>Tata McGrawHill New Delhi       | 2012         |
| 5   | Introduction to Fluid Logic - E.C. Fitch & J.B. Surjaatmadja, McGraw-Hill Inc, USA                                         | 1978         |
| 6   | Pneumatic and Hydraulic Systems- W. Bolton, Butterworth and Heinemann, Oxford                                              | 1997         |

| NAME OF DEPTT./CENTRE:          | Departmentof Mechanical & Industrial Engineering |              |                |        |
|---------------------------------|--------------------------------------------------|--------------|----------------|--------|
| 1. Subject Code: MIN-544        | Course Title:                                    | Design of He | eat Exchangers |        |
| 2. Contact Hours:               | L: 3                                             | T: 1         | P: 0           |        |
| 3. Examination Duration (Hrs.): | Theory: 3                                        | Pra          | actical: 0     |        |
| 4. Relative Weightage: CWS: 25  | PRS: 0                                           | MTE: 25      | ETE: 50        | PRE: 0 |
| 5. Credits: 4 6. Sem            | nester: Both                                     | 7.Subject    | Area: DEC/DHC  |        |
| 8. Pre-requisite: Nil           |                                                  |              |                |        |

9. Objective: This course will pr ovide a t horough unde rstanding o f c onstruction, design, performance and testingof Heat Exchangers.

| S.  | Particulars                                                                                        | Contact |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------|---------|--|--|--|--|
| No. |                                                                                                    | Hours   |  |  |  |  |
| 1   | Introduction: Fundamentals of heat t ransfer and fluid flow in he at t ransfer pa ssages;          | 4       |  |  |  |  |
|     | Classification, constructional de tails, two and multi-fluid he at e xchangers, e xtended          | l       |  |  |  |  |
|     | surfaces.                                                                                          |         |  |  |  |  |
| 2   | Design of Heat Exchangers: Engineering design, steps for designing, feasible/workable              | 12      |  |  |  |  |
|     | design, optimum design, economics, probabilistic approach to design, sizing and rating             | 1       |  |  |  |  |
|     | problems; LMTD and $\epsilon$ -NTU approach of design, design of tubular, shell & tube, finned     | 1       |  |  |  |  |
|     | (radial and longitudinal), regenerative and compact heat exchangers.                               |         |  |  |  |  |
| 3   | Optimum Design: Criteria for optimisation of heat exchangers, constraints, feasible and            | 12      |  |  |  |  |
|     | optimum de sign, opt imization based on volume, weight, cost, entropy generation and               |         |  |  |  |  |
|     | thermoeconomics; Brief i ntroduction t o s ome t raditional and non-traditional                    |         |  |  |  |  |
|     | optimisation techniques.                                                                           |         |  |  |  |  |
| 4   | Performance B ehaviour: Design vs.simulation, steady state                                         | 8       |  |  |  |  |
|     | performance, effectiveness, transient performance, fouling, non-uniformities in                    | 1       |  |  |  |  |
|     | temperature and flow, effect of property variation, three-fluid/ multifluid heat exchanger         | 1       |  |  |  |  |
|     | behaviour.                                                                                         | 1       |  |  |  |  |
| 5   | <b>Testing:</b> Steady s tate and transient te sting te chnique, j & f c haracteristics, empirical | 6       |  |  |  |  |
|     | relations, experimental vs. numerical approach.                                                    |         |  |  |  |  |
|     | Total                                                                                              | 42      |  |  |  |  |

| S.<br>No. | Author(s) /Title / Publisher                                                                        | Year of<br>Publication/<br>Reprint |
|-----------|-----------------------------------------------------------------------------------------------------|------------------------------------|
| 1         | Kays, W.M., a nd London, A.L., "Compact Heat E xchangers", K rieger Publishing Company.             | 1998                               |
| 2         | Rosenhow, W.M., H artnett, J.P. and C ho, Y.I., "Handbook of H eat Transfer", McGraw Hill.          | 1998                               |
| 3         | Kraus, A.D., Aziz, A. and Welty, J.R., "Extended Surface Heat Transfer", WileyIndia.                | 2013                               |
| 4         | Rao, S.S., "Optimization theory and applications", 3 <sup>rd</sup> Ed. John-Wiley.                  | 1996                               |
| 5         | Hesselgreaves, J.E., "Compact H eat E xchangers: s election, design and operation", Pergamon Press. | 2001                               |
| 6         | Webb,R. L. andKim,N. H., "Principles of Enhanced Heat Transfer", Taylor & Francis.                  | 2005                               |

### NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering

| 1. | Subject Code: MIN-545       | Cours        | e Title: Fuel Co | ells           |        |
|----|-----------------------------|--------------|------------------|----------------|--------|
| 2. | Contact Hours:              | L: 3         | <b>T:</b> 1      | P: 0           |        |
| 3. | Examination Duration (Hrs.) | ): Theor     | ry: 3            | Practical:0    |        |
| 4. | Relative Weightage: CWS:    | 25 PRS: 0    | MTE: 25          | ETE: 50        | PRE: 0 |
| 5. | Credits: 4                  | 6. Semester: | Spring7. Sub     | ject Area: DCC | C/DHC  |

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the basics of fuel cell operation and their applications.

| S. No. | Contents                                                                                                                                                                                                                                                                                          | Contact<br>Hours |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.     | <b>Introduction:</b> Basic principle and operation of Hydrogen fuel cells, types of fuel cells.                                                                                                                                                                                                   | 4                |
| 2.     | <b>Fuel Cell Thermodynamics</b> : Free energy change of a chemical reaction, heat of reaction, reversible and net output voltage, theoretical fuel cell efficiency, effect of pressure                                                                                                            | 8                |
| 3.     | <b>Fuel C ell E lectrochemistry</b> : E lectrode ki netics, Butler-Volmer e quation, voltage losses, cell potential-polarization curve, fuel cell efficiency.                                                                                                                                     | 6                |
| 4.     | <b>Transport Mech anisms</b> : Fuel c ell c harge transport, e lectron c onductivity of metals, ionic conductivity of polymer electrolytes, fuel cell mass transport- fuel cell mass balance, diffusive and convective mass transports, heat transfer – fuel cell energy balance, heat management | 9                |
| 5.     | <b>Fuel Cell C omponents</b> : M aterials, pr operties, pr ocesses, membrane, electrodes, bipolar plates, stack design, hydrogen and ox ygen supply systems, PEM fuel cell                                                                                                                        | 9                |
| 6.     | <b>Fuel Cell A pplications</b> : A utomobiles, s tationary pow er, fuel cells and hydrogen economy, medium and high temperature fuel cells                                                                                                                                                        | 6                |
|        | Total                                                                                                                                                                                                                                                                                             | 42               |

| S.  | Name of Authors / Books / Publishers                                          | Year of     |
|-----|-------------------------------------------------------------------------------|-------------|
| No. |                                                                               | Publication |
|     |                                                                               | /Reprint    |
| 1.  | Barbir, F., "PEM Fuel Cells: Theory and Practice", Academic Press.            | 2005        |
| 2.  | Larminie, J. and Dicks, A., "Fuel Cell Systems Explained", John Wiley & Sons. | 2003        |
| 3.  | Spiegel, C ., " PEM F uel C ell Modeling a nd S imulation us ing M ATLAB",    | 2008        |
|     | Academic Press.                                                               |             |
| 4.  | Sammes, N. M., "Fuel Cell Technology – Reaching towards commercialization",   | 2006        |
|     | Springer.                                                                     |             |
| 5.  | Gregor, H., "Fuel Cell Technology Handbook", CRC Press.                       | 2003        |
| 6.  | Srinivasan, S., "Fuel Cells – From Fundamentals to Applications", Springer.   | 2006        |


- 8. Pre-requisite: Nil
- 9. Objective: The course is intended to train the graduates in methods of failure analysis and design of machine parts against likely failures, using advanced concepts and also to design for reliability.
- 10. Details of Course:

| S.<br>No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact<br>Hours |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1         | <b>Introduction</b> : Review of failure theories, their scope of applications under different loading and environmental conditions, Hertzian contact stresses and their effect on load carrying cap acities of members, effect of small i nelastic strains and residual stresses on load carrying capacity, the ory of limit de sign; Machinery construction principles.                                                                                                                                                                                                                | 12               |
| 2         | <b>Designing against Fracture</b> : Linear elastic fracture mechanics approach, theories of brittle fracture, fundamental aspects of crack growth and fractures, use of fracture in design.                                                                                                                                                                                                                                                                                                                                                                                             | 10               |
| 3         | <b>Designing agai nst F atigue an d C reep</b> : Causes and interpretation of f ailures, influence of various factors, low cycle and high cycle fatigue, cumulative da mage theories, acoustical and the rmal f atigue, corrosion and fretting f atigue, pi tting of gears, f atigue s trength of j oints, c omponents and structures; c reep be havior; t he mechanical equation of state, an elastic and plastic creep, rupture theory, analysis of tensile cr eep data, creep in high t emperature low c ycle f atigue, creep analysis of thick walled cylinders and rotating discs. | 10               |
| 4         | <b>Design for Reliability</b> : Application of statistics to material properties, fatigue and reliability, early chance and wear out failures, reliability prediction against chance and wear out failures, probabilistic approach to design and its comparison with safety factor approach, reliability prediction of series, parallel and stand by systems.                                                                                                                                                                                                                           | 10               |
|           | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42               |

| S.  | Name of Authors/ Books / Publisher                                        | Year of     |
|-----|---------------------------------------------------------------------------|-------------|
| No. |                                                                           | Publication |
|     |                                                                           | /Reprint    |
| 1   | Faupel, J.H., and Fisher, F.E., "Engineering Design", Wiley-Interscience. | 1981        |
| 2   | Burr, A.H., "Mechanical Analysis and Design", Elsevier.                   | 1982        |
| 3   | Smith, N., "Advances in Creep Design", Applied Science.                   | 1971        |
| 4   | Bazovsky, I., Reliability Theory & Practice, Courier Dover Publications.  | 2004        |
| 5   | Haugen, E.B., Probabilistic Approach Design, John Wiley.                  | 1968        |
| 6   | Yotaro Hatamura and Yoshio Yamamoto, "The Practice of Machine Design"     |             |
|     | Oxford University Press.                                                  | 1999        |
| 7   | Kai Cheng, "Machining Dynamics: Fundamentals, Applications and            | 2008        |
|     | Practices" Springer.                                                      |             |



- 8. Pre-requisite: Nil
- 9. Objective: T o i mpart know ledge of pr inciples g overning t he m otion of m echanical systems and to develop their skills in analysis and control of their motion.
- 10. Details of Course:

| S.  | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hours   |
| 1   | Basic concepts: Inertial coordinate system, fundamental laws of motion, mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4       |
|     | of particles and system of particles, principles of linear and an gular momentum, work-energy principles.                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| 2   | <b>Lagrangian d ynamics</b> : Degrees o f freedom, ge neralized c oordinates a nd generalized forces, holonomic and non-holonomic constraints, Lagrange's equation from d'Alembert's principles, application of Lagrange's equation for conservative and non -conservative a utonomous s ystems w ith hol onomic a nd non -holonomic constraints, applications to systems with very small di splacements and i mpulsive motion; Hamilton principle from d'Alembert's principle, Lagrange equation from Hamilton's principle. | 10      |
| 3   | <b>Multi-body d ynamics</b> : S pace a nd f ixed body c oordinate systems, c oordinate transformation matrix, direction cosines, Euler angles, Euler parameters, finite and infinitesimal r otations, time de rivatives of tr ansformations ma trices, a ngular velocity and acceleration vectors, equations o f mot ion of mul ti-body s ystem, Newton-Euler equations, planer ki nematic a nd dynamic an alysis, kinematic revolute joints, joint reaction forces, simple applications of planer systems.                  | 15      |
| 4   | <b>Stability of m otion</b> : F undamental c oncept i n s tability, a utonomous s ystems a nd phase pl ane pl ots, Routh's c riteria f or s tability, Liapunov's m ethod, Liapunov's stability theorems, Liapunov's function to determine stability of the system.                                                                                                                                                                                                                                                           | 7       |
| 5   | <b>Control system dynamics</b> : Open and close loop systems, block diagrams, transfer functions and characteristics equations, proportional integral and derivative control                                                                                                                                                                                                                                                                                                                                                 | 6       |

| actions and their characteristics. |    |
|------------------------------------|----|
| Total                              | 42 |

| S.  | Name of Authors/ Books / Publisher                                         | Year of              |
|-----|----------------------------------------------------------------------------|----------------------|
| No. |                                                                            | <b>Publication</b> / |
|     |                                                                            | Reprint              |
| 1   | Ginsberg, J.H., "Advanced Engineering Dynamics", Harper and Row.           | 1988                 |
| 2   | Meirovitch, L., "Methods of Analytical Dynamics", McGraw Hill Inc.         | 1970                 |
| 3   | Harold J osephs and R onald H uston, "Dynamics of M echanical S ystems",   | 2002                 |
|     | CRC Press.                                                                 |                      |
| 4   | Katsuhiko Ogata, "System Dynamics",4 <sup>th</sup> Ed., Prentice Hall;     | 2003                 |
| 5   | Robert L. W oods and Kent L. Lawrence, "Modeling a nd S imulation of       | 1997                 |
|     | Dynamic Systems", Prentice Hall.                                           |                      |
| 6   | Ramin S. E sfandiari and B ei Lu, "Modeling a nd A nalysis of D ynamic     | 2010                 |
|     | Systems", CRC Press.                                                       |                      |
| 7   | Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg, "System      | 2006                 |
|     | Dynamics: Modeling and Simulation of Mechatronic Systems", 4th Ed., Wiley. |                      |
| 8   | Richard A. Layton, "Principles of Analytical System Dynamics" (Mechanical  | 1998                 |
|     | Engineering Series), Springer.                                             |                      |

NAME OF DEPARTMENT: Mechanical & Industrial Engineering

- 1. Subject Code: MIN-552 Course Title: Advanced Mechanics of Solids 2. Contact Hours : L: 3 **T**: 1 **P:** 0 Examination Duration (Hrs.) : **Theory Practical** 3. 3 0 25 PRS 0 MTE 25 PRE 0 **Relative Weightage : CWS** 50 ETE 4. 5. Credits: 6. Semester: Autumn 7. Subject Area: PCC 4
- 8. Pre requisite: Nil
- 9. Objectives of Course: The course aims at providing advanced concepts in behavior of solids under va rious l oading c onditions a nd t o t rain t he gr aduates i n a nalyzing t he r esulting stresses and deformations.
- 10. Details of Course:

| S. No. | Particulars                                                                               | Contact |
|--------|-------------------------------------------------------------------------------------------|---------|
|        |                                                                                           | Hours   |
| 1      | Mathematical P reliminaries: S calars, vectors and matrix variables, index                | 4       |
|        | notation a nd t he r elated r ules, C artesian t ensors a nd t heir a lgebra, co-         |         |
|        | ordinate t ransformation, t ransformation r ules for t he $n^{\text{th}}$ order t ensors, |         |
|        | elements of tensor cal culus and the related theorems (divergence, Stokes'                |         |
|        | and G reen's), p rincipal va lue t heorem, eigenvalues a nd e igenvectors,                |         |
|        | invariants of a 2 <sup>nd</sup> order tensor.                                             |         |
| 2      | Kinetics of D eformation: Types of forces (point, s urface a nd bod y),                   | 8       |
|        | traction ve ctor, s tate of stress at a point, C auchy's r elation and i ts pr oof,       |         |
|        | conservation of linear and angular momentum, stress equilibrium equations,                |         |
|        | symmetry of stress tensor, stress transformation, principal stresses and the              |         |
|        | associated planes, 3D Mohr's c ircle r epresentation, pl anes of m aximum                 |         |
|        | shear, octahedral planes, hydrostatic and deviatoric stress, first and second             |         |
|        | Piola-Kirchoff stress tensors and their properties.                                       |         |
| 3      | Kinematics of D eformation: M aterial and spatial co -ordinates, E ulerian                | 8       |
|        | and Lagrangian de scription of m otion; de formation a nd di splacement                   |         |
|        | gradients, Green-Lagrange and Almansi strain tensor; Cauchy's small strain                |         |
|        | tensor a nd t he rotation t ensor, geometrical i nterpretation of s train                 |         |
|        | components a nd s ign c onvention, pr incipal s trains a nd di rections, s train          |         |
|        | invariants, octahedral strain, maximum shear strain, volumetric strain, strain            |         |
|        | compatibility equations.                                                                  |         |

| 4     | <b>Constitutive Modeling</b> : Thermodynamic principles, first and second law of thermodynamics, Generalized Hooke's law for isotropic materials, elastic constants a nd t heir r elations, a nisotropic, h yperelastic and vi scroelastic material mode ls, strain hardening, constitutive r elations f or e lasto-plastic materials, flow and hardening rules.                           | 8  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5     | <b>Boundary Value P roblems i n L inear E lasticity</b> : F ield e quations a nd boundary c onditions, N avier e quations, B eltrami-Michell st ress compatibility conditions, 2D approximations (plane stress and plane strain) and solution strategies.                                                                                                                                  | 6  |
| 6     | <b>Variational P rinciples in S olid M echanics</b> : E lements of va riational calculus, e xtremum of a f unctional, E uler-Lagrange equation a nd i ts application, t ypes o f bounda ry c onditions, pr inciple of vi rtual w ork, Principle of total potential energy and complementary potential energy, Ritz method, time-dependent problems and Hamilton's principle for continuum. | 8  |
| Total |                                                                                                                                                                                                                                                                                                                                                                                            | 42 |
|       |                                                                                                                                                                                                                                                                                                                                                                                            |    |

| S.  | Name of Authors/ Books / Publisher                                                    | Year of     |
|-----|---------------------------------------------------------------------------------------|-------------|
| No. |                                                                                       | Publication |
| 1   | Sadd, M .H., " Elasticity T heory Applications and Numerics", Elsevier                | 2005        |
|     | Academic Press.                                                                       |             |
| 2.  | Boresi, A.P., S idebottom, O. M., "Advanced Mechanics of Materials", 5 <sup>th</sup>  | 2007        |
|     | Ed., John Wiley and Sons                                                              |             |
| 3   | Singh, A.K., "Mechanics of Solids", PHI Learning Private Limited                      | 2011        |
| 4   | Timoshenko, S. P., a nd G oodier, J.M., "Theory of E lasticity", 3 <sup>rd</sup> Ed., | 2004        |
|     | McGraw Hill                                                                           |             |
| 5.  | Srinath, L.S., "Advanced Mechanics of Solids", Tata McGraw Hill                       | 2009        |
|     | Education Private Limited                                                             |             |
| 6.  | Fung, Y.C., "Foundations of Solid Mechanics", Prentice Hall Inc.                      | 1965        |

- 1. Subject Code: MIN-553 Course Title: Industrial Tribology 2. Contact Hours : L: 3 **P: 0 T**: 1 3. Examination Duration (Hrs.): **Theory** 3 Practical 0 Relative Weightage: CWS 25 PRE 0 25 50 PRS 0 MTE 4. ETE 6. Semester: Autumn/Spring 5. Credits: 4 7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: The c ourse has be en de signed t o give a n und erstanding of t ribological phenomena, industrial lubricants and additives.
- 10. Details of Course:

| S.              | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contact     |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <u>No.</u><br>1 | <b>Introduction</b> : Tribological c onsideration, na ture of s urfaces a nd t heir c ontact.<br>Introduction, ph ysico-mechanical pr operties of s urface l ayer; Geometrical properties of s urfaces, method of s tudying s urface; C ontact of s mooth s urfaces, contact of rough surfaces. Role of friction, laws of static friction, causes of friction; Adhesion. A dhesion t heory, l aws of rolling friction, f riction o f m etals a nd nonmetals, friction m easurement; W ear de finitions, t ypes of w ear, m echanism of wear, factors affecting wear behavior, measurement of wear a brief introduction of | Hours<br>10 |
| 2               | <b>Industrial L ubricants an d T heir A dditives</b> : Functions of 1 ubricants, t ypes of lubricants a nd t heir i ndustrial us es; S olid lubricants a nd t heir f unctions, 1 iquid mineral lubr icants, s ynthetic l iquid l ubricants, greases, p roperties of 1 iquid a nd grease lubricants, viscosity, Newtonian and Non-Newtonian lubricants, temperature and pr essure d ependence m easurement, ot her p roperties of 1 ubricants; Lubricant additives, ge neral pr operties and selection for m achines and processes; O il reclamation and preventive maintenance for lubricants.                            | 8           |
| 3               | <b>Fluid-Film Lubrication</b> : Fluid m echanics concepts, e quations of c ontinuity a nd motion; G eneralized R eynold's equation w ith i ncompressible a nd c ompressible lubricants; Hydrodynamic lubrication, Tower's experiment, finite bearings, partial journal be arings, s olution of f inite be arings us ing G alerkin, f inite di fference a nd FEM.                                                                                                                                                                                                                                                          | 7           |
| 4               | <b>Dynamically I oaded j ournal b earings:</b> Solution of t he g eneralized R eynold's equation f or i nfinite a nd s hort be aring, I oad c arrying c apacity, S ommerfield                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7           |

|   | Total                                                                                   | 42 |
|---|-----------------------------------------------------------------------------------------|----|
|   | bearing, bearing life, bearing load, bearing selection.                                 |    |
|   | bearings, materials for sliding bearings; Bearing types, selection of rolling elements  |    |
|   | hydrostatic t hrust be aring, f ixed t ype h ydrodynamic a nd h ydrostatic j ournal     |    |
|   | modes of 1 ubrication, a nd be aring s election; D esign o f s lideway be aring and     |    |
| 6 | Bearing Design and Selection of Bearings: Comparative performance of various            | 5  |
|   | Introduction to porus bearing permeability, solution of thrust and journal bearings.    |    |
|   | equation f or i so-thermal, polytropic a nd adiabatic s upporting gas f ilms;           |    |
| 5 | Gas L ubrication: Types of g as be arings an d their cha racteristics; R eynolds        | 5  |
|   | bearings.                                                                               |    |
|   | FEM, c ontrolling f low w ith r estrictors, de sign of r estrictors f or compensated    |    |
|   | applications, c ompensated t hrust a nd j ournal b earings a nd t heir s olution us ing |    |
|   | numbers, j ournal centre locus, w hirling; H ydrostatic l ubrication basic c oncepts,   |    |

| S.  | Name of Authors / Books/ Publisher                                                    | Year of              |
|-----|---------------------------------------------------------------------------------------|----------------------|
| No. |                                                                                       | <b>Publication</b> / |
|     |                                                                                       | Reprint              |
| 1   | Conner, J.J. and Boyd, J., "Standard Handbook of Lubrication Engineering",            | 1968                 |
|     | McGraw Hill.                                                                          |                      |
| 2   | Stachowiak, G. and A W Batchelor, A. W., "Engineering Tribology", 3 <sup>rd</sup> Ed, | 2005                 |
|     | Butterworth-Heinemann.                                                                |                      |
| 3   | Khonsari, M. M. and Booser, E. R., "Applied Tribology: Bearing Design and             | 2008                 |
|     | Lubrication", 2 <sup>nd</sup> Ed, Wiley.                                              |                      |
| 4   | Kudish, I.I. and C ovitch, M. J., "Modeling a nd A nalytical M ethods i n             | 2010                 |
|     | Tribology", Chapman and Hall/CRC.                                                     |                      |
| 5   | Bhushan, B., "Principles and Applications of Tribology", Wiley.                       | 1999                 |

- 1. Subject Code: MIN-554
   Course Title: Computer Aided Mechanism

   Design
   Course Title: Computer Aided Mechanism
- 2. Contact Hours : L: 3 T: 1 **P:** 0 3. Examination Duration (Hrs.): **Theory** 3 Practical 0 Relative Weightage: CWS **25** PRS MTE PRE 0 25 50 ETE 4. 0 Credits: 6. Semester: Autumn/Spring 7. Subject Area: PEC 5. 4
- 8. Pre-requisite: Nil
- 9. Objective: The c ourse a ims at providing the basic c oncepts of analysis and de sign of mechanisms.
- 10. Details of Course:

| S.  | Contents                                                                            | Contact |
|-----|-------------------------------------------------------------------------------------|---------|
| No. |                                                                                     | Hours   |
| 1   | Introduction: Review of concepts related to kinematic analysis of mechanisms,       | 6       |
|     | degrees of freedom, Grashof's and Gruebler's criteria, transmission and deviation   |         |
|     | angles, mechanical advantage.                                                       |         |
| 2   | Kinematic Synthesis of Mechanisms: Type, number and dimensional synthesis,          | 8       |
|     | spacing of a ccuracy points, C hebyshev pol ynomials, path m otion and f unction    |         |
|     | generation, graphical synthesis with two, three, and four prescribed positions and  |         |
|     | points.                                                                             |         |
| 3   | Analytical Synthesis Techniques: complex number modeling, dyad and standard         | 8       |
|     | form e quation, F reudenstein's e quation for t hree poi nt f unction generation,   |         |
|     | coupler curves, Robert's law, cognates of linkages.                                 |         |
| 4   | Path Curvature T heory: F ixed a nd m oving centrode, i nflection points and        | 8       |
|     | inflection circle, Euler-Savary equation, Bobillier and Hartmann's construction.    |         |
| 5   | Dynamic Force A nalysis: Introduction, i nertia forces in linkages, ki netic-static | 6       |
|     | analysis by superposition and matrix approaches and its applications, introduction  |         |
|     | to spatial mechanisms.                                                              |         |
| 6   | Software usages: Modelling, analysis and synthesis of various mechanisms using      | 6       |
|     | software packages                                                                   |         |
|     | Total                                                                               | 42      |

| S.  | Name of Authors / Books/ Publisher                                                | Year of     |
|-----|-----------------------------------------------------------------------------------|-------------|
| No. |                                                                                   | Publication |
|     |                                                                                   | /Reprint    |
| 1   | Hall, A.S., "Kinematic and Linkage Design", Prentice Hall Inc.                    | 1978        |
| 2   | Sacks, E. and Joskowicz, L., "The Configuration Space Method for Kinematic        | 2010        |
|     | Design of Mechanisms", MIT Press.                                                 |             |
| 3   | Erdman, A. G. and Sandor, G. N., "Mechanism D esign: A nalysis a nd               | 1996        |
|     | Synthesis", 3 <sup>rd</sup> Ed, Prentice Hall.                                    |             |
| 4   | Shabana, A. A., "Computational Dynamics", 3 <sup>rd</sup> Ed., Wiley.             | 2010        |
| 5   | Shabana, A. A., "Dynamics of M ultibody S ystems", 2 <sup>nd</sup> Ed., Cambridge | 2003        |
|     | University Press.                                                                 |             |
| 6   | Eckhardt, H. D., "Kinematic Design of Machines and Mechanisms", McGraw-           | 1998        |
|     | Hill.                                                                             |             |
| 7   | Sandor G.N., and Erdman A.G., "Advanced Mechanism Design: Analysis and            | 1984        |
|     | Synthesis Vol.2", Prentice Hall Inc                                               |             |



- 8. Pre-requisite: Nil
- 9. Objective: The course aims at providing fundamental concepts and applications of the most conventional experimental stress analysis methods used in practice.
- 10. Details of Course:

| S.  | Contents                                                                                   | Contact |
|-----|--------------------------------------------------------------------------------------------|---------|
| No. |                                                                                            | Hours   |
| 1   | Introduction: Importance of experimental methods and their scope, whole field and          | 2       |
|     | point by point methods.                                                                    |         |
| 2   | Photoelasticity: Nature of light, photoelastic effect and polarized light, permanent       | 8       |
|     | and temporary birefringence, types of polariscopes and their basic elements, optics        |         |
|     | of plane and circular polariscope, isoclinics and isochromatics, stress optic law and      |         |
|     | secondary p rincipal s tresses; P hotoelastic mode l ma terials the ir pr operties a nd    |         |
|     | selection, preparation of models, transition from model to prototypes, measurement         |         |
|     | of r elative r etardation a nd f ringe or der, c ompensation t echniques, s eparation of   |         |
|     | principal stresses by oblique incidence, shear difference and numerical integration        |         |
|     | of Laplace's equation.                                                                     |         |
| 3   | Photoelastic methods: Calibration methods and determination of stress trajectories         | 4       |
|     | from is oclinic da ta; Basic e lements of thr ee d imensional phot oelasticity, stress     |         |
|     | freezing and slicing the model and interpretation of the resulting fringe patterns,        |         |
|     | fringe s harpening a nd f ringe multiplication techniques; P hotoelastic m ethods to       |         |
|     | determine stress intensity factors.                                                        |         |
| 4   | Birefringent C oatings: Surface s tress de terminations us ing bi refringent c oatings,    | 6       |
|     | sensitivity o f bi regringent c oatings; R einforcing, t hickness a nd ot her e ffects o f |         |
|     | photoelastic c oatings; Separation of pr incipal s tresses; B irefringent c oating         |         |
|     | materials and applications; Photoelastic stress and strain gauges.                         |         |

| 5 | Scattered L ight P hotoelasticity: S cattering phe nomenon a nd p olarization             | 5  |
|---|-------------------------------------------------------------------------------------------|----|
|   | associated w ith s cattering, s cattered l ight t echnique t o s olve ge neral t hree     |    |
|   | dimensional problem; Scattered light polariscope.                                         |    |
| 6 | Moire Method of Strain Analysis: Moire phenomenon and formation of Moire                  | 5  |
|   | fringes; Geometric and displacement approach for in-plane problems, Moire grating         |    |
|   | production, printing and photography.                                                     |    |
| 7 | Brittle C oatings: Introduction, coating s tresses; B rittle c oating failure the ories;  | 6  |
|   | Factors af fecting analysis of coa ting d ata; C rack patterns du e t o direct and        |    |
|   | relaxation l oading; R efrigeration t echnique, calibration m ethods a nd scope of        |    |
|   | application of brittle coating method.                                                    |    |
| 8 | Digital I mage Processing: F ringe mul tiplication, fringe thi nning a nd fringe          | 6  |
|   | clustering t hrough da ta acquisition by DIP m ethods; P hase s hifting, po larization    |    |
|   | stepping and Fourier transform techniques phase unwrapping and optical enhanced           |    |
|   | tiling, use of c olour i mage pr ocessing t echniques f or da ta acquisition i n di gital |    |
|   | photoelasticity.                                                                          |    |
|   | Total                                                                                     | 42 |

| S.<br>No. | Name of Authors / Books / Publisher                                                                                       | Year of<br>Publication<br>/Reprint |
|-----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1         | Phillips, E.A., D urelli, A.J. and T sao, C.H., "Analysis of S tress and Strain", McGraw Hill.                            | 1958                               |
| 2         | Daily, J.W. and Riley, W.F., "Experimental Stress Analysis", McGraw Hill.                                                 | 1991                               |
| 3         | Durelli, A.J. and Riley, W.F., "Introduction to Photomechanics", Prentice Hall.                                           | 1965                               |
| 4         | Frocht, M.M., "Photoelasticity (Vol. I and II)", John Wiley.                                                              | 1948                               |
| 5         | Ramesh, K., "Digital Photoelasticity: Advanced Techniques and Applications", Springer-Verlag.                             | 2000                               |
| 6         | James W. Dally and <u>William F. Riley</u> , "Experimental Stress Analysis", College House Enterprises.                   | 2005                               |
| 7         | James F. Doyle, "Modern Experimental S tress A nalysis: C ompleting the Solution of Partially Specified Problems", Wiley. | 2004                               |
| 8         | Pramod K. Rastogi, "Photomechanics" (Topics in Applied Physics), Springer.                                                | 2000                               |

- 1. Subject Code: MIN-556 Course Title: Dynamics of Road Vehicles 2. Contact Hours: L: 3 T:1 **P: 0** 3. Examination Duration (Hrs.): Theory Practical 3 0 4. Relative Weightage: CWS PRS ETE PRE 25 MTE 50 25 0 0 5. Credits: 6. Semester: Autumn/Spring 7. Subject Area: PEC 4
- 8. Pre-requisite: Nil
- 9. Objective: T o pr ovide f undamental e ngineering pr inciples unde rlying t he c ontrol, stability, handling and cornering behavior of road vehicles.
- 10. Details of Course:

| S.  | Contents                                                                                 | Contact |
|-----|------------------------------------------------------------------------------------------|---------|
| No. |                                                                                          | Hours   |
| 1   | Introduction t o Vehicle D ynamics: V arious ki nds of ve hicles, motions,               | 4       |
|     | mathematical mode lling methods; M ultibody s ystem a pproach a nd Lagrangian            |         |
|     | formulations, methods of investigations, stability concepts.                             |         |
| 2   | Mechanics of Pneumatic Tyre: Tyre construction, physics of tyre traction on dry          | 10      |
|     | and wet surfaces, tyre forces and moments, SAE recommended practice, rolling             |         |
|     | resistance of tyres, ride properties of tyres.                                           |         |
| 3   | Performance Characteristics: Equation of motion and maximum tractive effort,             | 8       |
|     | aerodynamic f orces a nd m oments, ve hicle p ower pl ant a nd t ransmission             |         |
|     | characteristics, pr ediction of ve hicle pe rformance, ope rating f uel e conomy,        |         |
|     | braking performance, antilock braking systems.                                           |         |
| 4   | Handling and St ability Characteristics: S teering ge ometry; s teady state              | 8       |
|     | handling characteristics, steady state response to steering input, transient response    |         |
|     | characteristics di rectional s tability, effects o f t yre f actors, suspension, braking |         |
|     | and vehicle parameters on stability and handling.                                        |         |
| 5   | Vehicle Ride Characteristics: Human response to vibration, vehicle ride models,          | 7       |
|     | road surface profile as a random function; frequency response function, evaluation       |         |
|     | of vehicle vertical vibration in relation to ride comfort criterion.                     |         |
| 6   | Experimental T esting: Instruments f or ve hicle m easurements, r ecording a nd          | 5       |
|     | evaluation m ethods, t est m ethods a nd m easurement pr ocedures f or vehicle           |         |
|     | dynamics, interpretation of test results and correlation between measured values         |         |
|     | and subjective evaluation of the vehicle handling.                                       |         |
|     | Total                                                                                    | 42      |

| 11. | Suggested Books:                                                                             |             |
|-----|----------------------------------------------------------------------------------------------|-------------|
| S.  | Name of Authors / Books / Publisher                                                          | Year of     |
| No. |                                                                                              | Publication |
|     |                                                                                              | /Reprint    |
| 1.  | Wong, J.Y., "Theory of Ground Vehicles", John Wiley.                                         | 2001        |
| 2.  | Gillespie, T.D., "Fundamental of Vehicle Dynamics", S.A.E.                                   | 1992        |
| 3   | Rao, V. D., "Road Vehicle Dynamics", SAE International.                                      | 2008        |
| 4   | Rajesh, R., "Vehicle Dynamics and Control", Springer.                                        | 2005        |
| 5   | Hans, T., "The Dynamics of Vehicles on Roads and on Tracks", Taylor and                      | 2003        |
|     | Francis,                                                                                     |             |
| 6   | Barnard, R. H., " <u>Road Vehicle Aerodynamic Design: An Introduction</u> ", 2 <sup>nd</sup> | 2001        |
|     | Ed., Mechaero Publishing.                                                                    |             |
| 7   | Wong, J. Y., "Theory of Ground Vehicles", 4th Ed., Wiley.                                    | 2008        |

#### NAME OF DEPTT/CENTRE: Mechanical & Industrial Engineering



- 8. Pre-requisite: NIL
- 9. O bjective: To provide the basic concepts of finite element method and its applications to wide range of engineering problems.
- 10. Details of Course:

| S. No. | Contents                                                                                     | Contact |
|--------|----------------------------------------------------------------------------------------------|---------|
|        |                                                                                              | Hours   |
| 1.     | Basic Concepts: Introduction, Weak formulations, Weighted residual                           | 8       |
|        | methods, V ariational f ormulations, w eighted r esidual, c ollocation,                      |         |
|        | subdomain, l east s quare a nd G alerkin's m ethod, di rect m ethod, potential energy method |         |
| 2.     | <b>One-Dimensional A nalysis</b> : B asis s teps, discretization, element                    | 8       |
|        | equations, linear and quadratic shape functions, assembly, local and                         |         |
|        | global s tiffness m atrix a nd i ts pr operties, b oundary c onditions,                      |         |
|        | applications to solid mechanics, heat and fluid mechanics problems,                          |         |
|        | axisymmetric problems                                                                        |         |
| 3.     | Plane T russ: Local and global coor dinate s ystems, stress                                  | 3       |
|        | calculations, example problems                                                               |         |
| 4.     | Beams: Introduction, E uler-Bernoulli be am element, numerical                               | 3       |
|        | problems                                                                                     | 10      |
| 5.     | Scalar Field Problems in 2-D: Triangular and rectangular elements,                           | 10      |
|        | constant s train triangle, is oparametric formulation, hi gher or der                        |         |
|        | elements, six node triangle, nine node quadrilateral, master elements,                       |         |
|        | numerical int egration, c omputer impl ementation, Numerical                                 |         |
|        | problems                                                                                     |         |
| 7.     | Plane Elasticity: Review of equations of elasticity, stress-strain and                       | 4       |
|        | strain-displacement relations, plane stress and plane strain problems                        |         |
| 8.     | <b>Bending of E lastic P lates</b> : R eview of classical plate theory, plate                | 6       |

| bending elements, triangular and rectangular el ements, | Shear |    |
|---------------------------------------------------------|-------|----|
| deformation plate theory, numerical problems            |       |    |
|                                                         | Total | 42 |

| S.  | Name of Authors / Books / Publisher                                                     | Year of     |
|-----|-----------------------------------------------------------------------------------------|-------------|
| No. |                                                                                         | Publication |
| 1.  | Huebner K.H., Dewhirst, D. L., Smith, D. E., and Byrom, T. G., "The                     | 2001        |
|     | Finite Element Method for Engineers", 4 <sup>th</sup> Ed., John Wiley and Sons          |             |
| 2.  | Rao, S. S., "The F inite Element M ethod in Engineering", 4 <sup>th</sup> Ed.,          | 2005        |
|     | Elsevier Science                                                                        |             |
| 3.  | Reddy, J.N., "An Introduction to Finite Element Methods", 3 <sup>rd</sup> Ed., Tata     | 2005        |
|     | McGraw-Hill                                                                             |             |
| 4.  | Fish, J., and Belytschko, T., "A First Course in Finite Elements", 1 <sup>st</sup> Ed., | 2007        |
|     | John Wiley and Sons                                                                     |             |
| 5.  | Chaskalovic J., "Finite Element Methods for Engineering Sciences", 1 <sup>st</sup>      | 2008        |
|     | Ed., Springer                                                                           |             |

- 1. Subject Code: MIN-558 Course Title: Fracture Mechanics
- 2. Contact Hours: L: 3 T:1 **P: 0** 3. Examination Duration (Hrs.): Theory Practical 3 0 PRS **0** PRE **0** 4. Relative Weightage: CWS MTE ETE 50 25 25
- 5. Credits: 4 6. Semester: Autumn/Spring7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: T o i ntroduce t he m echanics of a nisotropic m aterial, a nd pr ovide insight int o different f ailure me chanisms t ypical of a nisotropic a nd heterogeneous systems
- 10. Details of Course:

| S.<br>No. | Contents                                                                            | Contact<br>Hours |
|-----------|-------------------------------------------------------------------------------------|------------------|
| 1         | Introduction to Fracture Mechanics: Introduction to the realm of fracture and       | 5                |
|           | back ground hi story o f de velopment of fracture m echanics; D iscrepancy          |                  |
|           | between theoretical and real strength of materials, conventional failure criteria   |                  |
|           | based on stress concentration and characteristic brittle failures, Griffith's work. |                  |
| 2         | Linear Elastic Fracture Mechanics (LEFM) Based Design Concepts: Crack               | 10               |
|           | deformation m odes a nd ba sic c oncepts, c rack t ip s tresses a nd de formation,  |                  |
|           | stress intensity factor (SIF) and its criticality in different modes, superposition |                  |
|           | of S IFs, LEFM de sign concept applications; C oncept of energy release r ate,      |                  |
|           | equivalence of energy release rate and SIF.                                         |                  |
| 3         | Fracture t oughness: Fracture t oughness a nd its l aboratory de termination        | 10               |
|           | procedure, test s pecimen size r equirement et c.; E ffect of t emperature and      |                  |
|           | loading rate on fracture toughness; Fatigue and fatigue crack propagation laws,     |                  |
|           | fatigue life calculations under constant and variable amplitude loading, mixed-     |                  |
|           | mode fatigue crack propagation.                                                     |                  |
| 4         | Strain Energy Density Failure Criterion: Introduction, volume strain energy         | 7                |
|           | density, basic hypothesis and application of energy density based failure criteria  |                  |
|           | for two and three dimensional linear elastic crack problems.                        |                  |
| 5         | Elastic Plastic Fracture Mech anics B ased D esign C riteria: D esign criteria      | 10               |
|           | for non-brittle materials; plastic z one c orrections, crack opening displacement   |                  |
|           | (COD), J-contour integral and crack growth resistance (R-curve) concepts.           |                  |

| Total | 42 |
|-------|----|

| S.  | Name of Authors / Books / Publisher                                                    | Year of              |
|-----|----------------------------------------------------------------------------------------|----------------------|
| No. |                                                                                        | <b>Publication</b> / |
|     |                                                                                        | Reprint              |
| 1   | Gdoutos, E.E., "Fracture Mechanics: An Introduction", 2 <sup>nd</sup> Ed., Springer.   | 2005                 |
| 2   | Broek, D., "Elementary Engineering Fracture Mechanics", 3 <sup>rd</sup> Ed., Springer. | 1982                 |
| 3   | Kumar, P., "Elements of Fracture Mechanics", Wheeler Publishing.                       | 1999                 |
| 4   | Anderson, T. L., "Fracture Mechanics: Fundamentals and Applications", 3 <sup>rd</sup>  | 2005                 |
|     | Ed., CRC Press.                                                                        |                      |
| 5   | Shukla, A., "Practical Fracture Mechanics in Design", 2 <sup>nd</sup> Ed., CRC Press.  | 1989                 |
| 6   | Bazant, Z. P. and Cedoliin, L., "Stability of Structures: Elastic, Inelastic,          | 2010                 |
|     | Fracture and Damage Theories", World Scientific Publishers.                            |                      |

NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering1. Subject Code: MIN-559Course Title: Computer Aided Design



- 8. Pre-requisite: Nil
- 9. Objectives of Course: The course aims at providing the basic concepts and elementary tools of CAD.
- 10. Details of Course:

| S.  | Contents                                                                                | Contact |
|-----|-----------------------------------------------------------------------------------------|---------|
| No. |                                                                                         | Hours   |
| 1   | Introduction: The design process, elements of CAD                                       | 01      |
| 2   | Principles of Software Design: Characteristics of good software, data structures,       | 03      |
|     | algorithm de sign, f low c hart, coding, t op-down pr ogramming, modular                | 1       |
|     | programming, structural coding, testing of the software.                                |         |
| 3   | Computer Graphics: Graphics display, transformations, visualizations, computer          | 03      |
|     | animation.                                                                              |         |
| 4   | <b>3D Modeling and Viewing</b> : C oordinate s ystems, s ketching a nd s ketch pl anes; | 03      |
|     | Modeling aids and tools; Layers, grids, clipping, arrays, editing.                      |         |
| 5   | Curves Modeling: Analytical and synthetic curves, curve manipulations.                  | 07      |
| 6   | Surface Mod eling: Surface representation and surface ana lysis, analytical and         | 07      |
|     | synthetic surfaces, surface manipulations, NURBS.                                       |         |
| 7   | Solid M odeling: G eometry and t opology, s olid e ntities, s olid representation,      | 07      |
|     | fundamental of solid modeling, half spaces, boundary representation, constructive       |         |
|     | solid geometry, sweeps, solid manipulations.                                            |         |
| 8   | Features: Feature entities, feature r epresentation, three di mensional s ketching,     | 03      |
|     | parametrics, relations, constraints, feature manipulation.                              |         |
| 9   | Mass properties: Geometric and mass properties evaluation, assembly modeling,           | 04      |
|     | product data exchange                                                                   |         |
| 10  | Optimization t echnique: S ingle va riable opt imization, multi-variable                | 04      |
|     | optimization, Johnson's method of optimum design, genetic algorithm.                    |         |
|     | Total                                                                                   | 42      |

| S.  | Name of Authors / Books / Publisher                                            | Year of              |
|-----|--------------------------------------------------------------------------------|----------------------|
| No. |                                                                                | <b>Publication</b> / |
|     |                                                                                | Reprint              |
| 1   | Zeid, I., "Mastering CAD/CAM", Tata McGraw Hill.                               | 2007                 |
| 2   | Onwubiko, C., "Foundation of C omputer A ided D esign", West P ublishing       | 1989                 |
|     | Company.                                                                       |                      |
| 3   | Hsu, T. R. a nd S inha, D. K., "Computer A ided D esign: A n Integrated        | 1991                 |
|     | Approach", West Publishing Company.                                            |                      |
| 4   | Dimarogonas, A. D., "Computer Aided Machine Design", Prentice Hall.            | 1988                 |
| 5   | Mortenson, M. E., "Geometric Modeling", 3 <sup>rd</sup> Ed., Industrial Press. | 2006                 |



- 9. Objective: To introduce the mechanics of anisotropic material and to provide insight into different failure mechanisms typical of anisotropic and heterogeneous systems.
- 10. Details of Course:

| S.  | Contents                                                                           | Contact |
|-----|------------------------------------------------------------------------------------|---------|
| No. |                                                                                    | Hours   |
| 1   | Introduction: C omposite m aterials, characteristics, classification, advantages   | 2       |
|     | and typical problems.                                                              |         |
| 2   | Unidirectional L amina: Introduction, 1 ongitudinal s trength a nd s tiffness,     | 6       |
|     | transverse strength and stiffness, failure modes, thermal expansion and transport  |         |
|     | properties.                                                                        |         |
| 3   | Short Fibre Composites: Theories of stress transfer, modulus and strength of       | 4       |
|     | short fibre composites.                                                            |         |
| 4   | Analysis of a n O rthotropic L amina: H ook's l aw, s tress-strain relation for    | 6       |
|     | lamina with an arbitrary or ientation, strength of a lamina subjected to biaxial   |         |
|     | stress field.                                                                      |         |
| 5   | Analysis of Laminated C omposites: C lassical la mination theory, thermal          | 12      |
|     | stress in laminates.                                                               |         |
| 6   | Special D esign C onsiderations: A nalysis a fter ini tial f ailure, inter-laminar | 8       |
|     | stress, free edge effect, design of joints, elementary fracture mechanics concepts |         |
|     | related to composite materials.                                                    |         |
| 7   | Experimental C haracterization: Uni -axial tension test, compression test, in-     | 4       |
|     | plane shear test, three and four point bending test, determination of interlaminar |         |
|     | shear strength.                                                                    |         |
|     | Total                                                                              | 42      |

| S.  | Name of Authors / Books / Publisher                                              | Year of              |
|-----|----------------------------------------------------------------------------------|----------------------|
| No. |                                                                                  | <b>Publication</b> / |
|     |                                                                                  | Reprint              |
| 1   | Agarwal, B.D. a nd B routman, L.J., "Analysis a nd P erformance of F ibre        | 2006                 |
|     | Composites", 3 <sup>rd</sup> Ed., John Wiley & Sons.                             |                      |
| 2   | Jones, R.M., "Mechanics of Composite Materials", Taylor & Francis.               | 1998                 |
| 3   | Ashbee, K.H.G. and A shbee, H.G., "Fundamental P rinciples of F ibre R einforced | 1993                 |
|     | Composites", 2 <sup>nd</sup> Ed., CRC Press.                                     |                      |
| 4   | Daniel, I.M. a nd Ishai, O ., " Engineering M echanics of C omposite             | 2007                 |
|     | Materials", 2 <sup>nd</sup> Ed., Oxford University Press.                        |                      |
| 5   | Christensen, R .M., "Mechanics of C omposite Materials", Dover                   | 2005                 |
|     | Publications.                                                                    |                      |
| 6   | Kaw, A. K., "Mechanics of Composite Materials", 2 <sup>nd</sup> Ed., CRC Press.  | 2005                 |

#### NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering

1. Subject Code: MIN-561 Course Title: Advanced Mechanical Vibrations



- 8. Pre-requisite: Nil
- 9. O bjective: To provide de tail know ledge a bout nonlinear and random vibration with fault diagnosis of machinery.
- 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                | Contact<br>Hours |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1      | <b>Introduction:</b> Review of free and forced vibrations with and without damping.                                                                                                                                                                                                                                                     | 3                |
| 2      | <b>Isolation:</b> Vibration isolation and transmissibility; U n-damped vibration absorbers.                                                                                                                                                                                                                                             | 4                |
| 3      | <b>Multi d egree of f reedom s ystem</b> : G eneralized coordinates and coordinate coupling; O rthogonality o f modes, F ree and forced vibration of m ulti-degree of f reedom s ystems w ith a nd w ithout viscous damping; Lagrange's equation; Holzer's method. Solution of Eigen value problem, transfer matrix and modal analysis. | 12               |
| 4      | <b>Stability criterion:</b> Self ex cited vibrations; C riterion of s tability; Effect of friction on stability.                                                                                                                                                                                                                        | 4                |
| 5      | <b>Non linear vibration:</b> Free vibrations with non-linear spring force or nonlinear d amping; P hase plane; E nergy curves; Lienard's graphical construction; Method of isoclines.                                                                                                                                                   | 5                |
| 6      | <b>Vibration of c ontinuous s ystem:</b> Vibrations of s trings; F ree a nd forced l ongitudinal vi brations of pr ismatic ba rs; R itz a nd G alerkin methods.                                                                                                                                                                         | 6                |
| 7      | <b>Random vi bration:</b> Mathematical de scriptions of s tochastic processes; S tationary and e rgodicity; Gaussian r andom pr ocess, correlation functions and power spectral density.                                                                                                                                                | 4                |
| 8      | <b>Diagnostic t echniques:</b> Introduction t o di agnostic m aintenance a nd signature analysis.                                                                                                                                                                                                                                       | 4                |
|        | Total                                                                                                                                                                                                                                                                                                                                   | 42               |

| S.<br>No. | Name of Authors / Books / Publisher                                          | Year of<br>Publication<br>/Reprint |
|-----------|------------------------------------------------------------------------------|------------------------------------|
| 1         | Rao, S.S., "Mechanical Vibrations", 4 <sup>th</sup> Ed., Pearson Education.  | 2007                               |
| 2         | Meirovitch, L., "Fundamental of Vibrations", Mc-Graw Hill.                   | 2001                               |
| 3         | Inman, D.J., "Vibration and Control", John Willey & Sons.                    | 2002                               |
| 4         | Tamadonni, S. and Kelly, G.S., "Mechanical Vibrations", Mc-Graw Hill.        | 1998                               |
| 5         | Rao, J. S., "Vibration Condition Monitoring of Machines", Tata Mc-Graw Hill. | 2006                               |



- 8. Pre-requisite: Nil
- 9. Objective: To impart fundamental knowledge of the subject on noise control problems in mechanical systems.
- 10. Details of Course:

| S.  | Contents                                                                                | Contact |
|-----|-----------------------------------------------------------------------------------------|---------|
| N0. |                                                                                         | Hours   |
| 1   | <b>Introduction</b> : S ound v s noise; Time a nd f requency dom ain r epresentation,   | 6       |
|     | hearing mechanism assessment of noise, its units, human response to noise of            |         |
|     | different types- stead, fluctuating and impulsive, physiological effects of noise,      |         |
|     | control of noise, need, concepts and options, and its relation to vibrations.           |         |
| 2   | Homogeneous Wave E quation: L inearized wave equation, acoustic v elocity               | 6       |
|     | potential acoustic impedance, plane wave propagation, intensity, energy density         |         |
|     | and pow er, S imple S ource m odels, m onopole, dipole, qua drupole and linear,         |         |
|     | effect of proximity of rigid boundaries, directivity patterns.                          |         |
| 3   | Inhomogeneous Wave E quation and A erodynamic Noise T heory: E ffect of                 | 7       |
|     | solid bodi es i n f low, vortex f low; R ay A coustics propagation of s ound            |         |
|     | outdoors, di vergence, excess at tenuation factors, effects of wind, temperature        |         |
|     | gradient a nd t urbulence a nomalous pr opagation, s hadow z ones, ground a nd          |         |
|     | terrain effects, harriers, cuttings and elevation.                                      |         |
| 4   | Wave-Structure Interaction: Sound radiation from plates infinite and bounded;           | 6       |
|     | radiation ratio, sound transmission through layered media, behavior of infinite         |         |
|     | and finite panels, coincidence phenomena and design curves, sound transmission          |         |
|     | loss, fluid loading on s tructure, i mpact noi se, i ntroduction to s tatistical energy |         |
|     | analysis.                                                                               |         |
| 5   | Instrumentation: Sound m easuring equipment, microphones, pr eamplifiers,               | 5       |
|     | sound level meters, recorders, frequency analysers statistical measurements, FFT        |         |
|     | analysers.                                                                              |         |

| 6 | Noise C ontrol P rinciples: C ontrol s trategies a nd limitations, integrated       | 8  |
|---|-------------------------------------------------------------------------------------|----|
|   | approach to low noise design, typical mechanical noise sources, mechanism of        |    |
|   | noise generation-vibration, impact, flow excitation, control of solid borne and     |    |
|   | air-home noi se, c oncept of impe dance mis match, filters, silencers, damping,     |    |
|   | enclosure, absorbers, active noise control principle.                               |    |
| 7 | Case Studies: Noise control in reciprocating and rotating machinery, and fluid      | 4  |
|   | flow s ystems: e .g., g ears, be aring, pi ping s ystems, a utomobiles, a ircrafts, |    |
|   | refrigeration and air conditioning systems elements, machine tools, presses etc.,   |    |
|   | environmental noise control and receiver protection.                                |    |
|   | Total                                                                               | 42 |

| S.  | Name of Authors / Books / Publisher                                             | Year of     |
|-----|---------------------------------------------------------------------------------|-------------|
| No. |                                                                                 | Publication |
|     |                                                                                 | /Reprint    |
| 1   | Faulkner, L.L, "Handbook of Industrial Noise Control", Industrial Press.        | 2001        |
| 2   | Lyon, R.H., "Machinery Noise and Diagnostics", Butterworths.                    | 1995        |
| 3   | Norton, M.P., "Fundamentals N oise a nd Vibration A nalysis", C ambridge        | 1989        |
|     | University Press.                                                               |             |
| 4   | Rahn, C. D., "Mechatronic C ontrol of D istributed N oise a nd V ibration",     | 2001        |
|     | Springer.                                                                       |             |
| 5   | Fuller, C. C., Elliott, S.J., and Nelson, P. A., "Active Control of Vibration", | 1996        |
|     | Academic Press.                                                                 |             |
| 6   | Moser, M., Zimmermann, S. and Ellis, R., " Engineering A coustics: A n          | 2009        |
|     | Introduction to Noise Control", 2 <sup>nd</sup> Ed., Springer.                  |             |

| 1. | Subject Code: MIN-563          | Course Title:                 | Mechatronics             |
|----|--------------------------------|-------------------------------|--------------------------|
| 2. | Contact Hours: L: 3            | T: 1 P: 0                     |                          |
| 3. | Examination Duration (Hrs.): 7 | `heory <b>3</b> Practical     | 0                        |
| 4. | Relative Weightage: CWS 25     | <b>PRS 0</b> MTE <b>25</b> ET | Έ <b>50</b> PRE <b>0</b> |
| 5. | Credits: 4<br>PEC              | 6. Semester: Autumn/Spring    | 7. Subject A rea:        |

- 8. Pre-requisite: Nil
- 9. Objective: The course deals with basic principles of Mechatronics involving sensors, actuators, control systems, and microprocessor systems.
- 10. Details of Course:

| S.  | Contents                                                                               | Contact |
|-----|----------------------------------------------------------------------------------------|---------|
| No. |                                                                                        | Hours   |
| 1   | Introduction: Definition of mechatronics, measurement system, control systems,         | 2       |
|     | microprocessor based controllers, mechatronics approach.                               |         |
| 2   | Sensors and Transducers: Sensors and transducers, performance terminology,             | 7       |
|     | photoelectric t ransducers, f low t ransducers, op tical s ensors and transducers,     |         |
|     | semiconductor l asers, selection of s ensors, mechanical / el ectrical s witches,      |         |
|     | inputting data by switches.                                                            |         |
| 3   | Actuators: Actuation systems, pneumatic and hydraulic systems, process control         | 5       |
|     | valves, rotary act uators, mechanical act uation systems, electrical a ctuation        |         |
|     | systems.                                                                               |         |
| 4   | Signal C onditioning: S ignal c onditioning, filtering di gital s ignal, multiplexers, | 4       |
|     | data a cquisition, digital s ignal pr ocessing, pulse m odulation, data pr esentation  |         |
|     | systems.                                                                               |         |
| 5   | Microprocessors an d Mi crocontrollers: Microcomputer s tructure,                      | 8       |
|     | microcontrollers, applications, programmable logic controllers.                        |         |
| 6   | Modeling and Sys tem R esponse: M athematical mode ls, bond g raph m odels,            | 9       |
|     | mechanical, electrical, hydraulic and thermal systems, dynamic r esponse of            |         |
|     | systems, transfer function and frequency response, closed loop controllers.            |         |
| 7   | Design an d Mech atronics: I nput/output s ystems, computer ba sed m odular            | 7       |
|     | design, system v alidation, remote m onitoring a nd c ontrol, designing, possible      |         |
|     | design s olutions, detailed case s tudies of mechatronic s ystems used in              |         |
|     | photocopier, automobile, robots.                                                       |         |
|     | Total                                                                                  | 42      |

| S.  | Name of Authors / Books / Publisher                                                     | Year of     |
|-----|-----------------------------------------------------------------------------------------|-------------|
| No. |                                                                                         | Publication |
|     |                                                                                         | /Reprint    |
| 1   | Bolton, W., "Mechatronics", Longman.                                                    | 1999        |
| 2   | Alciatore, D. G. and Histrand, M. B., "Introduction to Mechatronics", Tata              | 2003        |
|     | McGraw Hill.                                                                            |             |
| 3   | Shetty, D. and R ichard, A.K., "Mechatronics S ystem D esign", P WS P ub.               | 1997        |
|     | Boston.                                                                                 |             |
| 4   | Mahalik, N ., " Principles, C oncept a nd A pplications: Mechatronics",                 | 2003        |
|     | Tata McGraw.                                                                            |             |
| 5   | Bishop, R.H. "Mechatronics Handbook", CRC Press.                                        | 2002        |
| 6   | Bolton, W., "Mechatronics: A Multidisciplinary Approach", 4 <sup>th</sup> Ed., Prentice | 2009        |
|     | Hall.                                                                                   |             |
| 7.  | Merzouki R., Samantaray A. K., Pathak P.M., Bouamama B. Ould, Intelligent               | 2013        |
|     | Mechatronic Systems: Modeling, Control and Diagnosis, Springer                          |             |



- 8. Pre-requisite: Nil
- 9. Objective: To impart knowledge on analysis of smart materials for various applications such a s s ensors, a ctuators a nd controllers with reference t o v arious s tructures a nd devices.
- 10. Details of Course:

| S.  | Contents                                                                               | Contact |
|-----|----------------------------------------------------------------------------------------|---------|
| No. |                                                                                        | Hours   |
| 1   | Intelligent Mat erials: P rimitive f unctions of int elligent ma terials; Intelligence | 2       |
|     | inherent in materials; M aterials int elligently ha rmonizing w ith humanity;          |         |
|     | Intelligent biological materials.                                                      |         |
| 2   | Smart Materials an d S tructural S ystems: A ctuator m aterials; Sensing               | 4       |
|     | technologies; Microsensors; Intelligent systems; Hybrid smart materials; Passive       |         |
|     | sensory smart structures; Reactive actuator-based smart structures; Active sensing     |         |
|     | and reactive smart structures; Smart skins.                                            |         |
| 3   | Electro-Rheological Fluids: Suspensions and electro, reheological fluids; The          | 4       |
|     | electro- rheological phenomenon; Charge migration mechanism for the dispersed          |         |
|     | phase; Electro rehological fluid actuators.                                            |         |
| 4   | Piezoelectric Ma terials: Ba ckground; P iezoelectricity; Industrial pi ezoelectric    | 3       |
|     | materials; Smart materials featuring piezoelectric elements.                           |         |
| 5   | Shape Memory Materials: Background on shape memory alloys; Applications                | 4       |
|     | of s hape m emory alloys; C ontinuum a pplications: s tructures a nd machine           |         |
|     | systems; D iscrete a pplications; Impediments to applications of s hape me mory        |         |
|     | alloys; Shape memory plastics.                                                         |         |
| 6   | Fiber Optics: Overview; Light pr opagation i n a n opt ical f iber; E mbedding         | 3       |
|     | optical fibers in fibrous polymeric thermosets; Fiberoptic strain sensors.             |         |
| 7   | The Piezoelectric Vibrations Absorber Systems: Introduction; The single mode           | 7       |
|     | absorber, t heory, de sign s olution, e xtension i ncluding vi scous m odal da mping,  |         |

|   | the electromechanical coupling coefficient, inductance, experimental results; The |    |
|---|-----------------------------------------------------------------------------------|----|
|   | multimode absorber, derivation of transfer function, design solution, self-tuning |    |
|   | absorber, performance function, control scheme.                                   |    |
| 8 | Modeling of Shells: Derivation of the basic shell equations, equation of motion,  | 10 |
|   | equations for specific geometries and cylindrical shell.                          |    |
| 9 | Modeling of plates and beams: Plate equations and beam equations.                 | 5  |
|   | Total                                                                             | 42 |

| S.  | Name of Authors / Books / Publisher                                            | Year of     |
|-----|--------------------------------------------------------------------------------|-------------|
| No. |                                                                                | Publication |
|     |                                                                                | /Reprint    |
| 1   | Gandhi, M. V. a nd T hompson, B. S., "Smart M aterials and structures",        | 1992        |
|     | Chapman & Hall.                                                                |             |
| 2   | Banks, H. T., Smith, R. C. and Q ang, Y. W., "Smart M aterial s tructures:     | 1996        |
|     | Modeling, Estimation and Control", John Wiley & Sons.                          |             |
| 3   | Gabbert, U. a nd T zou, H. S., "Smart S tructures and Structronic S ystem",    | 2001        |
|     | Kluwer Academic Publishers.                                                    |             |
| 4   | Preumont, A., "Vibration C ontrol of A ctive S tructures", K luwer A cademic   | 2002        |
|     | Publishers.                                                                    |             |
| 5   | Cheng, F. Y., Jiang, H. and Lou, K., "Smart Structures: Innovative Systems for | 2008        |
|     | Seismic Response Control", CRC Press.                                          |             |

#### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering

1. Subject Code: MIN-566 Course Title: Computer Aided Analysis of Mechanical Systems



- 8. Pre-requisite: Nil
- 9. Objectives: To i ntroduce computer-based de sign t ools for ana lyzing t he ki nematics and dynamics of mechanical systems.
- 10. Details of Course:

| S.  | Particulars                                                               | Contact |
|-----|---------------------------------------------------------------------------|---------|
| No. |                                                                           | Hours   |
| 1   | Introduction: Introduction to mechanical systems analysis.                | 2       |
| 2   | Kinematic M odeling: Modeling t he k inematics of mechanical systems;     | 4       |
|     | Vector loop methods, vector chain methods.                                |         |
| 3   | Solution o f K inematic M odels: S olution of kinematic models f or       | 8       |
|     | displacements, velocities, accelerations; Direct analytical solutions of  |         |
|     | position, velocity, acceleration problems; Numerical solution of position |         |
|     | problem; Matrix method solutions of velocity and acceleration problems.   |         |
| 4   | <b>Dynamic Mod eling</b> : M odeling t he dynamics of mechanical systems; | 6       |
|     | Newton-Euler methods t o define dynamic constraints be tween forces,      |         |
|     | moments, and accelerations, energy methods to define dynamic constraints  |         |
|     | between input and output links.                                           |         |
| 5   | Solution of Dynamics Models: Solution of inverse dynamics models for      | 14      |
|     | joint-link forces and torques, solution of forward dynamics models using  |         |
|     | numeric integration, model formulation into standard format for solution, |         |
|     | Euler's method of integration, R unge-Kutta methods of integration,       |         |
|     | modeling and analysis of the Trebuchet mechanism.                         |         |
| 6   | Advanced D ynamic A nalysis & S imulation: Bond graph m odeling o f       | 8       |
|     | dynamic s ystems, generation of s ystem e quations, c ausality, and       |         |
|     | simulation.                                                               |         |
|     | Total                                                                     | 42      |

| S.  | Name of Authors / Books / Publisher                                  | Year of              |
|-----|----------------------------------------------------------------------|----------------------|
| No. |                                                                      | <b>Publication</b> / |
|     |                                                                      | Reprint              |
| 1   | Norton R., "Design of Machinery", McGraw-Hill                        | 1992                 |
| 2   | Palm W. J., "Introduction to MATLAB 6 for Engineers", McGraw-        | 2000                 |
|     | Hill                                                                 |                      |
| 3   | Nikravesh, P. E., "Computer-Aided Analysis of Mechanical             | 1988                 |
|     | Systems", Prentice Hall.                                             |                      |
| 4   | Haug, E. J., "Computer A ided A nalysis a nd O ptimization of        | 1984                 |
|     | Mechanical System Dynamics", Springer-Verlag.                        |                      |
| 5   | Mukherjee, A., Karmaker, R. and Samantaray, A.K., "Bond Graph in     | 2007                 |
|     | Modeling, Simulation and Fault Identification", I & K International. |                      |



- 8. Pre-requisite: Nil
- 9. Objective: The course aims is to provide the basics of Computer Graphics needed for CAD/ CAM applications.
- 10. Details of Course:

| S.  | Contents                                                                      | Contact |
|-----|-------------------------------------------------------------------------------|---------|
| No. |                                                                               | Hours   |
| 1   | Introduction: Role of Computer Graphics in CAD/CAM, configuration             | 04      |
|     | of g raphic w orkstations, m enu de sign a nd G raphical U ser Interfaces     |         |
|     | (GUI), customization and parametric programming.                              |         |
| 2   | Geometric Transformations and Projections: Vector representation of           | 08      |
|     | geometric entities, homogeneous coordinate systems, fundamentals of 2D        |         |
|     | and 3D t ransformations: R eflection, t ranslation, r otation, s caling, a nd |         |
|     | shearing, various types of projections.                                       |         |
| 3   | Curves: Modeling pl anar a nd s pace c urves, a nalytical a nd s ynthetic     | 08      |
|     | approaches, non-parametric and parametric equations.                          |         |
| 4   | Surfaces: Modeling of bi-parametric freedom surfaces, Coons, Bezier,          | 08      |
|     | B-spline, and NURBS surfaces, surface manipulation techniques.                |         |
| 5   | Geometric Mod eling: Geometric mod eling techniques, wireframe                | 10      |
|     | modeling, solid modeling: B-Rep, CSG, hybrid modelers, feature based,         |         |
|     | parametric and variational modeling.                                          |         |
| 6   | Data Structure in Computer G raphics: Introduction to product da ta           | 04      |
|     | standards and data structures, data-base integration for CIM.                 |         |
|     | Total                                                                         | 42      |

| S.  | Name of Authors / Books / Publisher                                            | Year of      |
|-----|--------------------------------------------------------------------------------|--------------|
| No. |                                                                                | Publication/ |
|     |                                                                                | Reprint      |
| 1   | Rogers, D. F., a nd A dams, J. A., "Mathematical E lements f or                | 1989         |
|     | Computer Graphics", McGraw Hill.                                               |              |
| 2   | Faux, I. D. and Pratt, M. J., "Computational Geometry for Design and           | 1979         |
|     | Manufacture", Ellis Horwood Ltd.                                               |              |
| 3   | Mortenson, M. E., "Geometric Modeling", 3 <sup>rd</sup> Ed., Industrial Press. | 2006         |
| 4   | Zeid, I., "CAD/CAM: Theory and Practice", Tata McGraw Hill.                    | 1998         |
| 5   | Choi, B. K., "Surface Modeling for CAD/CAM", John Wiley & Sons                 | 1991         |



- 8. Pre-requisite: Nil
- 9. Objective: To i mpart k nowledge of robotic vi sion s ystems, r obot m odeling, t rajectory planning, manipulator control, and design and control issues of mobile robots, space robots etc.
- 10. Details of Course:

| S.  | Contents                                                                 | Contact |
|-----|--------------------------------------------------------------------------|---------|
| No. |                                                                          | Hours   |
| 1   | Introduction: Review, forward and inverse kinematics, dynamics           | 02      |
| 2   | Robots with Flexible Elements: Robots with Flexible Joints, Robots with  | 04      |
|     | Flexible Links                                                           |         |
| 3   | Parallel M echanisms an d R obots: Definitions, T ype S ynthesis o f     | 06      |
|     | Parallel Mechanisms, Kinematics, Velocity and Accuracy Analysis,         |         |
|     | Singularity A nalysis, Workspace A nalysis, Static A nalysis a nd Static |         |
|     | Balancing, Dynamic Analysis, Design                                      |         |
| 4   | Mobile Robots:                                                           | 08      |
|     | Wheeled mobile rob ots: mobile robot ki nematics, M obility of W heeled  |         |
|     | Robots, State-Space Models of Wheeled Mobile Robots, Wheeled Robot       |         |
|     | Structures, sensors for mobile robots, planning and navigation           |         |
|     | Legged r obots: Analysis of C yclic W alking, C ontrol of B iped R obots |         |
|     | Using Forward Dynamics, Biped Robots in the ZMP Scheme, Multilegged      |         |
|     | Robots, Performance Indices                                              |         |
| 5   | Cooperative M anipulators: Kinematics and Statics, Cooperative T ask     | 03      |
|     | Space, Dynamics and Load Distribution, Task-Space Analysis, Control      |         |
| 6   | Advanced R obots: Modeling and control of s pace r obots, unde rwater    | 06      |
|     | robots                                                                   |         |
| 7   | Control of Manipulators: Manipulator control problem; Linear and non     | 04      |
|     | linear control schemes; PID control scheme; Force control.               |         |

| 8 | Image P rocessing and Analysis with V ision S ystems: Acquisition of            | 05 |
|---|---------------------------------------------------------------------------------|----|
|   | images, digital images, image processing techniques, noise reduction, edge      |    |
|   | detection, i mage a nalysis, obj ect r ecognition b y f eatures, application of |    |
|   | vision systems                                                                  |    |
| 9 | Fuzzy Logic Control: Crisp values v/s fuzzy values, fuzzy sets: Degrees         | 04 |
|   | of m embership a nd t ruth, f uzzification, f uzzy inference rule ba se,        |    |
|   | defuzzification, simulation of fuzzy logic controller, application of fuzzy     |    |
|   | logic in robotics                                                               |    |
|   | Total                                                                           | 42 |

| S.<br>No. | Name of Authors/ Books / Publisher                                                                                                                  | Year of<br>Publication/<br>Reprint |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1         | Niku, S. B., "Introduction t o R obotics: A nalysis, S ystems, Applications", Prentice Hall.                                                        | 2001                               |
| 2         | Angeles, J., "Fundamentals of R obotic M echanical S ystems:<br>Theory, Methods and Algorithms", Springer                                           | 2003                               |
| 3         | Craig, J. J., "Introduction t o R obotics: Mechanics & Control", Addison Wesley.                                                                    | 1989                               |
| 4         | Siegwart, R., N ourbakhsh, I. R ., " <u>Introduction t o A utonomous</u><br><u>Mobile Robots</u> ", MIT Press.                                      | 2004                               |
| 5         | Xu, Y. and Kanade, T., "Space Robotics: Dynamics and Control",<br>Kluwer Academic Publishers.                                                       | 1993                               |
| 6         | Robotics, V ision a nd C ontrol: F undamental A lgorithms i n<br>MATLAB, Springer                                                                   | 2013                               |
| 7         | Siciliano, B runo, Khatib, O ussama, H andbook of R obotics, Springer                                                                               | 2008                               |
| 8         | Merzouki R., Samantaray A. K., Pathak P.M., Bouamama B. Ould,<br>Intelligent M echatronic S ystems: M odeling, C ontrol a nd<br>Diagnosis, Springer | 2013                               |
#### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering



- 8. Pre-requisite: Nil
- 9. Objective: To cover c oncepts, t echniques a nd tools f or de veloping e xpert s ystems f or various engineering systems.
- 10. Details of Course:

| S.  | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hours   |
| 1   | <b>Introduction</b> : O verview: E volution and c haracteristics of know ledge-based systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02      |
| 2   | <b>Introduction to Expert System Languages:</b> CLIPS (Clanguage integrated production system) and JESS (java expert system shell).                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06      |
| 3   | Pattern Matching: Basic and advanced pattern matching techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04      |
| 4   | <b>Modular Design and Control</b> : Salience, phases and control facts, modules and execution control                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04      |
| 5   | <b>Knowledge R epresentation</b> : Productions, s emantic nets, s chemata, frames, logic and set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04      |
| 6   | <b>Methods of I nferences</b> : Inference r ules, r esolution s ystem, forward a nd backward chaining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04      |
| 7   | <b>Reasoning under Uncertainty</b> : Hubert Dreyfus "From S ocrates to E xpert<br>Systems: The Limits and Dangers of C omputational R ationality" CSUS<br>Library vi deo c ollection, h ypothetical r easoning and ba ckward i nduction,<br>temporal r easoning and M arkov c hains, unc ertainty i n i nference c hains;<br>Probability-based techniques: Objective probability, experimental probability,<br>subjective probability, Bayes' theorem, inexact or heuristic reasoning; Inexact<br>reasoning: uncertainty and rules, certainty factors, Dempster-Shafer theory. | 12      |

| 8 | <b>Design of Expert Systems</b> : Approximate reasoning, fuzzy expert systems. | 06 |
|---|--------------------------------------------------------------------------------|----|
|   | Total                                                                          | 42 |

| S.  | Name of Authors / Books / Publisher                                           | Year of              |
|-----|-------------------------------------------------------------------------------|----------------------|
| No. |                                                                               | <b>Publication</b> / |
|     |                                                                               | Reprint              |
| 1   | Giarratano, J. C. and Riley, G. D., "Expert Systems: Principles and           | 2004                 |
|     | Programming", 4 <sup>th</sup> Ed., Course Technology.                         |                      |
| 2   | Gonzalez, A., a nd Dankel, D., "The Engineering of K nowledge-                | 1994                 |
|     | Based Systems", Prentice Hall.                                                |                      |
| 3   | Jackson, P., "Introduction t o E xpert Systems", 3 <sup>rd</sup> Ed., Addison | 1998                 |
|     | Wesley.                                                                       |                      |
| 4   | Akerkar, R. and Sajja, P., "Knowledge-Based Systems", Jones &                 | 2009                 |
|     | Bartlett Publishers.                                                          |                      |

| NAME OF DEPTT./CENTRE:          | Mechanical & Ind<br>Department | dustrial Engineering    |   |
|---------------------------------|--------------------------------|-------------------------|---|
| 1. Subject Code: MIN-573        | Course Title: Design           | n for Manufacturability |   |
| 2. Contact Hours: L: 3          | T: 1                           | P: 0                    |   |
| 3. Examination Duration (Hrs.): | Theory <b>3</b>                | Practical 0             | ] |
| 4. Relative Weightage: CWS 25   | BARS 0 FE                      | 25 PRE 50               | 0 |
| 5. Credits: <b>4</b> 6. Sem     | nester: Both                   | 7.Subject Area: DEC     |   |

- 8. Pre-requisite: Nil
- 9. Objective: To i ntroduce s tudents a bout i nter-relationship be tween va rious d esign, manufacture and assembly related activities.
- 10. Details of Course:

| S. No. | Contents                                                              | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Introduction to Design for Manufacturability (DFM),     | 10                   |
|        | fundamentals of manufacturing technology and the interrelationship    |                      |
|        | between design and manufacturing p rocesses. Organizational           |                      |
|        | changes in DFM.                                                       |                      |
| 2.     | Concurrent E ngineering: Need f or con current en gineering,          | 8                    |
|        | industrial practices of concurrent engineering.                       |                      |
| 3.     | Automation: Automation of design and manufacturing functions in       | 7                    |
|        | CIM, computer aided process planning, Design for X, approaches to     |                      |
|        | DFM.                                                                  |                      |
| 4.     | Design Knowledge Representation: Design, manufacturing, and re-       | 10                   |
|        | design considerations, D esign a nd m anufacturing know ledge         |                      |
|        | representation.                                                       |                      |
| 5.     | Evaluation o f M anufacturability: E valuation of t he                | 10                   |
|        | manufacturability of a part de sign, va rious m ethods f or d efining |                      |
|        | manufacturability index, interpretation of MI value.                  |                      |
|        | Total                                                                 | 42                   |

| S. No. | Name of Books / Authors                                                | Year of     |
|--------|------------------------------------------------------------------------|-------------|
|        |                                                                        | Publication |
| 1.     | Boothroyd G ., D ewhurst P ., a nd K night W ., " Product D esign f or | 2002        |
|        | Manufacture and Assembly", 2nd Edition, Marcel Dekker.                 |             |
| 2.     | Bralla J. G., "Design for Manufacturability Handbook", 4th edition,    | 1998        |
|        | McGraw Hill.                                                           |             |
| 3.     | Huang G. Q., "Design for X: Concurrent Engineering Imperatives",       | 1996        |
|        | Chapman & Hall.                                                        |             |
| 4.     | Kusiak A., "Concurrent Engineering: Automation, Tools, and             | 1993        |
|        | Techniques", Wiley.                                                    |             |

| NAI | ME OF DEPTT./CENTRE:         | Mechanical & Indu        | strial Engineering          |         |
|-----|------------------------------|--------------------------|-----------------------------|---------|
| 1.  | Subject Code: MIN-574        | Course Title: M          | aintenance Manager          | nent    |
| 2.  | Contact Hours : L: 3         | T: 1                     | P: 0                        |         |
| 3.  | Examination Duration (Hrs.): | Theory 3                 | Practical                   | 0       |
| 4.  | Relative Weightage :CWS      | <b>25</b> PRS <b>0</b> M | ITE 25 ETE 50               | ) PRE 0 |
| 5.  | Credits: <b>4</b> 6. Sen     | nester : Both 7          | Subject area: <b>DEC/DH</b> | IC      |
| 8.  | Pre – requisite: Nil         |                          |                             |         |

9. Objective: To expose students about the various policies, strategies, and schedules of maintenance applicable in Indian Industries.

10. Details of Course:

| S. No. | Contents                                                                              |       |  |
|--------|---------------------------------------------------------------------------------------|-------|--|
|        |                                                                                       | Hours |  |
| 1      | Introduction: Importance of maintenance, Objectives, duties, functions and            | 04    |  |
|        | responsibilities of maintenance engineering department, Organization and structure    |       |  |
|        | of maintenance systems.                                                               |       |  |
| 2      | Maintenance Policies and Planning: Maintenance strategies, advantages and             | 06    |  |
|        | disadvantages of each strategy, Planned maintenance procedure, advantage of           |       |  |
|        | planned maintenance, Scientific maintenance, Safety in maintenance.                   |       |  |
| 3      | System Reliability: Quantitative estimation of reliability economies of introducing a | 06    |  |
|        | standby unit into the production system, Optimum design configuration of a            |       |  |
|        | series/parallel system, Breakdown time distribution.                                  |       |  |
| 4      | Maintenance Activities: Optimal overhaul/repair or replacement policies for           | 04    |  |
|        | equipment subject to breakdown, Budgeting and control, Production maintenance         |       |  |
|        | integration.                                                                          |       |  |
| 5      | Replacement Decisions: Economic models, block replacement policy, age                 | 08    |  |
|        | replacement policy, replacement policies to minimize downtime, Economics of           |       |  |
|        | preventive maintenance.                                                               |       |  |
| 6      | Maintainability and Availability: Economics of maintainability and reliability,       | 08    |  |
|        | Maintainability increment, Equipment and mission availability.                        |       |  |
| 7      | Maintenance Organization: Computer applications in maintenance management,            | 06    |  |
|        | automatic chalk out equipment kits capabilities and limitations, Management           |       |  |
|        | information system for maintenance.                                                   |       |  |
|        | Total                                                                                 | 42    |  |

| S. No. | Name of Books / Authors / Publisher                                            | Year of     |
|--------|--------------------------------------------------------------------------------|-------------|
|        |                                                                                | Publication |
| 1      | Dhillon B.S., "Engineering Maintenance: a Modern Approach". 1 edition, CRC.    | 2002        |
| 2      | Kelly A., "Maintenance Planning and Control", Butterworth-Heinemann.Ltd,       | 1983        |
|        | London.                                                                        |             |
| 3      | Niebel B.W., "Engineering Maintenance Management", Marcel Dekker, New          | 1994        |
|        | York.                                                                          |             |
| 4      | Cliffton R. H., "Principle of Planned Maintenance", McGraw Hill Inc. New York. | 1983        |
| 5      | Heintzelman J. E., "Handbook of Maintenance Management", Prentice-Hall Inc.,   | 1976        |
|        | Englewood Cliffs, New Jersey.                                                  |             |

#### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering

1. Subject Code: MIN-575 Course Title: Product Design and Development

| 2. | Contact Hours:          | L: 3        | T: 1     | P: 0    |               |         |
|----|-------------------------|-------------|----------|---------|---------------|---------|
| 3. | Examination Duration (I | Hrs.): Theo | ry: 3    | Practic | al: 0         |         |
| 4. | Relative Weightage: CW  | VS: 25      | PRS: 0   | MTE: 25 | ETE: 50       | PRE: 0  |
| 5. | Credits: 4              | 6. Semeste  | er: Both |         | 7. Subject Ar | ea: DEC |

- 8. Pre–requisite: Nil
- 9. Objective: T o e xpose t he s tudents t o the c oncept of de sign f or X, c oncurrent e ngineering, r everse engineering, and rapid prototyping techniques.
- 10. Details of Course:

| S. No. | Contents                                                                  | Contact<br>Hours |  |  |  |
|--------|---------------------------------------------------------------------------|------------------|--|--|--|
| 1      | Product Design: Traditional and modern design processes; Organization     | 06               |  |  |  |
|        | objectives; Innovation, creation, and diffusion techniques; Evaluation of |                  |  |  |  |
|        | new product ideas – functional, technological, ecological, legal.         |                  |  |  |  |
| 2      | Product Mod eling and R everse E ngineering: Wireframe modeling;          | 08               |  |  |  |
|        | Surface m odeling – boundary representation; S olid m odeling – CSG;      |                  |  |  |  |
|        | Concept of reverse engineering.                                           |                  |  |  |  |
| 3      | Product D ata E xchange: N eutral f ile formats f or pr oduct d ata       |                  |  |  |  |
|        | exchange–DXF, IGES, STEP.                                                 |                  |  |  |  |
| 4      | Concurrent Engineering: Concept of concurrent engineering; Design for     | 10               |  |  |  |
|        | X; D esign for ma nufacturability (DFM); D esign for a ssemblability      |                  |  |  |  |
|        | (DFA); Design for reliability (DFR); Design for quality (DFQ).            |                  |  |  |  |
| 5      | Rapid P rototyping M ethods: Liquid b ased R P m ethods –                 | 12               |  |  |  |
|        | stereolithography a pparatus (SLA), s olid g round c uring (SGC), s olid  |                  |  |  |  |
|        | creation s ystem (SCS), etc.; Solid based RP methods: Fused deposition    |                  |  |  |  |
|        | modeling (FDM), laminated object manufacturing (LOM), etc.; Powder        |                  |  |  |  |
|        | based R P m ethods- selective laser s intering (SLS), 3D printing (3DP),  |                  |  |  |  |
|        | ballistic particle manufacturing (BPM), etc.                              |                  |  |  |  |
|        | Total                                                                     | 42               |  |  |  |

| S. No. | Name of Books / Authors / Publisher                                            | Year of              |
|--------|--------------------------------------------------------------------------------|----------------------|
|        |                                                                                | <b>Publication</b> / |
|        |                                                                                | Reprint              |
| 1      | Andrearsen, M. M., a nd H ein, L., "Integrated Product                         | 1987                 |
|        | Development", Springer.                                                        |                      |
| 2      | Huang, G. Q., "Design for X: Concurrent Engineering Imperatives",              | 1996                 |
|        | Chapman and Hall.                                                              |                      |
| 3      | Chitale, A . K . a nd G utpa, R . C ., " Product D esign a nd                  | 1997                 |
|        | Manufacturing", Prentice Hall.                                                 |                      |
| 4      | ZeidI., "CAD/CAM: Theory and Practice", Tata McGraw Hill.                      | 1998                 |
| 5      | Mortenson, M. E., "Geometric Modeling", 3 <sup>rd</sup> Ed., Industrial Press. | 2006                 |
| 6      | Boothroyd G ., D ewhurst P ., a nd K night, "Product D esign f or              | 2002                 |
|        | Manufacture and Assembly", 2 <sup>nd</sup> Ed., Marcel Dekker.                 |                      |
| 7      | Chua, C. K and. Leong, K. F., "Rapid Prototyping: Principles and               | 1997                 |
|        | Applications in Manufacturing", John Wiley & Sons.                             |                      |

| NA | JAME OF DEPTT.CENTER: Mechanical and Industrial Engineering                   |               |              |        |                 |       |
|----|-------------------------------------------------------------------------------|---------------|--------------|--------|-----------------|-------|
| 1. | Subject Code: MIN-576 Course Title: Machine Tool Design and Numerical Control |               |              |        |                 |       |
| 2. | Contact Hours:                                                                | L: 3          |              | T:1    | P: 0            |       |
| 3. | Examination Duration                                                          | on (Hrs.): Th | eory: 3      |        | Practical: 0    |       |
| 4. | Relative Weightage:                                                           | CWS:25        | PRS:0        | MTE:25 | ETE: 50         | PRE:0 |
| 5. | Credits: 4                                                                    | 6. Se         | mester: Both | 7. Su  | bject Area: DEC | C/DHC |
| 8. | Pre – requisite: Ni                                                           | 1             |              |        |                 |       |

- 9. Objective: To introduce various components of numerically controlled machine tools and their application in automated manufacturing systems.
- 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                             | Contact<br>Hours |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1      | <b>Machine Tool Design</b> : General requirements; Electrical and hydraulic drives of machine tools; Layout of gear boxes; Hydraulic, electric and mechanical stepless speed regulations; Design and analysis of guideways; Bed; Column and Spindle. | 16               |
| 2      | <b>Numerical Control (NC):</b> Introduction to numerical control; Components of NC systems; Open and close loop NC; Types of numerical control: Point-to-point, straight cut, and continuous path NC; Drives and controls; NC-tape coding standards. | 04               |
| 3      | <b>NC Part Programming Methods</b> : Structure of NC part program; NC word formats; Introduction to G and M codes; Manual programming methods; Computer-assisted programming methods; APT part programming.                                          | 10               |
| 4      | <b>Extensions of NC</b> : Concepts of CNC, machining center, and DNC; CNC and DNC efficiency; Tooling for NC/CNC.                                                                                                                                    | 04               |
| 5      | <b>CNC Part Programming</b> : Tool motion commands; Tool length offset; Cutter diameter compensation command; fixed cycle command; Scaling; rotation; Mirror image; Macros programming etc.                                                          | 08               |
|        | Total                                                                                                                                                                                                                                                | 42               |

| S. No. | Name of Books / Authors / Publisher                                                                | Year of<br>Publication/<br>Reprint |
|--------|----------------------------------------------------------------------------------------------------|------------------------------------|
| 1.     | Mehta N. K.," Machine Tool Design and Numerical Control", 3 <sup>rd</sup> Edition Tata McGraw Hill | 2012                               |
| 2.     | Koren Y., "Computer Control of Manufacturing Systems", McGraw                                      | 1983                               |
| 3.     | Rapello R. G. "Essentials of Numerical Control", Prentice Hall Inc.<br>Englewood                   | 1986                               |
| 4.     | Chen S, and Lin J., "Computer Numerical Control: From Programming to                               | 1994                               |
| 5.     | Sava M., and Pusztai J., "Computer Numerical Control Programming",<br>Prentice                     | 1990                               |
| 6.     | Rao P. N., Tewari N. K, and Kundra T. K., "Computer Aided Manufacturing",                          | 1993                               |
| 7.     | Steve K. and Gill A., "CNC Technology and Programming", McGraw                                     | 1997                               |

#### NAME OF DEPTT./CENTRE: Mechanical and Industrial Engineering



#### 8. Pre – requisite: Nil

9. Objective: This course aims to expose the students to the concepts of automation theory and its applications in various fields of manufacturing.

#### 10. Details of Course:

| S. No. | Contents                                                                          |    |
|--------|-----------------------------------------------------------------------------------|----|
| 1      | Basic Concepts: Introduction of Mechanization and Automation. Classification and  | 06 |
| -      | Strategies of Automation Reasons for and Arguments against Automation             | 00 |
|        | Mechanical, Electrical, Hydraulic, and Pneumatic Devices and Controls             |    |
| 2      | High Volume Manufacturing or Hard Automation: Automated Flow Lines, Types of      | 06 |
|        | Automatic Transfer Mechanisms, Design and Fabrication Considerations, Analysis of |    |
|        | Automated Flow Lines.                                                             |    |
| 3      | Assembly Automation: Assembly Systems and their Types, Manual Assembly Lines      | 16 |
|        | and Line Balancing, Automated Assembly Lines and their Types, Automatic           |    |
|        | Assembly Transfer Systems, Automatic Feeding and Orienting Devices:- Vibratory    |    |
|        | and Mechanical Feeders and their types, Orientation of Parts, Performance and     |    |
|        | Economics of Assembly Systems, Feasibility Study for Assembly Automation.         |    |
| 4      | Design for Assembly: Design for Manual Assembly, Design for High-Speed            | 04 |
|        | Automatic Assembly, Design for Robot Assembly                                     |    |
| 5      | Flexible Automation: Introduction of Group Technology (GT), Steps in Implementing | 06 |
|        | GT, Part Families and Machine Cell Formation, Introduction of Flexible            |    |
|        | Manufacturing Systems (FMS).                                                      |    |
| 6      | Programmable Automation: Brief Introduction of Numerical Control (NC), Computer   | 04 |
|        | Numerical Control (CNC), Machining Centers, Programmable Robots, Direct           |    |
|        | Numerical Control (DNC), and Adaptive Control.                                    |    |
|        | Total                                                                             | 42 |

| S. No. | Name of Authors / Books / Publisher                                                     | Year of     |
|--------|-----------------------------------------------------------------------------------------|-------------|
|        |                                                                                         | Publication |
| 1      | Groover M.P., "Automation, Production systems and Computer Integrated                   | 2005        |
|        | Manufacturing", 2 <sup>nd</sup> Edition, Prentice Hall.                                 |             |
| 2      | Boothroyd G., "Assembly Automation and Product Design", 2 <sup>nd</sup> Edition, Marcel | 1992        |
|        | Dekker CRC.                                                                             |             |
| 3      | Boothroyd G., Dewhurst P., Knight W. and Marcel Dekker, "Product Design for             | 2002        |
|        | Manufacture and Assembly", 2 <sup>nd</sup> Edition, Taylor & Francis.                   |             |
| 4      | Boothroyd G., Poli C., Murch L. E., "Automatic Assembly", Marcel Dekker,                | 1982        |
|        | New York.                                                                               |             |
| 5      | Tergan V., Andreev I. and Lieberman B., "Fundamentals of Industrial                     | 1986        |
|        | Automation", 1 <sup>st</sup> Edition, Mir Publishers.                                   |             |

#### NAME OF DEPTT./CENTRE:Department of Mechanical and Industrial Engineering

### 1. Subject Code: MIN-578Course Title: Computer Aided Process Planning

| 2. | Contact Hours: L: 3           | T: 1                        | P: 0                |   |
|----|-------------------------------|-----------------------------|---------------------|---|
| 3. | Examination Duration (Hrs.) : | Theory <b>3</b>             | Practical           | 0 |
| 4. | Relative Weightage: CWS 25    | PRS 0 ITE E 25              | P 50                | 0 |
| 5. | Credits: <b>4</b> 6. Semest   | ter: <b>Both</b> 7. Subject | ct Area: <b>DEC</b> |   |

- 8. Pre-requisite: Nil
- 9. O bjective: To impart knowledge on the integration of design and manufacturing functions leading to the concepts of process planning.

#### 10. Details of Course:

| S. No. | Contents                                                                      | Contact |
|--------|-------------------------------------------------------------------------------|---------|
|        |                                                                               | Hours   |
| 1.     | Introduction: t raditional pr ocess pl anning, product de sign e valuation,   | 5       |
|        | various steps in process planning.                                            |         |
| 2.     | Group Technology: Introduction, advantages, part families, classification     | 10      |
|        | and coding systems, production flow analysis, design of machine cells.        |         |
| 3.     | Concepts R elated to P rocess P lanning: M achinability d ata s ystem,        | 5       |
|        | cutting condition optimization.                                               |         |
| 4.     | Automated Process P lanning: A dvantages of a utomated pr ocess               | 12      |
|        | planning, various a pproaches t o pr ocess pl anning; V ariant pr ocess       |         |
|        | planning, its f eatures a nd different s tages, di fferent va riant s ystems; |         |
|        | Generative and semi-generative pr ocess pl anning, its f eatures, design      |         |
|        | strategies, planning, modeling and coding scheme, decision mechanisms;        |         |
|        | Process capability analysis, intelligent process planning system; Artificial  |         |
|        | intelligence overview a nd application i n pr ocess pl anning; V arious       |         |
|        | recent process planning systems; Case studies.                                |         |
| 5.     | Interfaces of P rocess P lanning: I ntegrating with loading, s cheduling,     | 10      |
|        | MRP II, and capacity planning and other shop floor functions.                 |         |
|        | Total                                                                         | 42      |

| S. No. | Name of Authors / Books / Publisher                                      | Year of              |
|--------|--------------------------------------------------------------------------|----------------------|
|        |                                                                          | <b>Publication</b> / |
|        |                                                                          | Reprint              |
| 1.     | Chang, T.C. and Wysk, R.A, "An Introduction to Automated Process         | 1985                 |
|        | Planning", Prentice-Hall.                                                |                      |
| 2.     | Gallagher, C.C and Knight, W.A., "Group Technology: Production           | 1986                 |
|        | Method in Manufacturing", Ellis Horewood.                                |                      |
| 3.     | Nilsson, N.J., "Principles of Artificial Intelligence", Springer Verlag. | 1982                 |
| 4.     | Cornelius, L.T, "Computer A ided and Integrated M anufacturing           | 2003                 |
|        | Systems: M anufacturing P rocesses", W orld S cientific P ublishing      |                      |
|        | Company.                                                                 |                      |

| NA | NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering |  |  |  |  |
|----|----------------------------------------------------------------------------|--|--|--|--|
| 1. | Subject Code:MIN-579Course Title:Information Systems & Data Management     |  |  |  |  |
| 2. | Contact Hours: L: 3 T: 1 P: 0                                              |  |  |  |  |
| 3. | Examination Duration (Hrs.): Theory 3 Practical 0                          |  |  |  |  |
| 4. | Relative Weightage: CWS 25 PRS 0 MTE 25 ETE 50 PRE 0                       |  |  |  |  |
| 5. | Credits: <b>4</b> 6. Semester: Both 7. Subject Area : <b>DEC/DHC</b>       |  |  |  |  |
| 8. | Pre – requisite: Nil                                                       |  |  |  |  |

9. Objective: To expose the students to various information systems and to familiarize with data based systems.

10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact<br>Hours |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.     | Introduction: role of information system, the function of information system, determination of informational need.                                                                                                                                                                                                                                                                                                                                                     | 4                |
| 2.     | Information processing concepts: historical perspective, today's status, systems<br>approach and analysis, concepts of data and information, data collection, data or<br>information, data and information storage, data processing and information<br>generation, transmission of data and information and the information economics of<br>information.                                                                                                               | 10               |
| 3.     | Information system analysis: overview of system, management and formal<br>information systems, hierarchical and system approach to information systems design<br>and their applications, tailoring the information system to meet specific information<br>requirements using filtering monitoring, interrogative and external methods.                                                                                                                                 | 14               |
| 4.     | Data base management system: introduction to data base concepts, difference between<br>a file system and a data base systems, goals of DBMS including data independence<br>consistency, data security and integrity; DBMS models, hierarchical network and<br>relation, data description and query language, physical database design, case studies,<br>system R, Ingress, IDMS etc.; introduction to distributed database, concurrency<br>control bases recovery etc. | 14               |
|        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42               |

| S. No. | Name of Authors / Books / Publisher                                        | Year of     |
|--------|----------------------------------------------------------------------------|-------------|
|        |                                                                            | Publication |
| 1.     | Henry Luces C., "Information Systems Concepts for Management", McGraw Hill | 1978        |
|        | International Book Co.                                                     |             |
| 2.     | Burch J.G. and Strater F. R., "Information Systems Theory and Practice",   | 1989        |
|        | Hamilton Publishing Co.                                                    |             |

| 3. | Walker D. W., "Computer Based Information System An Introduction", | 1989 |
|----|--------------------------------------------------------------------|------|
|    | Pergamon Press.                                                    |      |
| 4. | Cardenas A. F., "Database Management Systems".                     | 1985 |

| NA | ME OF DEPTT./CENTRE:         | Mechanical and Industria      | I Engineering                   |  |
|----|------------------------------|-------------------------------|---------------------------------|--|
| 1. | Subject Code: MIN-580        | Course Title: Welding Science |                                 |  |
| 2. | Contact Hours : L: 3         | T: 1                          | P: 0                            |  |
| 3. | Examination Duration (Hrs.): | Theory <b>3</b>               | Practical <b>0</b>              |  |
| 4. | Relative Weightage: CWS      | 25 PRS 0 MTE                  | 25 ETE 50 PRE 0                 |  |
| 5. | Credits: 4                   | 6. Semester: Both             | 7. Subject Area: <b>DEC/DHC</b> |  |
| 8. | Pre-requisite: Nil           |                               |                                 |  |

9. Objective: To expose the students to the field of Welding Engineering and to let them understand the concepts, processes, affecting parameters related to welding. The course deals with fundamentals of arc welding processes, metal transfer and weldability of metals as well.

#### 10. Details of Course:

| S. No. | Contents                                                                                   | Contact |
|--------|--------------------------------------------------------------------------------------------|---------|
|        |                                                                                            | Hours   |
| 1      | Introduction: Welding as compared with other fabrication processes, Classification of      | 02      |
|        | Welding Processes                                                                          |         |
| 2      | Physics of Welding Arc: Welding arc, arc initiation and maintenance, voltage               | 10      |
|        | distribution along the arc, cathode and anode drops, Arc column, Thermionic and non        |         |
|        | thermionic cathode, Theories of cathode and anode mechanisms, arc characteristics,         |         |
|        | arc efficiency, heat generation at cathode and anode Effect of shielding gas on arc,       |         |
|        | isotherms of arcs, arc blow.                                                               |         |
| 3      | Metal Transfer: Mechanism and types of metal transfer in various arc welding               | 04      |
|        | processes, factors controlling melting rate in various welding processes.                  |         |
| 4      | Welding Power Sources: Basic characteristics of power sources for various arc              | 05      |
|        | welding processes, arc length regulation in mechanized welding processes,                  |         |
|        | Transformer, rectifier and generators, Duty cycle and power factor, Static and             |         |
|        | dynamic characteristics of power sources.                                                  |         |
| 5      | Welding Processes: Critical review of MMA; TIG. MIG and CO <sub>2</sub> welding processes, | 12      |
|        | plasma arc, submerged arc welding, electro- gas and electro-slag welding; resistance       |         |
|        | welding. Theory and mechanism of solid state welding; technique and scope of               |         |
|        | friction welding, diffusion welding; cold pressure welding and ultrasonic welding,         |         |
|        | scope and application of electron beam and laser welding processes.                        |         |
| 6      | Heat Flow in Welding: Calculation of peak temperature; width of Heat Affected              | 04      |
|        | Zone; cooling rate and solidification rates; weld thermal cycles; residual stresses and    |         |
|        | their measurement; weld distortion and its prevention.                                     |         |

| 7 | Weldability of Metals: Effects of alloying elements on weld ability, welding of plain | 05 |
|---|---------------------------------------------------------------------------------------|----|
|   | carbon steel, stainless steel, Cast Iron and aluminium.                               |    |
|   | Total                                                                                 | 42 |

| S. No. | Name of Authors / Books / Publisher                                                  | Year of     |
|--------|--------------------------------------------------------------------------------------|-------------|
|        |                                                                                      | Publication |
| 1      | "Welding Handbook", 7 <sup>th</sup> Edition-Volume 1 to 5, American Welding Society. | 1982        |
| 2      | Houdlecroft P.T., "Welding Process Technology", Cambridge University Press.          | 1977        |
| 3      | Udin H, Fruk F and Wulff J, "Welding for Engineers", John Wiley.                     | 1978        |
| 4      | Rossi E., "Welding Technology", Mc-Graw Hill.                                        | 1969        |
| 5      | Baldev, R., "Welding Technology for Engineers", ASM International                    | 2006        |
| 6      | Bowditch, W.A., Bowditch M. A., Bowditch, K. E., "Welding Technology                 | 2009        |
|        | Fundamentals", 4th Edition, Goodheart-Willcox Pub.                                   |             |

**Mechanical & Industrial Engineering Department** NAME OF DEPTT./CENTRE: 1. Subject Code: MIN-581 Course Title: Manufacturing Resources Management 2. Contact Hours: T: 1 **P:** 0 L: 3 3. Examination Duration (Hrs.): **Practical: 0** Theory: 3 4. Relative Weightage: CWS: 25 PRS: 0 **MTE: 25** ETE: 50 **PRE: 0** 5. Credits: 4 6. Semester: Both 7.Subject Area: DEC/DHC

8. Pre-requisite: Nil

9. Objective: To i ntroduce va rious t ypes of resources i n manufacturing s ystems, their i mportance and management.

10. Details of Course:

| S. No. | Contents                                                                 | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: P roduction a s i nput out put s ystem; R esources of      | 5                    |
|        | production; Forecasting and resources planning.                          |                      |
| 2.     | Material Management: Definition and scope; Functions; Types of           | 7                    |
|        | materials; A nalytical s tructure of inv entory mode ls; M aterial       |                      |
|        | requirement pl anning (MRP); Inventory control s ystems; P urchase       |                      |
|        | management; S torekeeping and issue o f materials; M aterial             |                      |
|        | handling; Just in Time (JIT) and Kanban systems.                         |                      |
| 3.     | Human R esources Man agement: Objective; f unction;                      | 10                   |
|        | organizational pl anning a nd de velopment; s taffing pol icies a nd     |                      |
|        | process; t raining and executive de velopment; w age and salary          |                      |
|        | policies a nd administration; mot ivation; e mployee s ervices;          |                      |
|        | employee r ecord; I abor r elations; c ollective ba rgaining; pe rsonnel |                      |
| 4      | Production M anagoment: D inset and indirect: M achines and              | 10                   |
| 4.     | acquinment nl anning; i igg a nd t cola nl anning m atorial ha ndling    | 10                   |
|        | equipment planning; Planning of land roads building warehouses           |                      |
|        | etc: G eneral vs. s pecial pur pose e quipment: Economic a nalvsis:      |                      |
|        | Equipment r enlacement: C anital r esources nl anning: M ethod of        |                      |
|        | allocation of resources.                                                 |                      |
| 5.     | <b>Production Information Management:</b> Management of production       | 10                   |
|        | technology; information systems; Management Information Systems          | - •                  |
|        | (MIS); Strategic Information System (SIS); Information networking;       |                      |
|        | Parts oriented production information systems.                           |                      |
|        | Total                                                                    | 42                   |

| S. No. | Name of Books / Authors                                            | Year of     |
|--------|--------------------------------------------------------------------|-------------|
|        |                                                                    | Publication |
| 1.     | Hitomi K., "Manufacturing S ystem Engineering", 2nd E dition, Viva | 1996        |
|        | Books.                                                             |             |
| 2.     | Hitomi K, "Manufacturing Systems Engineering: A Unified Approach   | 1996        |
|        | to Manufacturing Technology, Production Management and Industrial  |             |
|        | Economics", 2nd Edition, CRC Press.                                |             |
| 3.     | Groover, M. P., "Fundamentals of Modern Manufacturing: Materials,  | 2010        |

|    | Processes, and Systems",4th Edition, Wiley                          |      |
|----|---------------------------------------------------------------------|------|
| 4. | Gary Dessler, "Personnel Management", 4th Edition, Reston           | 1988 |
|    | Publishing.                                                         |      |
| 5. | Nauhria R. N. and Rajneesh Prakash, "Management of Systems",        | 1995 |
|    | Wheeler Publishing.                                                 |      |
| 6. | Thomas Vollman E., William Berry L. and Clay Whybark D.,            | 1997 |
|    | "Manufacturing Planning and Control Systems", 5th Edition, Galgotia |      |
|    | Publishing.                                                         |      |
|    |                                                                     |      |

# NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering



- 8. Pre-requisite: Nil
- 9. Objective: To introduce the concepts of flexibilities and its importance in batch manufacturing, va rious t ypes of F MS c onfigurations a nd t heir pl anning a nd control.
- 10. Details of Course:

| S. No. | Contents                                                                 | Contact |
|--------|--------------------------------------------------------------------------|---------|
|        |                                                                          | Hours   |
| 1.     | Introduction: Definition and classification of ma nufacturing s ystems,  | 7       |
|        | fundamentals of automated production cycle, need of flexibility, concept |         |
|        | of flexibility, various types of flexibility, measures of flexibility.   |         |
| 2.     | Flexible M anufacturing System (FMS) T ype: Introduction of FMS,         | 10      |
|        | definition of F MS, t ypes of FMS, applications of FM S, FMS             |         |
|        | configuration, FMS host operator interface.                              |         |
| 3.     | FMS Planning an d C ontrol: Functional r equirements of F MS             | 14      |
|        | equipments, f unctions of F MS hos t c omputer, hos t s ystem de sign,   |         |
|        | planning, scheduling of FMS, FMS simulation, Databases in FMS, GT in     |         |
|        | FMS, cell design and layout design, CAPP in FMS.                         |         |
| 4.     | Material h andling in F MS: Material ha ndling pr inciples i n F MS,     | 6       |
|        | applications of robots in FMS.                                           |         |
| 5.     | Case Studies: Cases on FMS installation and implementation -acceptance   | 5       |
|        | testing and maintenance                                                  |         |
|        | Total                                                                    | 42      |

| S. No. | Name of Books / Authors / Publisher                                             | Year of     |
|--------|---------------------------------------------------------------------------------|-------------|
|        |                                                                                 | Publication |
|        |                                                                                 | /Reprint    |
| 1.     | Groover, M. P., "Automation, Production S ystem and C IM", 2 <sup>nd</sup> Ed., | 2000        |
|        | Prentice Hall.                                                                  |             |
| 2.     | Rankey, P., "Design a nd Operations of F MS", North-Holland                     | 1983        |
|        | Publishing.                                                                     |             |
| 3.     | Warnecke, H. J. (Ed.), "Flexible Manufacturing System", Springer.               | 1985        |
| 4.     | Bonetto, R., "FMS in Practice", North Oxford Academic Publishers.               | 1988        |

#### NAME OF DEPTT./CENTER: Mechanical & Industrial Engineering 1. Subject Code: **MIN-583** Course Title: Materials Management T: 1 2. Contact Hours: L: 3 **P: 0** 3 Examination Duration (Hrs.): Theory 0 Practical 3. Relative Weightage: CWS PRS TE ETE 4. 25 PRE 0 25 50 0 4 5. Credits: 6. Semester: Both 7. Subject Area: **DEC/DHC**

- 8. Pre requisite: Nil
- 9. Objective: The aim of this course is to introduce to the students the basic concepts of purchase and supply of materials for the production process in an industry.
- 10. Details of Course:

| S. No. | Contents                                                                           | Contact |
|--------|------------------------------------------------------------------------------------|---------|
|        |                                                                                    | Hours   |
| 1      | Introduction: Operating environment:, scope, and issues                            | 04      |
| 2      | Material Requirement Planning: Introduction, Bills of material, Material           | 06      |
|        | requirement plans and planning process.                                            |         |
| 3      | Capacity M anagement: Definition of capacity, capacity planning, Capacity          | 06      |
|        | requirement planning, capacity available and required, Scheduling order, make plan |         |
| 4      | Production A ctivity and Control: Data requirements, order preparation,            | 06      |
|        | scheduling, load leveling, Scheduling bottlenecks, production reporting.           |         |
| 5      | Purchasing, forecasting, and Inventory fundamentals:                               | 16      |
|        | Establishing specifications, selecting suppliers, price determination, demand      |         |
|        | management, demand forecasting, principle of forecasting, forecasting techniques,  |         |
|        | seasonality, tracking the forecast, inventory and flow of materials, supply and    |         |
|        | demand pattern, functions of inventories, ABC, VED and FSN system of selective     |         |
|        | inventory, EOQ, variation of EOQ models, period order quantity, quantity discount. |         |
| 6      | Just in t ime M anufacturing: JIT philosophy, JIT environment, Manufacturing       | 04      |
|        | planning and control in JIT environment, MRP, Kanban, theory and constraints.      |         |
|        | Total                                                                              | 42      |

| S. No. | Name of Books / Authors / Publisher                                                    | Year of     |
|--------|----------------------------------------------------------------------------------------|-------------|
|        |                                                                                        | Publication |
| 1      | Handfield R.B. and Nichols E.L., Jr "Introduction to Supply Chain                      | 1999        |
|        | Management", Prentice-Hall Inc.                                                        |             |
| 2      | Bowersox D. J. and Closs D. J., "Logistical Management: The Integrated                 | 1996        |
|        | Supply Chain Process", McGraw-Hill, New York.                                          |             |
| 3      | Leenders M.R. and Fearon H.E., "Purchasing and Materials Management", 11 <sup>th</sup> | 1997        |
|        | Edition, Irwin Burr Ridge, Illinois.                                                   |             |
| 4      | Arnold J. R. T. and Chapman S. N., "Introduction to Materials Management",             | 2001        |
|        | 4 <sup>th</sup> Edition, Pearson Education Asia.                                       |             |

| NA | ME OF DEPTT./CENTRE:        | Department of Mechanica | l & Industrial Engineering           |   |
|----|-----------------------------|-------------------------|--------------------------------------|---|
| 1. | Subject Code: MIN-584       | Course Title: Opera     | tions Research                       |   |
| 2. | Contact Hours : L: 3        | T: 1                    | P: 0                                 |   |
| 3. | Examination Duration (Hrs.) | ): Theory: <b>3</b>     | Practical: 0                         |   |
| 4. | Relative Weightage :CWS     | 25 PRS 0 MTE            | <b>25</b> ETE <b>50</b> PRE <b>0</b> | ] |
| 5. | Credits: 4                  | 6. Semester: Both       | 7. Subject Area: DEC/DHC             |   |

8. Pre-requisite: Nil

9. Objective: To expose the students to various optimization techniques for formulating and solving various industrial problems and to develop their skills to design production and services unit as a whole.

10. Details of Course:

| S. No. | Contents                                                                                  | Contact |
|--------|-------------------------------------------------------------------------------------------|---------|
|        |                                                                                           | Hours   |
| 1.     | Introduction: definition and scope of OR; techniques and tools; model formulation;        | 2       |
|        | general methods for solution; classification of optimization problems; optimization       |         |
|        | techniques.                                                                               |         |
| 2.     | Linear optimization models: complex and revised simplex algorithms; duality               | 12      |
|        | theorems; sensitivity analysis; assignment, transportation and transshipment models;      |         |
|        | traveling salesman problem as an assignment problem; integer and parametric               |         |
|        | programming: goal programming.                                                            |         |
| 3.     | Game problems: minimax criterion and optimal strategy: two person zero sum game:          | 6       |
|        | games by simplex dominance rules.                                                         | -       |
| 4.     | Waiting line problems: classification of queuing situations; Kendall's notation,          | 8       |
|        | Poisson arrival with exponential or Erlang service time distribution; finite and infinite |         |
|        | queues; optimal service rates; application of queuing theory to industrial problems.      |         |
| 5.     | Dynamic programming: characteristic of dynamic programming problems (DPPs);               | 6       |
|        | Bellman's principle of optimality; problems with finite number of stages; use of          |         |
|        | simplex algorithm for solving DPPs.                                                       |         |
| 6.     | Non- linear programming: one dimensional minimization methods; unconstrained              | 8       |
|        | optimization techniques; optimization techniques- characteristics of a constrained        |         |
|        | problem; indirect methods; search and gradient methods.                                   |         |
|        | Total                                                                                     | 42      |

| S. No. | Name of Books / Authors / Publisher                                                             | Year of<br>Publication |
|--------|-------------------------------------------------------------------------------------------------|------------------------|
| 1.     | Taha H. A., "An Introduction to Operations Research", 6 <sup>th</sup> Edition, Prentice hall of | 2001                   |
|        | India;.                                                                                         |                        |
| 2.     | Hillier F. J. and Lieberman G.J., "Introduction to Operations Research", 7 <sup>th</sup>        | 2001                   |

|    | Edition Holden Day Inc.                                                                     |      |
|----|---------------------------------------------------------------------------------------------|------|
| 3. | Loomba N.P., "Linear Programming", 2 <sup>nd</sup> Edition, Mcmillan Publishing Inc. New    | 1976 |
|    | York.                                                                                       |      |
| 4. | Wagner H. M., "Principles of OR with Applications to Managerial Decisions", 2 <sup>nd</sup> | 1975 |
|    | Edition, Prentice Hall.                                                                     |      |
| 5. | Giffin, Walter G., "Queueing Basic Theory and Applications", Grid Inc., Ohio.               | 1978 |
| •  |                                                                                             |      |

| NA | AME OF DEPTT./CENTRE: Mechanical & Industrial Engineering |                                       |                     |           |  |
|----|-----------------------------------------------------------|---------------------------------------|---------------------|-----------|--|
| 1. | Subject Code: MIN-585                                     | Course Title: Supply Chain Management |                     |           |  |
| 2. | Contact Hours : L: 3                                      | T: 1                                  | P: 0                |           |  |
| 3. | Examination Duration (Hrs.) :                             | Theory:                               | <b>3</b> Practical: | 0         |  |
| 4. | Relative Weightage : CWS                                  | <b>25 PRS 0</b>                       | MTE 25 ETE 5        | 0 PRE 0   |  |
| 5. | Credits: <b>4</b>                                         | 6. Semester: Both                     | 7. Subject Area     | : DEC/DHC |  |

- 8. Pre requisite: Nil
- 9. Objective: To provide an insight into functioning and networking of supply chain decisions for the success of a business. The course will provide foundation for design, analysis and performance metrics and to frame a sound supply chain network in the country.
- 10. Details of Course:

| S. No. | Contents                                                                            | Contact |
|--------|-------------------------------------------------------------------------------------|---------|
|        |                                                                                     | Hours   |
| 1      | Introduction: Understanding supply chain, supply chain performance; supply chain    | 4       |
|        | drivers and obstacles.                                                              |         |
| 2      | Planning Demand and Supply in a Supply Chain: Demand forecasting in supply          | 12      |
|        | chain, aggregate planning in supply chain, planning supply and demand; managing     |         |
|        | predictable variability, Economic Order Quantity Models, Reorder Point Models,      |         |
|        | Multi-echelon Inventory Systems.                                                    |         |
| 3      | Planning and Managing inventories in a Supply Chain: Managing economies of          | 6       |
|        | supply chain, managing uncertainty in a supply chain, determining optimal levels of |         |
|        | product availability.                                                               |         |
| 4      | Transportation, N etwork D esign an d I nformation T echnology: Transportation      | 10      |
|        | aspects in a supply chain, facility Decision, Network design in a supply chain,     |         |
|        | Information technology and its use in supply chain.                                 |         |
| 5      | Coordination in Supply Chain and effect of E - Business: Role of Coordination       | 10      |
|        | and E-business in a supply chain; financial evaluation in a supply chain.           |         |
|        | Total                                                                               | 42      |

| S. No. | Name of Authors / Books / Publisher                                         |         |  |
|--------|-----------------------------------------------------------------------------|---------|--|
|        |                                                                             | Reprint |  |
| 1      | Hopp W. J., Spearman M. L. and Irwin, "Factory Physics: Foundations of      | 1996    |  |
|        | Manufacturing", McGraw-Hill Inc. New York.                                  |         |  |
| 2      | Viswanadham N., "Analysis of Manufacturing Enterprises", Kluwer Academic    | 2000    |  |
|        | Publishers, UK.                                                             |         |  |
| 3      | Sridhar Tayur, Ram Ganeshan and Michael Magazine (editors), "Quantitative   | 1999    |  |
|        | Models for Supply Chain Management", Kluwer Academic Publishers, UK.        |         |  |
| 4      | Handfield R.B. and Nochols E.L.Jr., "Introduction to Supply Chain           | 1999    |  |
|        | Management", Prentice Hall Inc. Englewood- Cliff, New Jersey.               |         |  |
| 5      | Viswanadham N. and Narahari Y., "Performance Modeling of Automated          | 1998    |  |
|        | Manufacturing Systems", Prentice Hall of India, New Delhi.                  |         |  |
| 6      | Chopra S. and Meindel P., "Supply Chain Management: Strategy, Planning, and | 2002    |  |
|        | Operation", Prentice Hall of India, New Delhi.                              |         |  |
| 7      | Shapiro J. F., Duxbury Thomson Learning, "Modeling the Supply Chain",       | 2001    |  |
|        | Duxbury Thomson Learning Inc., Duxbury, Pacific Grove.                      |         |  |
| 8      | Levi D. S., Kaminsky P. and Levi E. S., "Designing and Managing the Supply  | 2000    |  |
|        | Chain: Concepts, Strategies, and Case Studies", McGraw Hill Inc. New York.  |         |  |

| NAI | ME OF DEPTT./CENTRE:         | Department of Mechanical | & Industrial Engineering    |
|-----|------------------------------|--------------------------|-----------------------------|
| 1.  | Subject Code: MIN-586        | Course Title: Metal Form | ing                         |
| 2.  | Contact Hours : L: 3         | T: 1 P: 0                |                             |
| 3.  | Examination Duration (Hrs.): | Theory: 3                | Practical: 0                |
| 4.  | Relative Weightage : CWS 25  | PRS 0 MTE 25             | ETE 50 PRE 0                |
| 5.  | Credits: <b>4</b> 6. Se      | emester: Both 7. S       | ubject Area: <b>DEC/DHC</b> |

8. Pre-requisite: Nil

9. Objective: The course aims to explain the advanced scientific theoretical aspects of metal forming processes.

10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contact<br>Hours |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.     | Introduction: stress/strain, strain-rate characteristics of materials, yield criteria of metals, classification of metal working processes, formability and theory of sheet metal working, friction and lubrication in metal working operation, theories of friction and lubrication; assessment of friction at interface.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                |
| 2.     | Process analysis: various methods of analyzing the metal working processes (slip-<br>line field theory; upper bound solution; stab methods).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                |
| 3.     | Mechanics of forming processes: rolling- determination of rolling pressure, roll separating force, driving torque and power, and power loss in bearings; forging-determination of forces in strip forging and disc forging; drawing- determination of force and power, determination of maximum allowable reduction; deep drawing force analysis, analysis of tube drawing process with fixed and moving mandrel, tandem tube drawing; bending- determination of work load and spring back; extrusion- determination of work load from stress analysis and energy consideration, power loss, hydrostatic extrusion; punching and blanking- mode of metal deformation and failure, two-dimensional deformation model and fracture analysis, determination of working force. | 20               |
| 4.     | Hydrostatic extrusion: comparison with conventional extrusion; pressure required to extrude, variables affecting the process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                |
| 5.     | High speed forming: classification, comparison of low and high speed forming operation problems in high speed forming operation, introduction to high forming process such as explosive forming, electrical and mechanical high speed forming techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                |
|        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42               |

| S. No. | Name of Authors / Books / Publisher                                            | Year of<br>Publication/<br>Reprint |
|--------|--------------------------------------------------------------------------------|------------------------------------|
| 1.     | Rowe, and Geoffrey W, "An Introduction to Principles of Metal Working", St.    | 1965                               |
|        | Martin Press.                                                                  |                                    |
| 2.     | Avitzur B., "Metal Forming Analysis", Mc Graw Hill.                            | 1980                               |
| 3.     | Polukhin V.P., "Mathematical Simulation and Computer Analysis of Thin Strip    | 1975                               |
|        | Rolling Mill", MIR Publishers.                                                 |                                    |
| 4.     | Jhonson W.and Meller P.B., "Plasticity of Mechanical Engineers", Van Nostrand. | 1983                               |
| 5.     | "High Velocity Working of Metals", ASTME.                                      | 1964                               |
| 6.     | Ghosh A. and Mallik A. K., "Manufacturing Science", Affiliated East-West.      | 2000                               |

### NAME OF DEPTT./CENTRE: Department of Mechanical and Industrial Engineering

| 1. | Subject Code: MIN-587        | Course Title  | : Metal Cast | ing             |        |
|----|------------------------------|---------------|--------------|-----------------|--------|
| 2. | Contact Hours : L: 3         | T: 1          | Ρ:           | 0               |        |
| 3. | Examination Duration (Hrs.): | Theory:       | 3            | Practical:      | 0      |
| 4. | Relative Weightage : CWS 25  | PRS 0         | MTE 25       | <b>ETE 50</b>   | PRE 0  |
| 5. | Credits: <b>4</b> 6. Se      | emester: Both | 7. S         | ubject Area: DE | EC/DHC |
| 8. | Pre – requisite: <b>Nil</b>  |               |              |                 |        |

- 9. Objective: To explain the advanced scientific theoretical aspects of metal casting processes.
- 10. Details of Course:

| S. No. | Contents                                                                                   |   |
|--------|--------------------------------------------------------------------------------------------|---|
| 1.     | <b>Introduction</b> : Features of casting problem, a survey and scope of foundry industry. | 3 |
|        | Solidification: Solidification of pure metals and alloys, nucleation and growth in         | 8 |
|        | alloys, solidification of actual castings, progressive and directional solidification,     |   |
| 2.     | centerline feeding resistance, rate of solidification, Chvorinov's Rule, electrical analog |   |
|        | of solidification problem; Fluidity- measurement of fluidity, effects of various           |   |
|        | parameters on fluidity                                                                     |   |
|        | Risering and G ating S ystem: Riser design, risering curves, NRL method of riser           | 5 |
| 3      | design, feeding distance, risering of complex casting, risering of alloy other than steel, |   |
| 5.     | recent developments in riser design by the application of geometrical programming;         |   |
|        | Gating systems and their characteristics, the effects of gates on aspiration, turbulence   |   |
|        | and dross trap, recent trends.                                                             |   |
|        | Pattern and Casting Design: Pattern design, recent developments in pattern design,         | 9 |
| 4.     | materials and construction; Casting design considerations- review of casting design,       |   |
|        | recent trends.                                                                             |   |
|        | Melting, Molding and Core Making Processes: Selection and control of melting               | 6 |
|        | furnaces, boiling, refining and pouring, recent trends in cupola design; Review and        |   |
|        | critical comparison of various established processes, recent developments e.g. low         |   |
| 5.     | pressure and ferrous die casting, high pressure molding, full mold process, flaskless      |   |
|        | molding, hot and cold box molding, ceramic shell molding, V-process, continuous            |   |
|        | casting, squeeze and pressed casting, Nishiyama process, Shaw process, Anitoch             |   |
|        | process etc.                                                                               |   |
|        | Internal S tresses, Defects and Sur face F inish: Residual stresses, hot tears and         | 7 |
| 6.     | cracks in castings, stress relief, defects and their causes and remedies, various          |   |
|        | parameters affecting surface finish and related defects e.g. rough casting, sand bum-      |   |

|    | on sand bum-in and metal penetration, facing and washes, mold wall movement,         |    |
|----|--------------------------------------------------------------------------------------|----|
|    | vapor transpol1 zones, expansion scabbing etc; Gases in metal- methods of            |    |
|    | elimination and control of dissolved gases in castings.                              |    |
|    | Testing, Inspection and Quality Control: Testing of sand, recent developments e.g.   | 4  |
| 7  | mulling index, moldability index, compactability; deformability; Review of X-ray and |    |
| 7. | gamma ray radiography, magnetic particle, die penetrant and ultrasonic inspection,   |    |
|    | use of statistical quality control in foundry.                                       |    |
|    | Total                                                                                | 42 |

| S. No. | Name of Authors / Books / Publisher                                           | Year of      |
|--------|-------------------------------------------------------------------------------|--------------|
|        |                                                                               | Publication/ |
|        |                                                                               | Reprint      |
| 1.     | Flinn R.A., "Fundamentals of Metal Casting", Addison Wesley Inc., Reading.    | 1963         |
| 2.     | Heine R.W, Loper C.R. and Rosenthal P.C., "Principles of Metal Casting", Tata | 1997         |
|        | McGraw-Hill.                                                                  |              |
| 3.     | Niebel B.W., and Draper A.B., "Modern Manufacturing Process Engineering",     | 1990         |
|        | McGraw Hill.                                                                  |              |
| 4.     | "Metals Handbook-Metal Casting", ASM.                                         | 1985         |
| 5      | Beeley, Peter R., "Foundry Technology", Butterworth-Heinemann.                | 2001         |
| 6      | Jain, P. L., "Principles of Foundry Technology", Tata Mc. Graw-Hill.          | 1999         |

# NAME OF DEPARTMENT: Mechanical & Industrial Engineering

| 1. | Subject Code:      | MIN-588           | Course Title: No | on-Traditional Machi | ning Processes |
|----|--------------------|-------------------|------------------|----------------------|----------------|
| 2. | Contact Hours:     | L: <u>3</u> ;     | T: <u>1</u> ;    | P: <u>0</u> ;        |                |
| 3. | Examination Dura   | ation (Hrs.): The | ory 3            | Practical _          | -              |
| 4. | Relative Weightage | CWS 2 5 F         | PRS MTE          | 2 5 ETE 5            | 0 PRE          |
| 5. | Credits: 0 4       | 6. Ser            | nester: Both     |                      |                |

- 7. Pre requisite: NIL8. Subject Area: DEC/DHC
- **9. Objectives of Course:** This course covers the details of various non-traditional/unconventional or advanced machining processes (AMPs).

#### 10. Details of Course:

| S.  | Particulars                                                                      | Contact |
|-----|----------------------------------------------------------------------------------|---------|
| No. |                                                                                  | Hours   |
| 1   | Introduction: Types of advanced manufacturing processes; Evolution, need, and    | 02      |
|     | classification of advanced machining processes (AMPs).                           |         |
| 2   | Mechanical Type AMPs: USM, Rotary Ultra Sonic Machining (RUM), AJM, WJM,         | 08      |
|     | AWJM processes - Process principle and mechanism of material removal; Process    |         |
|     | Parameters; Process Capabilities; Applications; Operational characteristics;     |         |
|     | Limitations.                                                                     |         |
| 3   | Advanced F ine F inishing Process: Abrasive Flow Machining (AFM), Magnetic       | 06      |
|     | Abrasive Finishing (MAF), Magneto Rheological Abrasive Finishing (MRAF) -        |         |
|     | Process principle; Process equipment; Process Parameters; Process Capabilities;  |         |
|     | Applications; Limitations.                                                       |         |
| 4   | Chemical Type AMPs: Process principle and details of Chemical Machining (CHM),   | 04      |
|     | Photo-Chemical Machining (PCM), and Bio-Chemical Machining (BCM) processes.      |         |
| 5   | Electro Chemical T ype A MPs: ECM - Process principle; Mechanism of material     | 06      |
|     | removal; Process Parameters; Process Capabilities; Applications                  |         |
| 6   | Thermal T ype A MPs: EDM, Wire Electro Discharge Machining (WEDM), LBM,          | 08      |
|     | EBM, IBM, PAM processes – Process principle and mechanism of material removal;   |         |
|     | Process parameters and characteristics; Surface finish and accuracy, Process     |         |
|     | Capabilities; Applications; Limitations.                                         |         |
| 7   | Derived an d Hybrid A MPs: Electro Stream Drilling (ESD), Shaped Tube Electro    | 08      |
|     | Machining (STEM), Electro Chemical Honing (ECH), Electro Chemical Deburring      |         |
|     | (ECDE), Electro Chemical Discharge Machining (ECDM) - Process Parameters;        |         |
|     | Process Capabilities; Applications; Limitations, Introduction to form machining. |         |
|     | Total                                                                            | 42      |

#### 11. Suggested Books:

| S. Name of Books / Authors / I ublisher fear of |
|-------------------------------------------------|
|-------------------------------------------------|

| No. |                                                                                          | Publication |
|-----|------------------------------------------------------------------------------------------|-------------|
| 1.  | Pandey P. C., Shan H. S. "Modern Machining Processes", ,                                 | 1977        |
|     | Tata McGraw-Hill Publishing Co. Ltd, New Delhi (ISBN 0-07-096553-6)                      |             |
| 2.  | Ghosh A., Mallik A. K., "Manufacturing Science",                                         | 1985        |
|     | Affiliated East-West Press Ltd, New Delhi                                                |             |
| 3.  | Benedict G. F., "Nontraditional Manufacturing Processes",                                | 1987        |
|     | Marcel Dekker, Inc. New York (ISBN 0-8247-7352-7)                                        |             |
| 4.  | McGeough J. A., "Advanced Method of Machining",                                          | 1988        |
|     | Chapman and Hall, New York (ISBN 8842-0412-31170-5)                                      |             |
| 5.  | Mishra P. K., "Nonconventional Machining",                                               | 1997        |
|     | Narosa Publishing House, New Delhi (ISBN 81-7319-138-7)                                  |             |
| 6.  | Jain V. K., "Advanced Machining Processes",                                              | 2002        |
|     | Allied Publishers, New Delhi (ISBN 81-7764-294-4)                                        |             |
| 7.  | "Machining Data Handbook: Vol. 2", Machinability Data Center, (3 <sup>rd</sup> edition), | 1980        |
|     | Metcut Research Associates Inc., Ohio                                                    |             |

#### NAME OF DEPTT./CENTRE : **Mechanical and Industrial Engineering** 1. Subject Code: MIN-593 Course Title: Non Conventional Welding Processes 2. L: 3 T: 1 P: 0 Contact Hours: 3. Theory: **Practical:** Examination Duration (Hrs): 3 0 25 25 50 0 ETE PRS CWS мте PRE 4. Relative Weightage: 4 5. Credits: 7. Subject Area: DEC/DHC 6. Semester : Both

0

- 8. Pre-requisite: nil
- 9. Objectives: The a im of the c ourse is t o p rovide t heoretical and practical de tails of various nonconventional w elding/joining pr ocesses and t echniques i neluding high e nergy d ensity welding processes.

#### 10. Details of Course:

| S. No. | Contents                                                                                 |       |
|--------|------------------------------------------------------------------------------------------|-------|
|        |                                                                                          | Hours |
| 1.     | Resistance Welding: Principle of contact resistance; calculation of current, time and    | 10    |
|        | voltage f or s pot w elding, choice of e lectrode material; e lectrode s hapes; s hunt   |       |
|        | current; s hop t ests for soundness of s pot w elds, s eam, projection, but t and flash  |       |
|        | welding; selection of welding and other process details; stud welding; power sources     |       |
|        | for resistance welding.                                                                  |       |
| 2.     | High Power Density Welding Processes: Electron Beam (EB) welding in different            | 4     |
|        | degrees o f va cuum, a pplications; Laser w elding; pr inciple o f ope ration; l aser    |       |
|        | materials, applications.                                                                 |       |
| 3.     | Solid State Welding Processes : Fundamental principles of various non- conventional      | 8     |
|        | pressure welding processes and their applications; friction, explosive, diffusion and    |       |
|        | ultrasonic welding; induction welding.                                                   |       |
| 4.     | Special Topics: Soldering; brazing and braze welding; welding of plastics.               | 5     |
| 5.     | Cutting a nd S urfacing : Plasma a nd thermal cutting a nd surfacing o perations;        | 8     |
|        | parameters; consumables; and equipment; arc and gas gouging.                             |       |
| 6.     | Safety M easures in Welding: Various s afety m easures f or conventional and non -       | 7     |
|        | conventional w elding pr ocesses. Gas cylinder colour codes; storage and                 |       |
|        | transportation of g ases; pr otection f rom f ire a nd e xplosions. P rotection a gainst |       |
|        | electric s hocks a nd s hort c ircuiting; c hemistry a nd m echanism of f ormation of    |       |
|        | fumes; effect of fumes; radiations and noise on welder's health; eye flash, skin burn,   |       |
|        | heat exhaustion and other diseases; protective devices such as exhaust hoods, booths,    |       |
|        | shields, goggles, screens, clothing and ear covers; safety during welding in confined    |       |
|        | spaces.                                                                                  |       |
|        | Total                                                                                    | 42    |

| S. No. | Name of Authors/ Books/ Publisher                                                  | Year of<br>Publication |
|--------|------------------------------------------------------------------------------------|------------------------|
| 1.     | "Welding Handbook", Vol. 2 & 3, 9 <sup>th</sup> Edition, American Welding Society. | 2003                   |
| 2.     | "Metals Handbook", Vol. 6, American Society of Metals.                             | 1993                   |
| 3.     | "Procedure Handbook of Arc Welding", Lincoln Electric Co., USA.                    | 2004                   |
| 4.     | Tylecote R.F., "The Solid phase welding of Metals", Edward Arnold Pub.<br>Ltd.     | 1968                   |
| 5.     | Richard Little L., "Welding and Welding Technology", McGraw Hill.                  | 1976                   |
| NAME OF DEPTT./CENTRE: Mechanical and Industrial Engineering |                               |                                |                         |
|--------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------|
| 1.                                                           | Subject Code: MIN-594         | Course Title: Safety Aspe      | ct of Welded Structures |
| 2.                                                           | Contact Hours: L: 3           | T: 1                           | P: 0                    |
| 3.                                                           | Examination Duration (Hrs.) : | Theory <b>3</b>                | Practical 0             |
| 4.                                                           | Relative Weightage: CWS       | 25 PRS 0 MTE 25                | ETE 50 PRE 0            |
| 5.                                                           | Credits: <b>4</b>             | 6. Semester: Both 7. Subject A | rea: DEC/DHC            |

#### 8. Pre – requisite: Nil

9. Objectives of Course: Objective of this course is to provide knowledge of safety of welded structure primarily in reference to various consequences of stress and strain state, loading conditions and susceptible mode of fracture. The course is also intended to cover different methods of safety analysis of welded structure using fracture mechanics concepts.

| S. NO. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hours |
| 1.     | <b>Basis of S afety C oncept</b> : Definition of safety and definition of safety concept; Basic mechanism of failure of components; Brittle and ductile fracture; Collapse fatigue fracture mechanism and representations at sub-microscopic and macroscopic levels through Mohr's Circle; Specific problems of safety related to weldments; Definition and safety relevance of weld imperfections.                                                                                                                         | 8     |
| 2.     | <b>Conventional M ethods f or S afety A nalysis:</b> Concepts of strength and toughness of engineering materials; Determination and consequences of stress and strain state; Material - stress and strain state embitterment, their reasons and consequences; Effects of notches, stress state in notched component, safety analysis and assessment of notched components using notch theory; Semi quantitative Fracture Analysis Diagrams (Pellim's FAD); limitations of conventional methods.                             | 8     |
| 3.     | <b>Fracture Mechanics:</b> Concepts of stress-strain state of cracked components; Introduction and basic principles of fracture mechanics; Linear Elastic Fracture Mechanics (LEFM); Stress intensity factor; Determination of fracture toughness.                                                                                                                                                                                                                                                                          | 9     |
| 4.     | <b>Methods for S afety A nalysis:</b> ASTME:399 method; Limitations of LEFM; Modified LEFM (ASTME 1820); General yielding criterion; Plastic Limit Load Calculations (PLLC); Principles of Two Criteria Approach (TCA); Failure assessment diagram (CEGB Report R-6); Mechanism of cyclic crack growth; Paris law; Modifications of Paris law; Effects of temperature and environment; Elastic plastic fracture mechanics (EPFM); Stable crack growth; COD concept (CTOD BS: 5762); R-curve technique; Instability diagram. | 9     |
| 5.     | Application of S afety C oncepts to Welded St ructures: Material imperfections and stress states in weldments; Quality - degradation in welded structures; CODE                                                                                                                                                                                                                                                                                                                                                             | 8     |

| requirements; Case studies as examples of failures; Design and service requirements engineering structures fabricated by welding i.e. welded structures. | for |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Total                                                                                                                                                    | 42  |

| S.No. | Name of Books/ Authors/ Publisher                                                    | Year of     |
|-------|--------------------------------------------------------------------------------------|-------------|
|       |                                                                                      | Publication |
| 1.    | Anderson T. L., "Fracture Mechanics: Fundamentals and Applications", 3 <sup>rd</sup> | 2000        |
|       | Edition, Taylor & Francis Group.                                                     |             |
| 2.    | Farahmand Bahram.,"Fracture Mechanics of Metals, Composites, Welds and               | 2000        |
|       | Bolted Joints", Hardcover, Kluwer Academic Publishers .                              |             |
| 3.    | Broek D., "Elementary Engineering Fracture Mechanics", Martinus Nijhoff.             | 1982        |
| 4.    | Latzko D.G.H, "Post Yield Fracture Mechanics", 2 <sup>nd</sup> Edition, Elsevier     | 1984        |
|       | Applied Science Publication.                                                         |             |
| 5.    | Maddox S.J., "Fatigue of Welded Structures", 2 <sup>nd</sup> Edition, Woodhead       | 1991        |
|       | Publishing.                                                                          |             |
| 6.    | Gurney T.R., "Fatigue of Welded Structures", Cambridge University Press.             | 1979        |
| 7.    | Chell G.G., "Development of fracture Mechanics", Elsevier Applied Science            | 1979        |
|       | Publication.                                                                         |             |

| NAME OF DEPTT./CENTR        | E: Mechanica<br>Departme | Mechanical & Industrial Engineering<br>Department |                  |        |
|-----------------------------|--------------------------|---------------------------------------------------|------------------|--------|
| 1. Subject Code: MIN-595    | Course Title             | Failure Analy                                     | sis of Welding J | oints  |
| 2. Contact Hours: L: 3      | T: 1                     |                                                   | P: 0             |        |
| 3. Examination Duration (Hr | rs.): Theory: 3          | Pr                                                | actical: 0       |        |
| 4. Relative Weightage: CW   | /S25 PRS: 0              | MTE: 25                                           | ETE: 50          | PRE: 0 |
| 5. Credits: 4               | 6. Semester: Both        | 7.Sub                                             | ject Area: DEC/I | ОНС    |
| 8. Pre-requisite: Nil       |                          |                                                   |                  |        |

9. Objective: To pr ovide basic know ledge fundamental caus es of failure and general procedure of failure analysis.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                  | Contact |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|        |                                                                                                                                                                                                                                                                                                                                                           | Hours   |
| 1.     | <b>Fundamental Sources of Failure</b> : Deficiencies in design, material and processing errors, improper service condition, residual stresses                                                                                                                                                                                                             | 8       |
| 2.     | <b>Tools f or failure an alysis:</b> Fault tr ee di agram, Failure mode a nd effective analysis, Weibull distribution, Pareto diagram                                                                                                                                                                                                                     | 6       |
| 3.     | <b>General P ractice in F ailure A nalysis</b> : O bjective, collection of background data, selection of s amples; S election, c leaning a nd preservation of f ractured surface, identification of mode of failure, approach for failure a nalysis, a scertaining c auses of failure, r eporting practice.                                               | 6       |
| 4.     | <b>Examination of Fractured Components</b> : Preliminary examination of fractured surface, equipment used for preliminary examination, preservation of failure re cords, Identification of Mode of Failure: Classification, specific characteristics, distinction between different t ype of fractures, factors a ffecting mode of f racture and defects. | 6       |
| 5.     | Analysis of t he C auses of F ailure: Chemical analysis,                                                                                                                                                                                                                                                                                                  | 10      |

|    | optical microscopic examination, u se o f scanning el ectron<br>microscope, m icro pr obe a nalyser a nd X -ray d iffraction e tc.<br>Correlation of weldment failure of different materials developed using<br>various welding processes including repair welding                                                                                                        |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 6. | Application of F racture M echanics in Failure Analysis:<br>Physical meaning of $K_{Ie}$ , J $_{IC}$ and CTOD with reference to fracture<br>control, fracture analysis in the light of fatigue crack growth rate<br>behaviour of material, residual life assessment . Ca se studies of<br>failure in different components such as pressure vessel and nuclear<br>reactor. | 6 |

| S. No. | Name of Books / Authors                                              | Year of     |
|--------|----------------------------------------------------------------------|-------------|
|        |                                                                      | Publication |
| 1.     | Becker, W. T. and Shipley, R. J. "Metals Handbook, Failure           |             |
|        | Analysis and Prevention", Volume 11, ASM International.              | 2002        |
| 2.     | Hutchings, F. R. and Unterweiser, Paul M., "Failure Analysis, The    |             |
|        | British Engineering Technical Report", ASM International.            | 1981        |
| 3.     | Robert H. and Bhadeshia H. H.K.D.H. "Steels: Microstructure and      |             |
|        | Properties", 3 <sup>rd</sup> Edition, Butterworth-Heinemann.         | 1995        |
| 4.     | "Metals Handbook, Fractography", Volume 12, ASM International.       | 1992        |
| 5.     | Das A. K., "Metallurgy of Failure Analysis", Special Indian          |             |
|        | Edition, Tata McGraw-Hill.                                           | 1997        |
| 6      | Besterfield, D C and Besterfield C (1999), Total Quality Management, |             |
|        | Pearson Education Asia,                                              | 2002        |
| 7      | Andrew K. S. and Albert H. C. Tsang, "Maintenance, replacement, and  |             |
|        | Reliability", Taylor & Francis.                                      | 2006        |
| 8      | Dhillon B.S., "Engineering Maintenance: a Modern Approach". 1st      |             |
|        | Edition, CRC.                                                        | 2002        |

#### NAME OF DEPTT./CENTRE: **Mechanical and Industrial Engineering** Subject Code:MIN-596 Course Title: Solid State Joining Processes 1. 3 P: 0 2. Contact Hours: L: T: 1 3. Examination Duration (Hrs): Theory: **Practical:** 3 0 CWS MTE PRS ΓЕ RE 4. Relative Weightage: 25 0 25 50 0 5. Credits: 4 6. Semester: Spring 7. Subject Area: PEC

- 8. Pre-requisite: Nil
- 9. Objectives: The aim of the course is to provide theoretical and practical details of solid state welding/joining processes and their significance in manufacturing.

| S.  | Contents                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| No. |                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 1.  | Joining defined; Fundamental forces involved in joining; Mechanical fastening and integral attachment: using mechanical forces; Adhesive bonding: using chemical forces; Welding: using physical forces; Overview of fusion and solid state welds; Fundamental principles of solid state welding processes; Classification of solid state/non-fusion welding processes.                                           | 8  |
| 2.  | Adhesive bonding as a joining process; General description of adhesive<br>bonding; Cementing and mortaring as an adhesive joining process; The<br>functions of adhesives; Mechanisms of adhesion; Failure in adhesive-<br>bonded joints; Adhesive joint designs; Design criteria and analysis of<br>adhesive joints.                                                                                              | 8  |
| 3.  | Friction welding process; application of friction welding process; friction welding process parameters; radial and orbital friction welding; direct drive and inertia drive friction welding; study of friction welds; joint quality of friction welds.                                                                                                                                                           | 8  |
| 4.  | Overview of friction stir welding (FSW) process principles; welding tools<br>used for FSW; Parameters' effects; Materials used with<br>FSW;thermomechanical aspect of FSW; Plastic deformation in relation to<br>material properties; Material flow and property relationships of the<br>resultant FSW joint, friction stir processing (FSP), process parameters of<br>FSP; Application of FSW and FSP processes. | 10 |
| 5.  | Diffusion joining processes: conventional diffusion, deformation<br>diffusion, resistance diffusion & continuous seam diffusion welding;<br>diffusion brazing; braze welding, combined forming and diffusion<br>welding; solid-state deposition welding processes. Pressure non-fusion<br>welding processes: cold welding processes, pressure gas welding process,                                                | 8  |

| forge welding process; Roll welding; Explosion welding process. |       |    |
|-----------------------------------------------------------------|-------|----|
|                                                                 | Total | 42 |
|                                                                 |       |    |

| S. No. | Name of Author (s)/ Book/ Publisher                                       | Year of     |
|--------|---------------------------------------------------------------------------|-------------|
|        |                                                                           | Publication |
| 1.     | Messler Robert W. Jr., "Joining of Materials and Structures" Elsevier     | 2004        |
|        | Butterworth–Heinemann.                                                    |             |
| 2.     | Messler Robert W. Jr., "Principles of welding"WILEY-VCHVerlag             | 2004        |
|        | GmbH & Co. KGaA, Weinheim.                                                |             |
| 3.     | "Friction stir welding From basics to applications" Edited by Daniela     | 2010        |
|        | Lohwasser and Zhan Chen, Woodhead Publishing India Pvt. Ltd.              |             |
| 4.     | "Welding Handbook", Vol. 2 & 3, 9 <sup>th</sup> Edition, American Welding | 2003        |
|        | Society.                                                                  |             |
| 5.     | Richard Little L., "Welding and Welding Technology", McGraw               | 1976        |
|        | Hill.                                                                     |             |
| 6.     | TylecoteR.F., "The Solid phase welding of Metals", Edward Arnold          | 1968        |
|        | Pub. Ltd.                                                                 |             |

| NAME OF DEPTT/CENTER: |                               | Mechanical & Ind  | ustrial Engineering                                       |          |  |
|-----------------------|-------------------------------|-------------------|-----------------------------------------------------------|----------|--|
| 1.                    | Subject Code: MIN-597         | Course Title: Wel | Course Title: Welding Procedure for Specific Applications |          |  |
| 2.                    | Contact Hours : L: 3          | T: 1              | P: 0                                                      |          |  |
| 3.                    | Examination Duration (Hrs.) : | Theory            | 3 Practic                                                 | al 0     |  |
| 4.                    | Relative Weightage : CWS      | 25 PRS 0          | MTE 25 ETE                                                | 50 PRE 0 |  |
| 5.                    | Credits: 4                    | 6. Semester: Both | 7. Subject Area: DEC/E                                    | OHC      |  |
| 8.                    | Pre-requisite: Nil            |                   |                                                           |          |  |

9. Objective: To introduce the students to the field problems of welding and provide details for solving them.

#### 10. Details of Course:

| S.No. | Contents                                                                                 | Contact |
|-------|------------------------------------------------------------------------------------------|---------|
|       |                                                                                          | Hours   |
| 1.    | Introduction an d E conomic C onsideration: Groove geometry and weld metal               | 6       |
|       | deposition rates for different welding processes; Welding cost estimation; Standard data |         |
|       | for cost estimation; Comparative cost study for various welding procedures.              |         |
| 2.    | Welding of O ffshore C onstructions: Requirement of offshore construction welding;       | 6       |
|       | Problems in underwater welding; Various underwater welding techniques.                   |         |
| 3.    | Welding of Low Temperature C ontainment P lants: Materials used for cryogenic            | 6       |
|       | applications; Problems of welding; Welding processes and procedures used for cryogenic   |         |
|       | materials.                                                                               |         |
| 4.    | Welding of P ressure V essels: Materials used for construction of pressure vessels;      | 6       |
|       | Processes and procedures for pressure vessels welding; Requirement of various codes.     |         |
| 5.    | Repairing of Castings: Specific problems in repairing of castings of various materials;  | 6       |
|       | Welding methods used for repairing and reclamation.                                      |         |
| 6.    | Micro joining Techniques: Various techniques used for joining of electronic circuitry    | 6       |
|       | and other micro joining applications.                                                    |         |
| 7.    | Corrosion in We ldments: Various types of corrosion; Factors affecting corrosion;        | 6       |
|       | Minimization of susceptibility to corrosion; Corrosion testingand stress corrosion       |         |
|       | cracking.                                                                                |         |
|       | Total                                                                                    | 42      |

|    |                                                                          | Publication |
|----|--------------------------------------------------------------------------|-------------|
| 1. | Peter Thomas, "Welding Process Technology", Houldcroft Technology.       | 1977        |
| 2. | "Developments in Micro joining", TWI, Abbington, Cambridge U.K           | 1983        |
| 3. | "Welding Hand Book" Vol. 3 and 4, 9 <sup>th</sup> Edition., AWS          | 2001        |
| 4. | "Rules for Construction of Pressure Vessels", ASME                       | 1977        |
| 5. | Yahalom J. and Aladjan A., "Stress corrosion Cracking", SN Publishers    | 1980        |
| 6. | Nixon, J.H.,"Underwater Repair Technology", Gulf Professional Publishing | 2000        |

| NAM | AME OF DEPTT./CENTRE: Mechanical and Industrial Engineering |                 |        |             |                 |        |      |     |   |
|-----|-------------------------------------------------------------|-----------------|--------|-------------|-----------------|--------|------|-----|---|
| 1.  | Subject Code: MIN-598 Course                                | Title: <b>V</b> | Neldab | ility of M  | letals          |        |      |     |   |
| 2.  | Contact Hours :                                             | L:              | 3      | T:          | 1               | P:     | 0    |     |   |
| 3.  | Examination Duration (Hrs):                                 | Theo            | ry:    | 3           |                 | Practi | cal: | 0   |   |
| 4.  | Relative Weightage: CWS 25                                  | PRS             | 0      | MTE 2       | 25 E            | ETE    | 50   | PRE | 0 |
| 5.  | Credits: <b>4</b> 6.Semester: I                             | Both            | 7. Su  | bject Area: | : D <b>EC/E</b> | онс    |      |     |   |

- 8. Pre-requisite: Nil
- 9. Objective: The a im of this c ourse is t o pr ovide the fundamental understanding on weldability of metals of c ommercial i mportance like s teels, cast ir on and Aluminum besides various pr oblems encountered their r emedies a nd p recautions t o be und ertaken dur ing the w elding of t he above mentioned metals.

| S. No. | Contents                                                                                  | Contact<br>Hours |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| 1.     | Fundamentals : Weldability, definitions, factor af fecting t he w eldability o f s teel   | 4                |  |  |  |  |
|        | Carbon e quivalent, solidification of weld metal; he at a ffected zone (HAZ), factors     |                  |  |  |  |  |
|        | affecting properties of HAZ, gas-metal, slag-metal and solid state reactions in welding   |                  |  |  |  |  |
|        | and their influence on soundness of weld joint, common metal system and their             |                  |  |  |  |  |
|        | weldability: work hardenable, precipitation hardenable and heat treatable alloys          |                  |  |  |  |  |
| 2.     | Weldability of Plain Carbon Steels: Various grade of plain-C steels, factors affecting    | 6                |  |  |  |  |
|        | Weldability, viz., Carbon c ontent, section thickness, Mn/S r atio, phosphorus            |                  |  |  |  |  |
|        | concentration, microstructure of weld and HAZ, cold cracking and lamellar, tearing        |                  |  |  |  |  |
|        | gas porosity, mechanism, causes and prevention of defects in plain -C steel welds,        |                  |  |  |  |  |
| 3.     | Weldability of S tainless a nd Heat R esisting S teels: properties of stainless s teels   | 8                |  |  |  |  |
|        | affecting weldability, common types of stainless steel austenitic, martensitic, ferritic  |                  |  |  |  |  |
|        | and PH steel and their weldability, problems in welding of stainless steel and their      |                  |  |  |  |  |
|        | remedy, weld de cay, s igma pha se f ormation, k nife l ine c racking, s tress c orrosion |                  |  |  |  |  |
|        | cracking.                                                                                 |                  |  |  |  |  |
| 4.     | Weldability of H SLA S teels: Common grades of high s trength low a lloy (HSLA)           | 6                |  |  |  |  |
|        | steels, effect of various alloying elements on weldability, factors affecting weld-metal  |                  |  |  |  |  |
|        | and HAZ Properties, problems and de fects encountered in welding, post weld he at         |                  |  |  |  |  |
|        | treatment of HSLA steels                                                                  |                  |  |  |  |  |

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                           | Contact<br>Hours |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 5.     | Weldability of C ast Irons: Common g rades of c ast i rons, carbon e quivalent in c ast<br>irons, factors affecting weldability of cast irons, approaches for welding of cast irons<br>common problems encountered during the welding of cast and their remedy.                                                                                    | 6                |
| 6.     | Weldability of A luminium A lloys: Physical m etallurgy of h eat t reatable and work<br>hardenable aluminium a lloys, properties of a luminium a lloys a nd weldability,<br>solidification cracking, hydrogen induced porosity, partial melting zone and liquation<br>cracking, HAZ softening, precautions in the welding of age hardenable alloy. | 6                |
| 7.     | Weldability of Copper Alloys: Common copper alloys, properties of copper alloys and<br>weldability, effect of various alloying element of weldability, problem in welding of<br>heat treatable and none-heat treatable copper alloys and their remedy.                                                                                             | 6                |
|        | Total                                                                                                                                                                                                                                                                                                                                              | 42               |

| S. No. | Name of Books/ Authors/ Publisher                                              | Year of     |
|--------|--------------------------------------------------------------------------------|-------------|
|        |                                                                                | Publication |
| 1.     | Lancaster J F., "Metallurgy of Welding", Allen & Unwin Co.                     | 2000        |
| 2.     | Castro R. and Cadenet J. J. de., "Welding M etallurgy of S tainless and he at- | 1975        |
|        | resisting steels", Cambridge Uni. Press.                                       |             |
| 3.     | "Welding, Brazing and soldering", Vol. 6, ASM International, ASM, Ohio.        | 1993        |
| 4.     | Kou S., Welding metallurgy, 2nd edition, Wiley Publications                    | 2003        |
| 5.     | Hrivnák, I., "Theory of Weldability of Metals and Alloys", Elsevier Science    | 1991        |
| 6.     | Gene Mathers, "Welding of Aluminium and alloys", Wood Head Pub. UK.            | 2002        |



#### 8. Pre – requisite: Nil

- 9. O bjective: The c ourse w ill hi ghlight the different s urface d egradation phe nomena, importance of the surface engineering techniques, their benefits and limitations. Selective characterisation techniques f or qua lity as surance of en gineered surfaces w ill be introduced.
- 10. Details of Course:

| S. No. | Contents                                                                            |       |  |  |  |
|--------|-------------------------------------------------------------------------------------|-------|--|--|--|
|        |                                                                                     | Hours |  |  |  |
| 1      | Introduction: Concept a nd Importance, classification of s urface modi fication     | 3     |  |  |  |
|        | techniques, advantages and their limitations.                                       |       |  |  |  |
| 2      | Surface Degradation: Causes, types and consequences of surface degradation,         | 10    |  |  |  |
|        | Forms of w ear – adhesive, a brasive, s urface f atigue, c orrosive, f retting a nd |       |  |  |  |
|        | erosive wear, Classical governing laws related to wear, techniques to evaluate      |       |  |  |  |
|        | the wear damage.                                                                    |       |  |  |  |
| 3      | Materials f or S urface E ngineering: Materials characteristics, their              | 9     |  |  |  |
|        | importance i n surface engineering, wear r esistant ma terials, selection of        |       |  |  |  |
|        | materials for engineering the surfaces for specific applications, New coating       |       |  |  |  |
|        | concepts i ncluding m ulti-layer s tructures, functionally gradient ma terials      |       |  |  |  |
|        | (FGMs), intermetallic barrier coatings and thermal barrier coating.                 |       |  |  |  |
| 4      | Coating based Surface Modification Techniques: Principles and application of        | 8     |  |  |  |
|        | weld surfacing: SMAW, SAW, GMAW, Thermal spraying – flame spraying,                 |       |  |  |  |
|        | electric arc s praying, p lasma s praying, d etonation g un s praying a nd high     |       |  |  |  |
|        | velocity oxy fuel spraying Electro deposition and electro less coatings.            |       |  |  |  |

| 5 | Diffusion bas ed Surface Modification T echniques: Ion impl antation,          | 4  |
|---|--------------------------------------------------------------------------------|----|
|   | chemical va pour de position (CVD) a nd ph ysical va pour de position (PVD),   |    |
|   | carburizing, nitriding, plasma nitriding, cyaniding.                           |    |
| 6 | Irradiation b ased an d Laser A ssisted S urface E ngineering (LASE)           | 4  |
|   | Techniques: Laser cladding, alloying, glazing, laser and induction hardening,  |    |
|   | heat treatment of steel and remelting by laser / TIG. Microwave glazing.       |    |
| 7 | Characterisation an d Quality Assurance of E ngineered S urfaces:              | 4  |
|   | Importance, Different c haracterisation t echniques - physical, mechanical and |    |
|   | functional c haracterisations, s urface f inish, microhardness, s trength a nd |    |
|   | tribological characterisations.                                                |    |
|   | Total                                                                          | 42 |

| S.No | Name of Author (s)/ Book/ Publisher                                   | Year of     |
|------|-----------------------------------------------------------------------|-------------|
|      |                                                                       | Publication |
| 1    | Burakowski T. and Wierzchoń T., "Surface E ngineering of M etals:     | 1999        |
|      | Principles, Equipment, Technologies", CRC Press, Boca Raton, Florida. |             |
| 2    | Burnell-Gray J.S. and Datta P.K. (eds.), "Surface E ngineering        | 1996        |
|      | Casebook", Woodhead Publishing Limited, Cambridge, England.           |             |
| 3    | Grainger, S. and Blunt J. (eds.), "Engineering c oatings - design and | 1998        |
|      | application", Abington Publishing, Cambridge, England.                |             |
| 4    | Rickerby D. S. and Matthews A. (eds), "Advanced Surface Coatings: a   | 1991        |
|      | Handbook of Surface Engineering", Blackie, London.                    |             |
| 5    | Holmberg K. and Matthews A., "Coatings Tribology: Properties,         | 1994        |
|      | Techniques and Applications in Surface Engineering", Elsevier Science |             |
|      | B.V., Amsterdam.                                                      |             |

### NAME OF DEPARTMENT: Mechanical & Industrial Engineering

| 1.<br>2. | Subject Code: <b>MIN-601</b><br>Contact Hours: L: <b>3</b> | Course Ti<br>T:0 | tle: Additi<br>P: 2 | ve Manu | ıfacturi | ng        |        |   |
|----------|------------------------------------------------------------|------------------|---------------------|---------|----------|-----------|--------|---|
| 3.       | Examination Duration (Hrs.)                                | ) : Theory       | 3                   | Prac    | ctical   | 0         |        |   |
| 4.       | Relative Weightage :CWS                                    | 15 PR            | S 25                | MTE 2   | 20 ET    | Е 40      | PRE    | 0 |
| 5.       | Credits: 4                                                 | 6. Sem           | ester: <b>Spr</b>   | ing     | 7. Sul   | oject Are | a: PEC |   |

- 8. Pre–requisite: **CAD**
- 9. O bjectives of Course: The aim of this subject is to establish a broad concept of the effective and creative applications of addi tive m anufacturing t echnologies i n different stages of time based new product development.
- 10. Details of Course:

|   | Topics                                                                                                                                                                                                                                                                                                                                                                    |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1 | Classification of additive manufacturing (AM) processes. AM based                                                                                                                                                                                                                                                                                                         | 10 |
|   | rapid pr ototyping (RP) S ystems l ike S tereo-lithography, F used                                                                                                                                                                                                                                                                                                        |    |
|   | Deposition M odeling (FDM), Selective Laser Sintering (S LS),                                                                                                                                                                                                                                                                                                             |    |
|   | Laminated Object Manufacturing (LOM), 3-D Printing, LENS etc.                                                                                                                                                                                                                                                                                                             |    |
| 2 | Role of a dditive m anufacturing a nd r apid pr ototyping i n pr oduct design and de velopment. S olid m odeling t echniques f or a dditive                                                                                                                                                                                                                               | 12 |
|   | manufacturing with comparison, advantages and disadvantages.                                                                                                                                                                                                                                                                                                              |    |
| 3 | Process planning for rapid prototyping, STL file generation<br>Defects in STL files and repairing algorithms, Slicing and various<br>slicing procedures.                                                                                                                                                                                                                  | 08 |
| 4 | Accuracy is sues in additive manufacturing, Properties of me tallic<br>and non-metallic additive manufactured surfaces, S tress induced in<br>additive m anufacturing (AM) p rocesses. Surface r oughness<br>problem in rapid p rototyping, Part deposition or ientation and<br>issues l ike a ccuracy, s urface f inish, build t ime, s upport s tructure,<br>cost etc., | 10 |
| 5 | Rapid tooling techniques such as laminated metallic tooling, direct metal laser sintering, vacuum casting etc.                                                                                                                                                                                                                                                            | 02 |
|   |                                                                                                                                                                                                                                                                                                                                                                           | 42 |

### Suggested reading

| S.No | Name of Book / Authors / Publisher                                       | Year |
|------|--------------------------------------------------------------------------|------|
| 1    | Chua, C.K., L eong, K.F., R apid P rototyping: P rinciples a nd          | 2000 |
|      | Applications in Manufacturing, John Wiley and Sons Inc.                  |      |
| 2    | Pham, D.T., Demov, S.S., Rapid M anufacturing: The Technologies          | 2001 |
|      | and A pplications of R apid P rototyping and R apid T ooling, S pringer- |      |
|      | Verlag London Limited.                                                   |      |
| 3    | Hopkinson, N., Hague, R .J.M. and D ickens, P .M., Rapid                 | 2005 |
|      | Manufacturing a nd Industrial R evolution f or t he D igital A ge, J ohn |      |
|      | Wiley and Song I td. Chickester                                          |      |
|      | whey and sons Ltd, Chichester.                                           |      |
| 4    | Gebhardt, A., Rapid Prototyping, Hanser Gardner Publications,            | 2003 |
|      | Inc., Cincinnati                                                         |      |
| 5    | Noorani, R., Rapid Prototyping: Principles and Applications, John        | 2006 |
|      | Wiley & Sons, Inc., New Jersey.                                          |      |
| 6    | Gibson, I., Software Solutions for Rapid Prototyping,                    | 2002 |
|      | Professional Engineering Publication Ltd                                 |      |
| 7    | Patri, K. V., and Weiyin, Ma, Rapid Prototyping - Laser-                 | 2003 |
|      | based and Other Technologies, Kluwer Academic Publishers, U.S.A.         |      |
| 8    | Mortenson, M.E., Geometric Modelling, John Wiley and Sons, Inc.          | 1997 |
| 9    | Saxena, A., Sahay, B., Computer Aided Engineering Design,                | 2005 |
|      | Anamaya Publishers, New Delhi.                                           |      |
| 10   | Zeid, I., Mastering CAD/CAM, Tata McCraw Hill.                           | 2006 |

# Practical work

Assignments on va rious a spects of g eometric m odeling, f abrication of pr ototype, programming assignments and project work.

### NAME OF DEPTT. /CENTRE: Department of Mechanical and Industrial Engineering

| 1. | Subject Code: MIN-603   | Course Title: Finite Element Method for Thermal Engineerin | ıg |
|----|-------------------------|------------------------------------------------------------|----|
| 2. | Contact Hours : L: 3    | T: 1 P: 0                                                  |    |
| 3. | Examination Duration (H | rs.): Theory <b>3</b> Practical <b>0</b>                   |    |
| 4. | Relative Weight: CWS    | 25 PRS 0 MTE 25 ETE 50 0 E                                 |    |
| 5. | Credits: 4              | 6. Semester: <b>Spring</b> 7. Subject Area: <b>PEC</b>     |    |

- 8. Pre-requisite: **Nil**
- 9. O bjective: To i ntroduce t he r ecent d evelopments i n f ield of f inite e lement a nalysis for a be tter engineering design.
- 10. Details of Course:

| S. No. | Contents                                                                     | Contact |
|--------|------------------------------------------------------------------------------|---------|
|        |                                                                              | Hours   |
| 1      | Basic C oncepts of F inite E lement Methods: Introduction, va riational      |         |
|        | methods, collocation method, subdomain method, Galerkin's method, least      | 4       |
|        | squares method.                                                              |         |
| 2      | Finite E lement in 1 -D: B asis s teps of f inite element analysis, linear   |         |
|        | element, notation, weighted functions, weighted residual integral, boundary  | 8       |
|        | condtions, g lobal m atrix, G alerkin's f ormulation, A pplications t o f in |         |
|        | problem, fluid flow problems.                                                |         |
| 3      | Finite Element in 2-D: Single variable problems in 2-D, types of elements,   |         |
|        | triangular and rectangular el ements, iso-parametric conc ept, higher or der |         |
|        | elements, numerical integration and computer implementation, higher order    | 10      |
|        | shape functions, boundary conditions, Galerkin's formulation, applications   |         |
|        | to conduction and convection heat transfer problems, plane stress and plane  |         |
|        | strain problems.                                                             |         |
| 4      | Time de pendent f ield pr oblems: Galerkin's m ethod, c onsistent a nd       |         |
|        | lumped f ormulations, finite di fference s olution i n t ime, num erical     | 6       |
|        | oscillations, e xample p roblem f rom he at t ransfer a nd f low pr oblems,  |         |
|        | computer implementation                                                      |         |
| 5      | Flow p roblems: G overning e quations f or continuity, m omentum a nd        |         |
|        | energy c onservations, ve locity-pressure f ormulation, ve locity-vorticity  | 8       |
|        | formulation, finite e lement impl ementation for the s olution of N avier-   |         |
|        | Stokes equations, Eulerian velocity correction method, application to two-   |         |
|        | dimensional pr oblem, pr essure bo undary c ondition, c omputer              |         |

|   | implementation                                                            |    |
|---|---------------------------------------------------------------------------|----|
| 6 | Non-linear p roblems: Non-linear elasticity, n on-linear the rmo-physical |    |
|   | properties, i mplementation of G alerkin's m ethod f or non -linear he at | 6  |
|   | conduction e quation, a pplication of N ewton-Raphson m ethod a nd ot her |    |
|   | methods for non-linear heat transfer and flow problems.                   |    |
|   | Total                                                                     | 42 |

| <b>S.</b> | Name of Authors /Books /Publisher                                               | Year of                    |
|-----------|---------------------------------------------------------------------------------|----------------------------|
| No.       |                                                                                 | <b>Publication/Reprint</b> |
| 1         | Segerlind, L. J., "Applied Finite Element Analysis", 2 <sup>nd</sup> Ed., John  | 1984                       |
|           | Wiley and Sons.                                                                 |                            |
| 2         | Reddy, J.N., "An Introduction to Finite Element Methods", 3 <sup>rd</sup> Ed.,  | 2005                       |
|           | Tata McGraw-Hill.                                                               |                            |
| 3         | Rao, S.S., "The F inite E lement M ethod in E ngineering", 4 <sup>th</sup> Ed., | 2005                       |
|           | Elsevier Science.                                                               |                            |
| 4         | Zienkiewicz, O. C., Taylor, C., and Nithiarasu, P., "Finite Element             | 2005                       |
|           | Method for Fluid Dynamics", 6 <sup>th</sup> Ed., Butterworth-Heinemann.         |                            |
| 5         | Bathe, K. J., "Finite Element Procedures in Engineering Analysis",              | 1982                       |
|           | Prentice Hall.                                                                  |                            |



9. Objective: To introduce students to the fundamental concepts of fire dynamics a base-level understanding of the principals of fire dynamics, c ompartment fire and smoke movement.

| S. No. | Contents                                                                 | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------|----------------------|
| 1      | Introduction: Fuels and combustion processes; physical chemistry of      | 3                    |
|        | combustion i n f ires; s ummary of t he h eat t ransfer e quations of    |                      |
|        | conduction, conection and radiation                                      |                      |
| 2      | Premixed Fl ames: Limits of f lammability; s tructure of p remixed       | 6                    |
|        | flame; he at loss and measurement of bu rning v elocity; va riation of   |                      |
|        | burning velocity with composition, temperature, pressure, suppressant    |                      |
|        | and turbulence.                                                          |                      |
| 3      | <b>Diffusion F lames and Fire Plumes:</b> Laminar a nd t urbulent j et   | 7                    |
|        | flames; flames from natural fire: buo yant plume, fire plume, upward     |                      |
|        | flow; interaction of fire plume with compartment boundaries; effect of   |                      |
|        | wind on fire plume                                                       |                      |
| 4      | Steady Burning of Liquids and Solids: Burning of liquids: pool fire,     |                      |
|        | burning of 1 iquid dr oplets; bur ning of s olids: s ynthetic pol ymers, | 4                    |
|        | wood, dusts and powders                                                  |                      |
| 5      | Frictionless Compressible Flow: Governing equations, full potential      | 6                    |
|        | equation, f low t hrough c onstant a rea du cts with he at t ransfer,    |                      |
|        | Rayleigh lines.                                                          |                      |

| 6 | Ignition and Spread of Flames: Ignition of liquids and solids; Flame                                                                                                                                                                                                                                  | 5  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | spread over liquids and solids;.                                                                                                                                                                                                                                                                      |    |
| 7 | <b>Pre-flashover and Post-flashover Compartment Fire:</b> Growth of flash-<br>over: necessary conditions; ventilation requirements; factors affecting time<br>to flashover and fire growth; fully developed fire behavior; temperature in<br>fully developed fire; fire resistance and fire severity. | 6  |
| 8 | <b>Production and Movement of Smoke:</b> Production and measurement of smoke particles; test for smoke production potential; smoke movement; smoke control systems                                                                                                                                    | 5  |
|   | Total                                                                                                                                                                                                                                                                                                 | 42 |

| S.<br>No. | Author(s) / Title / Publisher                                      | Year of<br>Publication/<br>Reprint |
|-----------|--------------------------------------------------------------------|------------------------------------|
| 1.        | Drysdale, D. "Introduction to Fire Dynamics", John Wiley           | 2011                               |
| 2.        | Karlsson, B., Quintiere, J., "Enclosure Fire Dynamics", James; CRC | 2000                               |
|           | Press                                                              |                                    |
| 3         | Quintiere, J.G.,., "Fundamentals of Fire Phenomena", John Wiley    | 2006                               |
| 4         | Gorbet, G.E., and Pharr, J.L, Fire Dynamics; Pearson Education     | 2010                               |

| NAME OF DEPTT./CENTRE: Department of Mechanical and Industria<br>Engineering |                 |                | Industrial           |                |
|------------------------------------------------------------------------------|-----------------|----------------|----------------------|----------------|
| 1. Subject Code: M                                                           | IIN-605         | Course Title:  | Friction and We      | ar             |
| 2. Contact Hours:                                                            | L: 3            | T: 1           | Р:                   | 0              |
| 3. Examination Dura                                                          | tion (Hrs.):    | Theory : 03    | Practic              | al : 0.        |
| 4. Relative Weight:                                                          | <b>CWS :</b> 25 | PRS:0 MTE:     | <b>ETE :</b> 50      | <b>PRE :</b> 0 |
| 5. Credits: 4<br>PEC                                                         | 6. Sen          | nester: Autumn | / <b>Spring</b> 7. S | Subject Area:  |

8. Pre-requisite: Nil

9. Objective: To impart knowledge on concepts of friction and wear of engineering materials.

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Concept of a surface and surface topography of           | 4                    |
|        | engineering surfaces; Interaction between contacting surfaces,         |                      |
|        | concept of elastic and plastic deformation, Hertz's contact theory;    |                      |
|        | Concept of surface forces – electrostatic forces, capillary forces and |                      |
|        | van der Waal forces.                                                   |                      |
| 2.     | Friction: Concept and laws of friction; Theories of friction, rolling  | 5                    |
|        | friction, sliding friction, Coulomb model, junction growth, asperity   |                      |
|        | deformation, stresses in friction; Temperature in friction.            |                      |
| 3.     | Friction and Engineering Materials: Friction of metallic materials,    | 7                    |
|        | ceramics, polymers and lamellar solids.                                |                      |
| 4.     | Assessment and Control of Friction: Assessment of co-efficient of      | 4                    |
|        | friction, measurement of friction force and contact temperature,       |                      |
|        | assessment of surface forces, tribometer and atomic force              |                      |
|        | microscope (AFM); Lubricants in reducing friction                      |                      |
| 5.     | Wear: Concept of wear of engineering surfaces; Types of wear;          | 5                    |
|        | Sliding wear, dry and lubricated wear of surfaces, chemical wear.      |                      |
| 6.     | Wear Mechanisms: Abrasion; Adhesion; Erosion; Fatigue;                 | 7                    |
|        | Corrosion; Other forms of wear.                                        |                      |
| 7.     | Wear Characteristics of Engineering Materials: Wear of metallic        | 6                    |

|    | materials, ceramics, composites and polymers.                                                                                                                                                          |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8. | Wear estimation and Control: ASTM standards for estimation of<br>wear of engineering surfaces; Modification of functional surfaces for<br>minimization of wear, selection of materials and techniques. | 4  |
|    | Total                                                                                                                                                                                                  | 42 |

| S.  | Name of Books / Authors/ Publishers                                  | Year of              |
|-----|----------------------------------------------------------------------|----------------------|
| No. |                                                                      | <b>Publication</b> / |
|     |                                                                      | Reprint              |
| 1.  | Rabinowicz, E., "Friction and Wear of Materials", John Wiley and     | 1965                 |
|     | Sons, Inc., New York.                                                |                      |
| 2.  | Hutchings, I.M., "Tribology: Friction and Wear of Engineering        | 1992                 |
|     | Materials", Edward Arnold, London.                                   |                      |
| 3.  | Rigney, D.A.(ed.), "Fundamentals of Friction and Wear of Materials", | 1981                 |
|     | American Society for Metals, Ohio, USA.                              |                      |
| 4.  | Zum Gahr, K. H., "Microstructure and Wear of Materials", Elsevier,   | 1987                 |
|     | Amsterdam.                                                           |                      |
| 5.  | Burnell-Gray, J. S. and Datta, P.K. (eds.), "Surface Engineering     | 1996                 |
|     | Casebook", Woodhead Publishing Limited, Cambridge, England.          |                      |
| 6.  | Dowson, D., "History of Tribology", Longman, London.                 | 1978                 |
| 7.  | Bowden, F. P. and Tabor, D., "The Friction and Lubrication of        | 1964                 |
|     | Solids", Part I & II, Clarendon Press, Oxford.                       |                      |
| 8.  | Takadoum, J., "Materials and Surface Engineering in Tribology", John | 2008                 |
|     | Wiley and Sons, Inc., London.                                        |                      |

#### NAME OF DEPTT./CENTRE: **Mechanical & Industrial Engineering** Department 1. Subject Code: MIN-606 Course Title: Numerical Methods in Manufacturing 2. Contact Hours: L: 3 T: 1 **P:** 0 3. Examination Duration (Hrs.): Theory Practical 3 0 ETE 4. Relative Weight: PRS 50 CWS 25 0 MTE 25 PRE 0 6. Semester: Spring 7. Subject Area: **PEC** 5. Credits: 4

- 8. Pre-requisite: Nil
- 9. Objective: To expose the students to invarious numerical methods and modeling tools to model and simulate manufacturing and materials processing operations.
- 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction to Numerical Methods:</b> Introduction, L inear equations, N on-linear e quations, Functional a pproximation, Numerical di fferentiation, Numerical int egration, Ordinary differential equations, Partial differential equations, Finite difference method, F inite e lement method, F inite vol ume method, O rthogonal collocation, Boundary integral method, Optimization                                                                                                          | 8                    |
| 2.     | Science Base of Mathematical Model Development: Introduction,<br>Fluid flow phenomenon, Heat transfer, Diffusion and mass transfer,<br>Multiphase flow                                                                                                                                                                                                                                                                                                                                                 | 8                    |
| 3.     | <b>Modeling of C asting &amp; S olidification P rocess:</b> Fundamentals of casting and solidification process, H eat f low in solidification, Solidification of mus hy z ones, Finite e lement s imulation of solidification problems, M odeling a nd f ormulation of c asting problems, case studies, Macro-modeling of solidification; Numerical approximation methods, D iscretization of g overning equations, Solution of discretized equations, Application of macro-modeling of solidification | 10                   |

| 4. | Modeling of Met al Forming Processes: Introduction, Plasciticity       | 10 |
|----|------------------------------------------------------------------------|----|
|    | fundamentals: von Mises yield criterion, Tresca yield criterion, Flow  |    |
|    | rule, Generalised stress & generalised strain increment, Plastic       |    |
|    | anisotropy, Anisotropic yield criterion, Plastic i nstability, Process |    |
|    | modeling: Uniform e nergy m ethod, s lab m ethod, s lip-line f ield    |    |
|    | method, upper bound method, Visioplasticity method, Finite element     |    |
|    | method, Application of finite element method, Eulerian rigid-plastic   |    |
|    | FEM formulation for plane strain rolling, Governing equations          |    |
| 5. | Modeling of Welding Processes: Weld pool he at & fluid f low,          | 6  |
|    | Modeling of fluid dynamics & c oupled phe nomenon in a rch w eld       |    |
|    | pools, finite e lement analysis of w elding r esidual s tress &        |    |
|    | distribution                                                           |    |
|    | Total                                                                  | 42 |

| S. No. | Name of Books / Authors                                             | Year of<br>Publication |
|--------|---------------------------------------------------------------------|------------------------|
|        |                                                                     |                        |
| 1.     | Ilegbusi, Olusegun J., Iguchi, M., Wanhsiedler, W., "Mathematical   | 2000                   |
|        | and P hysical M odelling of M aterials P rocessing O perations",    |                        |
|        | Chapman & Hall/ CRC Press                                           |                        |
| 2.     | Stefanescu, D. M., "Science and Engineering of C asting             | 2002                   |
|        | Solidification", Kluwer Academic/ Plenum Publishers,                |                        |
| 3.     | Lal, G. K., Dixit, P. M., Reddy, N. Venkata., "Modelling Techniques | 2011                   |
|        | for Metal Forming Processes", Narosa Publishimg House, 2011         |                        |
| 4.     | Gupta S antosh K, N umerical M ethods f or E ngineers, N ew A ge    |                        |
|        | International (P) Limited Publishers, 2009                          |                        |



- 9. Objective: The ma in objective of the c ourse is to impart an und erstanding of t he manufacturing science and engineering of non-metals. The course deals with the study of the basic nature of different non-metals and the manufacturing processes.
- 10. Details of Course:

| S. No. | Contents                                                                        | <b>Contact Hours</b> |
|--------|---------------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Classification of engineering materials and processing            | 3                    |
|        | techniques, structure and properties of non-metals                              |                      |
| 2.     | <b>Processing of G lass</b> : Glass s tructure and pr operties, g lass m elting | 3                    |
|        | and forming, glass annealing                                                    |                      |
| 3.     | Processing of cera mics: Ceramic pow der preparation, synthesis of              | 7                    |
|        | ceramic po wders, f abrication of c eramic pr oducts f rom pow ders:            |                      |
|        | pressing, casting, v apour pha set echniques, s intering, f inishing,           |                      |
|        | machining. ceramic coatings                                                     |                      |
| 4.     | Processing of Plastics: thermoplastics and thermosets, Processing of            | 8                    |
|        | Plastics: E xtrusion. Injection m oulding. T hermoforming.                      |                      |
|        | Compression m oulding. T ransfer m oulding. G eneral be havior of               |                      |
|        | polymer melts, Machining of plastics                                            |                      |
| 5.     | Processing methods of p olymeric matrix composites:                             | 10                   |
|        | Classification of composite materials, properties of composites hand            |                      |
|        | lay-up, a utoclaving, filament w inding, pul trusion, c ompression              |                      |
|        | molding, pr e-pegging, s heet m olding compounds e tc., pr ocess                |                      |
|        | capability and application areas of various techniques                          |                      |
| 6.     | Ceramic matrix composites: mechanical pr operties of ce ramic                   | 6                    |

|    | matrix c omposites, di fferent pr ocessing t echniques f or c eramic<br>matrix c omposites, pr ocess c apability a nd a pplications of va rious<br>techniques                                                                                                                |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7. | <b>Secondary processing of composite materials:</b> Need of secondary operations, di fferent t ype o f s econdary ope rations, m achining a nd drilling of non-metals, machining induced damage, different methods of reducing the damage on account of secondary processing | 5  |
|    | Total                                                                                                                                                                                                                                                                        | 42 |

| S. No. | Name of Books / Authors                                                        | Year of     |
|--------|--------------------------------------------------------------------------------|-------------|
|        |                                                                                | Publication |
| 1.     | Kalpakjian, S., "Manufacturing Processes for Engineering Materials,"           | 1997        |
|        | 3 <sup>rd</sup> Ed., Addison – Wesley                                          |             |
| 2.     | Strong, A.B., "Plastics: Materials and Processing," Pearson Prentice           | 2006        |
|        | Hall                                                                           |             |
| 3.     | Mathews, F.L., and R awlings, R.D., " Composite M aterials:                    | 1999        |
|        | Engineering and Science," Woodhead Publishing                                  |             |
| 4.     | "Handbook of Composites" ed. By S.T. Peters, 2 <sup>nd</sup> Ed., Chapman Hall | 1998        |

| NAME OF DEPTT./CENTRE:                  | Mechanical & Industri           | al Engineering    |
|-----------------------------------------|---------------------------------|-------------------|
| 1. Subject Code: MIN-608                | Course Title: Product and Proc  | cess Optimization |
| 2. Contact Hours: L: 3 T: 1 P: 0        |                                 |                   |
| 3. Examination Duration (Hrs.): Theorem | ry 3 P                          | ractical 0        |
| 4. Relative Weightage: CWS 25 P         | RS 0 MTE 25 ETE 50              | PRE 0             |
| 5. Credits: <b>4</b> 6. Seme            | ester <b>: Autumn/Spring</b> 7. | Subject Area: PEC |
| 8. Pre-requisite: Nil                   |                                 |                   |

9. Objective: This c ourse will introduce to t he s tudents, the basic conc epts, techniques a nd applications of engineering optimization in a comprehensive manner.

| S. No. | Contents                                                                      | <b>Contact Hrs</b> |
|--------|-------------------------------------------------------------------------------|--------------------|
| 1.     | Introduction t o Design O ptimization: The design process; b asic             | 2                  |
|        | terminology and notations.                                                    |                    |
| 2.     | <b>Optimum Design P roblem F ormulation:</b> The pr oblem f ormulation        | 3                  |
|        | process; and illustration with examples.                                      |                    |
| 3.     | Graphical Optimization: Graphical solution process; problems with –           | 3                  |
|        | bounded (single or multiple) and unbounded solutions.                         |                    |
| 4.     | Optimum Design Concepts: Local and global optima; ne cessary and              | 6                  |
|        | sufficient opt imality c onditions f or unc onstrained a nd c onstrained      |                    |
|        | multivariate functions.                                                       |                    |
| 5.     | Linear P rogramming Methods f or O ptimum D esign: Basic                      | 4                  |
|        | concepts; simplex method; two-phase simplex method; post-optimality           |                    |
|        | analysis.                                                                     |                    |
| 6.     | Numerical methods for Unconstrained and Constrained Optimum                   | 6                  |
|        | <b>Design:</b> Gradient-based and direct s earch m ethods; Sequential l inear |                    |
|        | and quadratic programming.                                                    |                    |
| 7.     | Multi-objective Optimization: Fundamental shift from single-objective         | 4                  |
|        | optimization; Pareto-set and Pareto-optimal Front.                            |                    |
| 8.     | <b>Evolutionary T echniques f or O ptimization:</b> Genetic algorithms;       | 6                  |
|        | Differential Evolution Algorithms; Ant colony Optimization; and Particle      |                    |
|        | Swarm Optimization.                                                           |                    |
| 9.     | Advanced t opics on O ptimum D esign: Meta m odels f or de sign               | 4                  |
|        | optimization; de sign of e xperiments; di screte de sign with orthogonal      |                    |
|        | arrays; robust design approach; reliability-based design optimization.        |                    |
| 10.    | Practical ap plications of op timization: Illustration on engineering         | 4                  |
|        | problems with single and multiple objectives.                                 |                    |
|        | Total                                                                         | 42                 |

| S. No. | Name of Books / Authors                                                          | Year of     |
|--------|----------------------------------------------------------------------------------|-------------|
|        |                                                                                  | Publication |
| 1.     | S. S. Rao; Engineering Optimization; 4 <sup>th</sup> Edition, John Wiley & Sons. | 2009        |
| 2.     | K. Deb; Optimization for Engineering Design; Prentice Hall of India.             | 2005        |
| 3.     | K. Deb; Multi-objective Optimization using Evolutionary Algorithms;              | 2003        |
|        | John Wiley & Sons.                                                               |             |

| NA | ME OF DEPTT./CENT    | ÌRE:         | Departm  | ent of l | Physics  |              |        |
|----|----------------------|--------------|----------|----------|----------|--------------|--------|
| 1. | Subject Code: PHN-00 | )1           | Course ' | Title:   | Physic   | s Departm    | ent    |
| 2. | Contact Hours: L: 3  |              | T:0      |          | P: 2     |              |        |
| 3. | Examination Duration | (Hrs.): Theo | ory: 3   | Pr       | actical: | 0            |        |
| 4. | Relative Weightage:  | CWS: 15      | PRS: 25  | MTE      | : 20     | ETE: 40      | PRE: 0 |
| 5. | Credits: 4           | 6. Semester: | Autumn   |          | 7. Sub   | ject Area: ] | BSC    |

8. Pre-requisite: None

### 9. Objective: To familiarize students with the basic principles of mechanics

| S.No. | Contents                                                                               | <b>Contact Hours</b> |
|-------|----------------------------------------------------------------------------------------|----------------------|
| 1     | STATICS OF PARTICLES.                                                                  | 8                    |
|       | Vectorial representation of f orces and moments- Vector O peration-Concepts of         |                      |
|       | Particles a nd R igid bod ies – Composition of c oncurrent forces in pl ane free b ody |                      |
|       | Diagram – Equilibrium of Rigid bodies in Two and three dimensions-Moment of a          |                      |
|       | force about a point and about an axis-Couple moment-Reduction of a force system to     |                      |
|       | a force and a couple                                                                   |                      |
| 2     | PROPERTIES OF SURFACES, MOMENTS AND PRODUCTS OF INERTIA                                | 6                    |
|       | Definition Moment of Inertia for areas-Parallel axis theorem –Perpendicular axis       |                      |
|       | theorem-Moment of inertia for composite area-product of inertia form an area-          |                      |
|       | mass moment of inertia                                                                 |                      |
| 4     |                                                                                        | 4                    |
|       | Laws of c oulomb f riction- Coefficient o f Friction-Dry F riction-sliding             |                      |
|       | Friction-Ladder friction-Belt friction – Rolling Resistance.                           |                      |
| 5     | KINEMATICS OF PARTICLES                                                                | 8                    |
|       | Principle of vi rtual w ork f or a p article and r igid bod y-condition f or           |                      |
|       | equilibrium f or a c onservative s ystem, stability-particle d ynamics in              |                      |
|       | rectangular coordinate, cylindrical coordinate and in terms of path variables-         |                      |
|       | General motion of system of particles-                                                 |                      |
| 6     | WORK ENERGY METHODS, IMPULSE AND MOMENTUM                                              | 8                    |
|       | Work E nergy M ethod-Conservation of E nergy-Impulse a nd M omentum                    |                      |
|       | Relation-Impulsive Force-Impact force-Conservation of momentum – Moment                |                      |
|       | of Momentum Equation.                                                                  |                      |
| 7     | <b>RIGID BODY MOTION;</b>                                                              | 8                    |
|       | Translation and rotation of rigid bodies- Derivative of a vector fixed in moving       |                      |
|       | reference-General relationship between time derivative of a vector for different       |                      |
|       | references-Moment of momentum equation-kinetic energy of rigid body-work               |                      |
|       | and energy r elations-Euler's e quation of m otion-Three di mensional m otion          |                      |
|       | about a fixed point                                                                    |                      |
|       | TOTAL                                                                                  | 42                   |

#### List of experiments:

- 1. Study of magnetic field of a pair of coils in Helmholtz arrangement
- 2. Determination of e/m
- 3. Determination of first excitation potential of a gas by Frank-Hertz experiment
- 4. Determination of Stefan's constant
- 5. Determination of Planck's constant by radiation
- 6. To study and verify Malus' law
- 7. Study of Polarization of light using quarter wave plate
- 8. Determination of Brewster's angle at glass-air interface
- 9. Determination of with of a slit by single-slit diffraction pattern
- 10. Four probe method of finding resistivity of semiconductor
- 11. Quinck's Method for determining mass susceptibility
- 12. Wavelength of Na light by Newton's ring method

| S.No. | Title/Authors/Publishers                                                             | Year of     |
|-------|--------------------------------------------------------------------------------------|-------------|
|       |                                                                                      | Publication |
| 1.    | Shames I .H. a nd Rao G.K., "Engineering Mechanics-Statics an d                      | 2006        |
|       | Dynamics", 4 Edition, Pearson Education                                              |             |
| 2.    | Beer F.P and Johnson E.R., "Vector Mechanics for Engineers- Statics and              | 2010        |
|       | Dynamics",9 Edition, Tata McGraw-Hill Publishing Company                             |             |
| 3.    | Pytel A. and Kiusalaas J., "Engineering Mechanics: Statics" 3 <sup>rd</sup> Edition, | 2010        |
|       | Cengage Learing                                                                      |             |
| 4.    | Pytel A. and Kiusalaas J., "Engineering Mechanics: Dynamics"3 <sup>rd</sup> Edition  | 2010        |
|       | Cengage Learing                                                                      |             |
| 5.    | Hibberler R .C a nd G upta A ., E ngineering M echanics,", 12 <sup>th</sup> Edition, | 2012        |
|       | Pearson Education                                                                    |             |
| 6.    | Meriam J .L. and Kraige L.G., "Engineering Mechanics: S tatics", 6 <sup>th</sup>     | 2012        |
|       | Edition, John Willey and Son,s                                                       |             |
| 7.    | Meriam J.L., and Kraige L.G., "Engineering Mechanics: Dynamics", 6 <sup>th</sup>     | 2012        |
|       | Edition, John Willey and Son's                                                       |             |

| NAME OF DEPTT./CE       | NTRE :    | Department     | of Physics                       |               |        |  |
|-------------------------|-----------|----------------|----------------------------------|---------------|--------|--|
| 1. Subject Code: PHN    | -008      | Course Tit     | se Title: Electromagnetic Theory |               |        |  |
| 2. Contact Hours: L     | : 3       | T: 1           | P: 0                             |               |        |  |
| 3. Examination Duration | Theory: 3 | Рі             | ractical : 0                     |               |        |  |
| 4. Relative Weightage:  | CWS: 25   | PRS: 0         | MTE : 25                         | ETE: 50       | PRE: 0 |  |
| 5. Credits: 4           | 6. Ser    | nester: Spring | 7. Sub                           | oject Area: B | SC     |  |

8. Pre-requisite: None

9. Objective: To impart basic concepts of electromagnetism and their applications in engineering.

| S. No. | Contents                                                                      | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------|----------------------|
| 1      | Vector A lgebra: Cartesian, C ylindrical a nd S pherical c oordinate          | 9                    |
|        | Systems, C onstant c oordinate s urfaces, D el operator, Gradient,            |                      |
|        | Divergence of a Vector and Divergence Theorem, Curl of a vector and           |                      |
|        | Stokes theorem, Gradient, Divergence, Curl and Laplacian in the three         |                      |
|        | coordinate S ystems, Laplacian of a s calar, Scalar & Vector Fields,          |                      |
|        | Classification of Vector fields.                                              |                      |
| 2      | <b>Electrostatics:</b> Coulomb's l aw, electric f ield int ensity du e to     | 11                   |
|        | continuous charge distribution, Gauss's law & its applications, electric      |                      |
|        | potential, t he l ine i ntegral, e lectric di pole a nd t lux l ines, e nergy |                      |
|        | density in an electrostatic i leid, electrostatic di scharge. Current and     |                      |
|        | boundary conditions not arize in di clostrice, noture of Disloctrice          |                      |
|        | materials and r elated boundary conditions canacitance Electrostatic          |                      |
|        | houndary-value pr oblems. Laplace's a nd P oisson's e quations                |                      |
|        | Uniqueness t heorem G eneral pr ocedure f or s olving Laplace's a nd          |                      |
|        | Poisson's equation.                                                           |                      |
| 3      | Magnetostatics:                                                               | 11                   |
|        | Biot-Savart's law, Ampere's circuital law, Applications of Ampere's           |                      |
|        | law, Magnetic flux a nd m agnetic f lux de nsity, Scalar and vector           |                      |
|        | magnetic potentials.Magnetic dipole, Force due to Magnetic field on a         |                      |
|        | differential current el ement, force be tween two di fferential cur rent      |                      |
|        | elements, Force and torque on a closed circuit, The nature of magnetic        |                      |
|        | materials, M agnetization a nd pe rmeability, Magnetic bounda ry              |                      |
|        | conditions, I nductors, inductances, Magnetic ene rgy, M agnetic              |                      |
|        | circuits, Potential energy and force on magnetic materials, magnetic          |                      |
|        | levitation.                                                                   |                      |
|        |                                                                               |                      |

| 4 | Time va rying electric and m agnetic fields an d electromagnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | waves:<br>Faraday's law, transformer, EMF, DC motors, displacement current,<br>Maxwell's e quations for time varying fields, electromagnetic wave<br>equation i n f ree s pace, pl ane waves i n f ree space, pol arization,<br>Poynting ve ctor and power as sociated with electromagnetic waves,<br>plane w aves i n l ossless, hom ogeneous, a nd isotropic di electric,<br>reflection and t ransmission of plane waves at dielectric i nterface,<br>normal and oblique incidence, plane waves in good conductors, skin |    |
|   | depth. Microwaves and their applications in telecommunication, radar, and heating.                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42 |

| S.No. | Name of Authors / Books / Publishers                                                  | Year of              |
|-------|---------------------------------------------------------------------------------------|----------------------|
|       |                                                                                       | <b>Publication</b> / |
|       |                                                                                       | Reprint              |
| 1.    | William H H ayt, J r., and John A. "Engineering Electromagnetics",                    | 2005                 |
|       | Buck, Tata McGraw Hill Publishing Company Ltd, New Delhi, 7 <sup>th</sup> Ed.         |                      |
| 2.    | Matthew N.O. S adiku,"Elements of E ngineering E lectromagnetics",                    | 2003                 |
|       | Oxford University Press, 3 <sup>rd</sup> Ed.                                          |                      |
| 3.    | Nannapaneni N arayan Rao, "Elements of E ngineering                                   | 2000                 |
|       | Electromagnetics", Prentice Hall of India, New Delhi, 4 <sup>th</sup> Ed.             |                      |
| 4.    | D.J. Griffiths, "Introduction to Electrodynamics", Prentice Hall, 3 <sup>rd</sup> Ed. | 2000                 |

#### NAME OF DEPTT/CENTRE: DEPARTMENT OF CIVIL ENGINEERING

1. Subject code: **CEN-105** Course Title: Introduction to Environmental Studies

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Examination Duration (Hrs): **Theory:** 3 **Practical:** 0

4. Relative Weightage: CWS: 15 PRS: 0 MTE: 35 ETE: 50 PRE: 00

- 5. Credits: **3** 6. Semester: **Autumn** 7. Subject Area: **GSC**
- 8. Pre-requisite: Nil

9. Objective: To introduce fundamentals of environmental pollution and its control.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                              | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | Overview: Environment and Natural Processes; Development (Resource<br>Utilization & Waste Generation); Environmental issues; Concept of<br>Sustainable Development; Issues affecting future development<br>(population, urbanization, health, water scarcity, energy, climate change,<br>toxic chemicals, finite resources etc.); Environmental units | 6                    |
| 2.     | Air –Water interaction: (Liquid phase-gas phase equilibrium) Henry's Law Constant with units, Dimensionless Henry's Law Constant                                                                                                                                                                                                                      | 3                    |
| 3.     | Water –Soil Interaction: Carbonate System (Alkalinity and buffering capacity); Major ions in water; Natural Organic Matter (NOMs); Water quality parameters; Physical processes (Mass Balance): Spatio-temporal variation in quality of river water, lake water, ground water; Water quality standards                                                | 9                    |
| 4.     | Wetlands, water treatment and wastewater treatment .                                                                                                                                                                                                                                                                                                  | 6                    |
| 5.     | Air resources: Atmosphere; Air pollutants; Emissions and control of air pollutants; Atmospheric meteorology and dispersion; Transport of air (global, regional, local); Air/ atmospheric stability; Plume shape; Gaussian modeling; Air quality standards                                                                                             | 9                    |
| 6.     | Land pollution and solid waste management                                                                                                                                                                                                                                                                                                             | 3                    |
| 7.     | Ecosystem: Structure and function; Energy flow in ecosystem; Material flow in ecosystem; Biodiversity and ecosystem health; Bio-amplification and bio-magnification                                                                                                                                                                                   | 3                    |
| 8.     | Hazardous Waste: Definition; Classification; Storage and management;<br>Site remediation; Environmental Risk: assessment, and management                                                                                                                                                                                                              | 3                    |
|        | Total                                                                                                                                                                                                                                                                                                                                                 | 42                   |

| S. No. | Name of Books / Authors/ Publishers                                                                                                  | Year of Publication/<br>Reprint |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1.     | Davis M. L. and Cornwell D. A., "Introduction to Environmental Engineering", McGraw Hill, New York 4/e                               | 2008                            |
| 2.     | Masters G. M., Joseph K. and Nagendran R. "Introduction to Environmental Engineering and Science", Pearson Education, New Delhi. 2/e | 2007                            |
| 3.     | Peavy H. S., Rowe D.R. and Tchobanoglous G., "Environmental Engineering", McGraw Hill, New York                                      | 1986                            |
| 4.     | Mines R. O. and Lackey L. W. "Introduction to Environmental Engineering", Prentice Hall, New Yark                                    | 2009                            |
| 5.     | Miheicic J. R. and Zimmerman J. B. "Environmental Engineering:<br>Fundamentals, Sustainability, Design" John Wiley and Sons, Inc.    | 2010                            |

| NAME OF DEPTT./CENTRE:          | Department of Huma<br>Sciences | anities & Social      |
|---------------------------------|--------------------------------|-----------------------|
| 1. Subject Code: HS-001A        | Course Title: <b>Communi</b>   | cation Skills (Basic) |
| 2. Contact Hours: L: 1          | T: 0                           | P: 2                  |
| 3. Examination Duration (Hrs.): | Theory 2 P                     | Practical 0           |
| 4. Relative Weight: CWS 25      | 5 PRS 00 MTE 25                | ETE 50 PRE 0          |
| 5. Credits: <b>2</b> 6. Sen     | mester: Autumn/Spring          | 7. Subject Area: HSS  |

8. Pre-requisite: NIL

9. Objective: The course intends to build the required communication skills of the students having limited communicative abilities, so that they may communicate effectively in real-life situations

| S. No. | Contents                                                                                                                                                                                        | Contact |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|        |                                                                                                                                                                                                 | Hours   |
| 1.     | Understanding the Basics of Communication Skills: Listening, Speaking,                                                                                                                          | 01      |
|        | Reading & Writing, Scope and Importance                                                                                                                                                         |         |
| 2.     | Grammar & Composition: Time and Tense, Agreement, Active-Passive,                                                                                                                               | 05      |
|        | Narration, Use of Determiners, Prepositions & Phrasal Verbs                                                                                                                                     |         |
| 3.     | Vocabulary Building & Writing: Word-formation, Synonyms, Antonyms,<br>Homonyms, One-word Substitutes, Idioms and Phrases, Collocations,<br>Abbreviations of Scientific and Technical Words      | 02      |
| 4.     | Introduction to Sounds (Vowels & Consonants) Organs of Speech, Place<br>and Manner of Articulation, Stress & Intonation, Listening Comprehension<br>(Practical Sessions in Language Laboratory) | 02      |

| 5. | Speaking, Countering Stage-fright and Related Barriers to Communication.   | 02 |
|----|----------------------------------------------------------------------------|----|
| 6. | Reading and Comprehension: Two lessons to be identified by the department. | 02 |
|    | Total                                                                      | 14 |

#### **List of Practicals:**

- **1.** Ice-breaking Exercises
- 2. Assignments on Time and Tense, Agreement, Active-Passive
- **3.** Laboratory Session on Narration, Use of Determiners, Prepositions & Phrasal Verbs, Revisionary Exercises & Quiz
- 4. Laboratory Session on Synonyms, Antonyms, Homonyms
- 5. Assignments and Practice Sheets on One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words
- **6.** Laboratory Session on Practice of sounds, Intonation and Stress, Listening Comprehension
- 7. Individual presentation, debates, Extempore & Turncoats
- 8. Exercises in Composition and Comprehension
- 11. Suggested Books:

| S. No. | Name of Authors / Books / Publishers                              | Year of      |
|--------|-------------------------------------------------------------------|--------------|
|        |                                                                   | Publication/ |
|        |                                                                   | Reprint      |
| 1.     | Murphy, Raymond. Intermediate English Grammar, New Delhi,         | 2009         |
|        | Cambridge University Press.                                       |              |
| 2.     | Quirk, Randolph & Sidney Greenbaum. A University Grammar of       | 2009         |
|        | English, New Delhi, Pearson.                                      |              |
| 3.     | McCarthy, Michael & Felicity O' Dell. English Vocabulary in Use,  | 2010         |
|        | New Delhi, Cambridge University Press                             |              |
| 4.     | Jones, Daniel. The Pronunciation of English, New Delhi, Universal | 2010         |
|        | Book Stall.                                                       |              |
| 5.     | Birchfield, Susan M. Fowler's Modern English Usage, New Delhi,    | 2004         |
|        | OUP.                                                              |              |
|        |                                                                   |              |
| 6.     | Llyod, Susan M. Roget's Thesaurus of English Words and Phrases.   | 2010         |
|        | New Delhi: Penguin.                                               |              |
|        |                                                                   |              |
|        |                                                                   |              |

| NAME OF DEPTT./CENTRE: Department of Humanities & Social Sciences |                |                            |                           |
|-------------------------------------------------------------------|----------------|----------------------------|---------------------------|
| 1. Subject Code: HS-001B                                          | Course Title:  | Communicatio<br>(Advanced) | n Skills                  |
| 2. Contact Hours: L: 1                                            | T: 0           | Ρ:                         | 2                         |
| 3. Examination Duration (Hrs.):                                   | Theory 2       | Pract                      | ical 0                    |
| 4. Relative Weight: CWS 2                                         | 5 PRS 00       | MTE 25 ETE                 | 50 PRE 0                  |
| 5. Credits: <b>2</b> 6. Set                                       | mester: Autumn | <b>/Spring</b> 7.          | Subject Area <b>: HSS</b> |

8. Pre-requisite: NIL

9. Objective: The course intends to train the learners in using both verbal and non-verbal communication effectively.

| S. No. | Contents                                                            | Contact |
|--------|---------------------------------------------------------------------|---------|
|        |                                                                     | Hours   |
| 1.     | Advanced Communication Skills: Scope, Relevance, & Importance       | 01      |
|        |                                                                     |         |
| 2.     | Soft Skills: Interpersonal Communication; Verbal & Non-verbal,      | 03      |
|        | Persuasion, Negotiation, Neuro-Linguistic Programming               |         |
|        |                                                                     |         |
| 3.     | Communication and Media (Social and Popular), The Social and        | 04      |
|        | Political Context of Communication, Recent Developments and         |         |
|        | Current Debates in Media                                            |         |
| 4.     | Cross-cultural and Global Issues in Communication: Race, Ethnicity, | 03      |
|        | Gender & Diaspora                                                   |         |
| 5      | Photoria and Public Communication Audience Autoronase Emotionality  | 02      |
| э.     | Kilcione and Fublic Communication, Audience Awareness, Emotionality | 03      |
|        |                                                                     |         |
|        | Total                                                               | 14      |

### List of Experiments:

- 1. Discussion on the Process of Communication in Personal and Professional Life
- 2. Group Discussion, Case Studies and Role-Play
- **3.** Assignments on E-mail Etiquette, Social Networking, Blog Writing, Discussions on Current Issues
- 4. Non-Verbal Communication in Cross-Cultural Situations, Case Studies, Group Discussions and Readings on Topics Related to Race, Ethnicity, Gender and Diaspora
- **5.** Individual Presentations (Audience Awareness, Delivery and Content of Presentation)

| S. No. | Name of Authors / Books / Publishers                              | Year of<br>Publication/<br>Reprint |
|--------|-------------------------------------------------------------------|------------------------------------|
| 1.     | Rentz, Kathryn, Marie E. Flatley & Paula Lentz.                   | 2012                               |
|        | Lesikar's Business Communication CONNECTING IH A DIGITAL          |                                    |
|        | WORLD, McGraw-Hill, Irwin                                         |                                    |
| 2.     | Bovee, Courtland L & John V. Thill. Business Communication        | 2010                               |
|        | Today. New Delhi, Pearson Education                               |                                    |
| 3.     | McMurrey, David A. & Joanne Buckley. Handbook for Technical       | 2009                               |
|        | Writing, New Delhi, Cengage Learning.                             |                                    |
| 4.     | Jones, Daniel. The Pronunciation of English, New Delhi, Universal | 2010                               |
|        | Book Stall.                                                       |                                    |
|        |                                                                   |                                    |
| 5.     | Allan & Barbara Pease. The Definitive Book of Body Language,      | 2004                               |
|        | New York, Bantam                                                  |                                    |
|        |                                                                   |                                    |
| NAME OF DEPTT./          | Department of Humanities and Social Sciences |          |                                         |           |         |
|--------------------------|----------------------------------------------|----------|-----------------------------------------|-----------|---------|
| 1. Subject Code: HSN-002 |                                              | Course T | Course Title: Ethics and Self-awareness |           | areness |
| 2. Contact Hours:        | L: 01                                        | Т        | :01                                     | P: 0      |         |
| 3. Examination Dura      | tion (Hrs.):                                 | Theory   | 2                                       | Practical | 0       |
| 4.Relative Weight:       | CWS:25                                       | PRS:0    | MTE:25                                  | ETE:50    | PRE:0   |

- 5. Credit 02 6. Semester: Autumn 7. Subject Area: HSSC
- 8. Pre-requisite: NIL
- 9. Objective: To introduce the concepts pertaining to ethical and moral reasoning and action and to develop self awareness.
- 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1      | <b>Introduction</b> : Definition of Ethics; Approaches to Ethics: Psychological, Philosophical, Social.                                                                                                                 | 1                    |
| 2      | <b>Psycho-social t heories of m oral d evelopment</b> : View of Kohlberg;<br>Morality and Ideology, Culture and Morality, Morality in everyday<br>context.                                                              | 3                    |
| 3      | <b>Ethical C oncerns</b> : Work Ethics and Work Values, Business Ethics, Human values in organizations.                                                                                                                 | 3                    |
| 4      | <b>Self-Awareness</b> : Self Concept: Johari Window, Self and Culture, Self Knowledge, Self-Esteem; Perceived Self-control, Self-serving bias, Self-presentation, Self-growth: Transactional Analysis and Life Scripts. | 4                    |
| 5.     | <b>Self D evelopment</b> : Character strengths and virtues, Emotional intelligence, Social intelligence, Positive cognitive states and processes (Self-efficacy, Empathy, Gratitude, Compassion, and Forgiveness).      | 3                    |
|        | Total                                                                                                                                                                                                                   | 14                   |

| S.No. | Name of Authors / Books / Publishers                                                                                | Year of Publication |
|-------|---------------------------------------------------------------------------------------------------------------------|---------------------|
| 1.    | Hall, Calvin S., Lindzey, Dardner., & Cambell, John                                                                 | 1998                |
|       | B., "Theories of Personality", Hamilton Printing Company.                                                           |                     |
| 2.    | Car Alan, "Positive Psychology: The Science of Happiness<br>and Human Strengths", Brunner-Routledge.                | 2004                |
| 3.    | Leary M.R., "The Curse of Self: Self-awareness, Egotism<br>and the Quality of Human Life", Oxford University Press. | 2004                |
| 4.    | Louis P. P., "The Moral Life: An Introductory Reader in<br>Ethics and Literature", Oxford University Press.         | 2007                |
| 5.    | Corey, G., Schneider Corey, M., & Callanan, P., "Issues<br>and Ethics in the Helping Professions", Brooks/Cole.     | 2011                |
| 6.    | Snyder, C.R., Lopez, Shane, J., & Pedrotti, J.T., "Positive Psychology" Sage, 2 <sup>nd</sup> edition.              | 2011                |

### NAME OF DEPARTMENT: Department of Metallurgical and Materials Engineering

| 1. Subject Code: MTN-   | -106     | Course Title: M | laterials Scien | ce           |        |
|-------------------------|----------|-----------------|-----------------|--------------|--------|
| 2. Contact Hours:       |          | L: 3            | T: 1            | P: 0         |        |
| 3. Examination Duration | n (Hrs): | Theory: 3       | Prac            | tical: 0     |        |
| 4. Relative Weightage:  | CWS: 25  | PRS: 0          | MTE: 25         | ETE: 50      | PRE: 0 |
| 5. Credits: 4           | 6. Se    | emester: Both   | 7. Subje        | ct Area: ESC |        |

8. Pre-requisite: Nil

- 9. Objective: To familiarize the students with fundamentals of materials science.
- 10. Details of the Course:

| Sl. No. | Contents                                                                 | <b>Contact Hours</b> |
|---------|--------------------------------------------------------------------------|----------------------|
| 1       | Introduction to crystallography                                          | 10                   |
|         | Bonding in Solids: Ionic, Amorphous and Crystalline, Single crystal      |                      |
|         | and Polycrystalline material, Polymorphism, Lattice, Unit cell,          |                      |
|         | Bravais lattice, Types of crystals, Linear and Planer densities, Voids   |                      |
|         | in crystalline structures, Ceramic crystal structures, Crystal defects   |                      |
|         | (Point, Line ,Surface and Volume defects)                                |                      |
| 2       | Principles of alloy formation                                            | 7                    |
|         | Solid solution, Hume-Rothery rules, Binary phase diagrams: Gibbs         |                      |
|         | phase rule, lever rule, cooling curves, Invariant reactions, Types of    |                      |
|         | Binary phase diagrams (Isomorphous, Eutectic, Partial-Eutectic           |                      |
|         | systems), Iron-Iron carbide phase diagram                                |                      |
| 3       | Plastic deformation                                                      | 5                    |
|         | Elastic and Plastic deformation and Strain hardening with respect to     |                      |
|         | Stress-Strain Curve, Plastic deformation by Slip: Slip system,           |                      |
|         | Critical resolved shear stress, Frank-Read source Work hardening         |                      |
|         | and dynamic recovery, Strengthening Mechanisms, Recovery,                |                      |
|         | Recrystallization and Grain growth, Cold and hot working                 |                      |
|         |                                                                          |                      |
| 4       | Mechanical Properties                                                    | 10                   |
|         | Hardness Test (Brinell, Vickers, Rockwell and Microhardness              |                      |
|         | Tests) Tensile Test (Engineering stress-strain curve: Y.S, U.T.S,        |                      |
|         | work hardening, ductility, resilience and toughness, True stress-        |                      |
|         | strain curve, Ductile and brittle fracture), Impact Test (Charpy and     |                      |
|         | Izod specimens, Ductile – brittle transition, effect of carbon on        |                      |
|         | ductile-brittle transition in plain carbon steels) Fatigue Test (Fatigue |                      |
|         | testing apparatus, S-N Curve for ferrous and non-ferrous, Fatigue        |                      |

|   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6 | Ceramic, Composite and Polymeric Materials<br>Ceramics: Types of ceramics, Fabrication and Processing of<br>Ceramics: (i) Glass forming processes (ii) Particulate forming<br>processes (iii) Cementation, Composites : Advantages of composites,<br>Constituents of composites, Applications of composites<br>,Classification of composites: Based on matrix and reinforcement,<br>Polymers: Hydrocabon and Polymer molecules, Molecular shape and<br>structure, Molecular configuration, Thermoplastic and Thermosetting<br>polymers | 4  |
| 5 | Creep Test: Creep curve, Creep fracture, Material consideration for<br>high temperature use.<br>Heat Treatment<br>Purpose of Heat treatments, Equilibrium and Non-equilibrium<br>cooling,<br>Nucleation, Grain growth and Kinetics , TTT and CCT diagrams<br>Common heat treatments like Annealing, Normalizing, Hardening<br>and Tempering, Hardenability: Jominy end-quench test, Hardenability<br>curves, Martempering and Austempering, Surface hardening                                                                          | 6  |
|   | fracture (transgranular fracture), Methods of improving fatigue life,<br>Creep Test: Creep curve, Creep fracture, Material consideration for                                                                                                                                                                                                                                                                                                                                                                                           |    |

| S.No. | Name of Authors / Books / Publishers                                                                    | Year of<br>Publication/<br>Reprint |
|-------|---------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.    | Callister W.D., "Materials Science and Engineering" Wiley India (P)<br>Ltd. ISBN:978-81-265-21-43-2     | 2010                               |
| 2.    | Raghavan V.,"Materials Science and Engineering- A first Course,"<br>5th edition, ISBN:978-81-203-2455-8 | 2011                               |
| 3.    | Askeland D.R., "The Science and Engineering of Materials, 5th edition, ISBN: 978-81-315-0321-8          | 2006                               |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



- 8. Pre-requisite: Nil
- 9. Objective: To provide basic concepts of ki nematic an alysis of m achines and machine members.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction:</b> Objective of ki nematic a nalysis of me chanism, classification of links , pa irs, Basic t erminology a nd kinematic symbols, ki nematic chains, pl ane motion; constraints and d egrees of freedom, m echanism a nd m achines, i nversion of m echanisms along with their practical applications.                                                                                                                                                                                                                 | 7                    |
| 2.     | <b>Motion Analysis of Mechanisms:</b> Kinematic quantities a nd their relationships, a bsolute a dr elative m otions, a nd t heir ve ctor representation, instantaneous cent ers of m otion, K ennedy Arnold's theorem; r elative v elocity method, m ethod o f i nstantaneous c enters, resolution a nd or thogonal ve locity m ethods; A cceleration a nalysis, Significance of Coriolis component of acceleration in mechanisms and its de termination, mathematical analysis of s lider cr ank mechanism, special graphical methods | 10                   |
| 3.     | <b>Motion synthesis:</b> Introduction t o s ynthesis of m echanisms,<br>Graphical m ethods of Synthesis, Chebyshev s pacing, t wo pos ition<br>synthesis, a pplication t o f our bar m echanism, a nalytical s ynthesis<br>using complex algebra, Freudensteins method.                                                                                                                                                                                                                                                                 | 4                    |

| 4. | <b>Applied Linkages</b> : Radial eng ines and master cr ank, straight line motion and indicator mechanisms, steering mechanism, quick return mechanism, intermittent mot ion generating mechanisms, Geneva mechanism, analog c omputing m echanisms, va rious t ypes of ingenious mechanism and their functioning.                                    | 5  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. | <b>Cams;</b> Classification of di fferent t ypes of c ams, t ypes of m otion curves and their analytical expressions, graphical construction of cam profiles for different types of follower, pressure angle and cams with specified contours.                                                                                                        | 5  |
| 6. | <b>Gears</b> : Classification and Basic t erminology, Fundamental I aw of gearing, geometric a nd ki nematic c onsiderations f or va rious t ooth profiles, the cycloidal and involute profiles , standards in tooth forms, spur g ears and other t ypes of g ears; G ear trains, S imple, compound and epicyclic gear trains and their applications. | 7  |
| 7. | <b>Flexible connectors</b> : Advantages and di sadvantages of be lt dr ives, Kinematic analysis of flat belt and V- Belt drives.                                                                                                                                                                                                                      | 4  |
|    | Total                                                                                                                                                                                                                                                                                                                                                 | 42 |

| S. No. | Name of Books / Authors                                                                                                         | Year of<br>Publication |
|--------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1.     | Martin, G.H., "Kinematics and Dynamics of Machines", 3 rd E d.,<br>McGraw-Hill                                                  | 1982                   |
| 2.     | Ghosh, A, and Mallik, A.K., "Theory of Mechanisms and Machines", 2 <sup>nd</sup> Ed., Affiliated East-West Press Pvt.Ltd.       | 2003                   |
| 3.     | Bevan, T., "Theory of M achines", 3 <sup>rd</sup> Ed., CBS P ublishers a nd Distributors                                        | 2003                   |
| 4.     | Vicker, J.J., Shigley, J.E. and Penock, G.R., "Theory of Machines and Mechanisms", 3 <sup>rd</sup> Ed., Oxford University Press | 2003                   |
| 5.     | Hannah, J., and Stephens, R.C., "Mechanics of Machines : Elementary Theory and Examples", 4 <sup>th</sup> Ed., Viva Books       | 2004                   |
| 6      | Norton, R.L., Kinematics and Dynamics of Machinery", Mc Graw Hill                                                               | 2009                   |



- 8. Pre-requisite: None
- 9. Objective: This course aims to describe the role of analysis in engineering design and enhance critical thinking and design skills
- 10. Details of Course:

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Design, Mechanical Engineering Design, Different         | 4                    |
|        | Phases of the Design Process                                           |                      |
| 2.     | Engineering Analysis: role of analysis, the design spiral, Computer    | 10                   |
|        | Aided engineering analysis: visualization, analysis and redesign,      |                      |
|        | Statistical Considerations, safety and reliability                     |                      |
| 3      | Reverse engineering: Introduction, applications                        | 4                    |
| 4      | Learning from Failure: V arious f ailure c ase s tudies, Failure of    | 8                    |
|        | machine components                                                     |                      |
| 5.     | Engineering Design: projects for design of machine elements            | 8                    |
| 6      | Aesthetics i n E ngineering D esign, w ritten and or al pr esentation, | 6                    |
|        | posters                                                                |                      |
| 7      | Engineering Ethics, team work.                                         | 2                    |
|        | Total                                                                  | 42                   |

| S. No. | Name of Books / Authors                                             | Year of     |
|--------|---------------------------------------------------------------------|-------------|
|        |                                                                     | Publication |
| 1      | J. L. Y owell, and D. W. Carlson,, E ds., Introductory E ngineering | 2011        |
|        | Design: A Projects-Based Approach, Third Edition                    |             |
| 2.     | A. H. Burr and J. B. Cheatham, Mechanical Analysis and Design, 2    | 1997        |
|        | nd Ed., Prentice Hall,                                              |             |
| 3.     | J. R . D ixon, D esign Engineering: Inventiveness, A nalysis and    | 1980.       |
|        | Decision Making, TMH, New Delhi,                                    |             |
| 4      | Budynas-Nisbett, Shigley's Mechanical Engineering Design,           | 2006        |
|        | Eighth Edition                                                      |             |
| 5      | Mike W. Martin, Roland Schinzinger, Ethics in Engineering,          | 2004        |
|        | McGraw-Hill 4 edition                                               |             |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



- 8. Pre-requisite: MI-201
- 9. O bjective: To i ntroduce t he s tudents t o va rious c oncepts r elated t o dynamic an alysis of machines.
- 10. Details of Course:

| S. No. | Contents                                                                  | <b>Contact Hours</b> |
|--------|---------------------------------------------------------------------------|----------------------|
| 1.     | Force Analysis of Mechanisms: Review of basic principles of statics,      | 10                   |
|        | Concept of free body and its equilibrium, Transmission of forces in       |                      |
|        | machine elements, static force analysis, friction effects, forces on gear |                      |
|        | teeth; D'Alembert's principle, dynamic force analysis of mechanisms,      |                      |
|        | force analysis of cam and follower mechanism, equivalent dynamical        |                      |
|        | systems, dynamic ana lysis of r eciprocating engines, practical           |                      |
|        | examples from actual machines.                                            |                      |
| 2.     | Flywheels and Governors: Turning moment diagram, Fluctuation of           | 6                    |
|        | energy and s peed, coefficient of f luctuation of s peed, us e of c rank  |                      |
|        | effort diagram, calculation of flywheel size; Advantages of governors,    |                      |
|        | Analysis of di fferent t ypes of g overnors, effect of sleeve friction,   |                      |
|        | characteristic of governors, controlling f orces c urves, s ensitivity,   |                      |
|        | hunting phenomena in governors, stability, governor effort and power.     |                      |
| 3.     | Balancing: Balancing of r otating m asses in single plane and i n         | 4                    |
|        | different p arallel pl anes, balancing of s lider cr ank mechanisms,      |                      |
|        | balancing of i n-line, V - and l ocomotive engines, p rinciples of        |                      |
|        | balancing machine.                                                        |                      |

| 4. | <b>Friction Devices:</b> Advantages a nd di sadvantages of be lt dr ives system, belt drive system, friction in pivots and collars, power screws, plate and cone clutches, band and block brakes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. | <b>Gyroscope:</b> Motion of r igid bod y in 3 - dimensions, Angular momentum, Gyroscopic action, e quation for r egular precession and gyroscopic torque, applications of gyroscope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  |
| 6. | <b>Mechanical Vibration:</b> Basic te rminology r elated to vibrations;<br>Conservative s ystems; F ree vi brations of s ystems w ithout and w ith<br>damping; E quilibrium a nd e nergy m ethods f or determining na tural<br>frequency of vibratory system; Rayleigh's method, F ree vibrations of<br>system w ith vi scous d amping, ove r da mped, c ritically and unde r<br>damped systems, logarithmic decrement; Forced vibrations of systems<br>with viscous damping, equivalent viscous damping; Impressed forces<br>due t o unba lanced m asses a nd e xcitation of s upports, vi bration<br>isolation, transmissibility, w hirling of s haft; Introduction to multi<br>degree o f freedom s ystem vi brations: D iscrete a nd c ontinuous<br>systems. | 14 |
|    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42 |

| S. No. | Name of Books / Authors                                                       | Year of     |
|--------|-------------------------------------------------------------------------------|-------------|
|        |                                                                               | Publication |
| 1.     | Vicker, J.J., Shigley, J.E., and Pennock, G.R., "Theory of Machines           | 2003        |
|        | and Mechanisms", 3 <sup>rd</sup> Ed., Oxford University Press                 |             |
| 2.     | Rao, J. S. "Theory of Machines", New Age pub                                  | 2007        |
|        |                                                                               |             |
| 3.     | Norton, R.L., Kinematics and Dynamics of Machinery", Mc Graw                  | 2009        |
|        | Hill                                                                          |             |
| 4.     | Grover, G.K., "Mechanical Vibrations", 7 <sup>th</sup> Ed., Nem Chand & Bros. | 2003        |
| 5.     | Thomson, W.T., "Theory of V ibration with Applications", 3 <sup>rd</sup> Ed., | 2003        |
|        | CBS Publishers and Distributors                                               |             |
| 6.     | Vinogradov, O., "Fundamentals of K inematics a nd D ynamics of                | 2000        |
|        | Machines and Mechanisms", CRC Press                                           |             |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



8. Pre-requisite: Nil

9. Objective: To introduce the basic concepts of kinematics and dynamics of machines.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Contact Hours</b> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Objectives of kinematic analysis of mechanism, Plane                                                                                                                                                                                                                                                                                                                                                                                                  | 4                    |
|        | motion, ki nematic c oncept of 1 inks, ki nematic c hains, ba sic                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|        | terminology and d efinitions, i nversions of m echanisms along with                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|        | their applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 2.     | <b>Motion and Force Analysis:</b> Absolute a nd relative mot ions, kinematic a nd d ynamic qua ntities a nd t heir relationships, ve ctor diagrams; Instantaneous cent er of motion, velocity and acceleration polygons, concept of Coriolis component of acceleration; concepts of free bod y a nd i ts e quilibrium, review of ba sic pr inciples of s tatics, static f orce ana lysis, friction effects, dynamic f orce ana lysis, equivalent dynamical systems. | 15                   |
| 3.     | <b>Power Transmission using Gears and Belts:</b> Classification and basic terminology, Fundamental law of gearing, involute tooth profile and its kinematic considerations, spur gears, standards in tooth forms; Gear trains: S imple, compound and epicyclic gear trains; K inematic design of pulleys, flat and V-belts, transmission, efficiency of power transmission.                                                                                         | 10                   |
| 4.     | Clutches and Brakes: Friction between pivot and collars, plate and                                                                                                                                                                                                                                                                                                                                                                                                  | 4                    |

|    | cone clutches, analysis of band and block brakes.                     |    |
|----|-----------------------------------------------------------------------|----|
| 5. | Balancing: Balancing of rotating masses in one and different parallel | 4  |
|    | planes                                                                |    |
| 6. | Mechanical Vibrations: Basic terminology related to vibrations, free  | 5  |
|    | and forced vibrations without and with damping                        |    |
|    | Total                                                                 | 42 |

| S. No. | Name of Books / Authors                                             | Year of     |
|--------|---------------------------------------------------------------------|-------------|
|        |                                                                     | Publication |
|        | Martin, G.H., "Kinematics and Dynamics of Machines", 2nd Ed.,       |             |
| 1      | McGraw-Hill                                                         | 1982        |
|        | Norton, R.L., Kinematics and Dynamics of Machinery", Mc Graw        | 2009        |
| 2      | Hill                                                                |             |
|        | Massie, H.H., and Reinholtz, C.F., "Mechanisms and Dynamics of      |             |
| 3      | Machinery, 4th Ed., John Wiley & Sons                               | 1987        |
|        | Vicker, J.J., Shigley, J.E., and Pennock, G.R., :Theory of Machines |             |
| 4      | and Mechanisms:, 3rd Ed., Oxford University Press                   | 2003        |
|        | Hannah, J., and Stephens, R.C., "Mechanics of Machines : Elementary |             |
| 5      | Theory and Examples",4th Ed., Viva Books                            | 2004        |
| 6.     | Vinogradov, O., "Fundamentals of K inematics and Dynamics of        | 2000        |
|        | Machines and Mechanisms", CRC Press                                 |             |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



8. Pre-requisite: MIN-108; CEN-102; MI-211

- 9. Objective: The s tudent i s e xposed t o ba sic pr inciples of m echanical de sign a nd their applications to the c ommon mechanical e lements along w ith f undamental concepts of Machine drawing practice.
- 10. Details of Course:

| S. No. | Contents                                                              | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------|----------------------|
|        | Machine Design                                                        |                      |
| 1.     | General: Introduction t o de sign pr ocedure, design r equirements,   | 16                   |
|        | review of force analysis concepts. Factor of safety concepts, concept |                      |
|        | and mitigation of stress concentration, motor selection.              |                      |
| 2.     | Dynamic Loading: Cyclic loading, endurance limit, fatigue failure     | 6                    |
|        | criteria.                                                             |                      |
| 3.     | Component Design: Rivets, welds and threaded fasteners, knuckle       | 20                   |
|        | and cotter joints, design and force analysis of spur gears, design of |                      |
|        | shafts and shaft couplings.                                           |                      |
|        | Total                                                                 | 42                   |
|        | Machine Drawing Practice                                              | 2 x 21               |
|        | Detachable Fasteners: Specifications of screw threads and threaded    |                      |
|        | fasteners, foundation bolts.                                          |                      |
|        | Permanent fastenings: Rivets and riveted Joints, types of welds       |                      |
|        | and welded joints, and representation of welds on drawings.           |                      |
|        | Assembly Drawings: Review of sheet preparation: Boundary lines,       |                      |
|        | zones, t itle bl ock. R evision pa nel; P arts List, N umbering o f   |                      |

| components a nd a ssociated de tail dr awings. Assembly dr awing |  |
|------------------------------------------------------------------|--|
| practices.                                                       |  |

| S. No. | Name of Books / Authors                                                | Year of     |
|--------|------------------------------------------------------------------------|-------------|
|        |                                                                        | Publication |
| 1.     | Shingley, J.E., Mischke, C.R., "Mechanical Engineering Design (in      | 2006        |
|        | S.I. Units)", 6 <sup>th</sup> Ed., Tata McGraw Hill,                   |             |
| 2.     | Juvinall, R.C., M arshek, K .M., "Fundamentals of M achine             | 2006        |
|        | Component Design", 4 <sup>th</sup> Ed., John Wiley                     |             |
| 3.     | Mahadevan, K., and B., Reddy, "Design Data H and Book", CBS            | 2003        |
|        | Publishers                                                             |             |
| 4.     | Sidheswar, N., "Machine Drawing", McGraw-Hill                          | 2004        |
| 5.     | Giesecke, F.E., Mitchell, A., Spencer, H.C., Hill, I.L., Dygdon, J.T., | 2008        |
|        | Novak, J.E., a nd Lockhart, S.D., "Technical D rawing", 13th Ed.,      |             |
|        | Prentice Hall                                                          |             |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



- 8. Pre-requisite: Nil
- 9. Objective: To introduce the basic principles of control theory and its applications along with the methods of stability analysis and synthesis of industrial control systems.
- 10. Details of Course:

| S. No. | Particulars                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction</b> : Introduction t o a utomatic c ontrol systems, ope n l oop and c losed loop systems, servomechanism, de sign pr inciples of                                                                                                                                                                                                                                                                                                                                          | 3                    |
|        | control systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
| 2.     | <b>Mathematical Model of Physical System:</b> Transfer f unctions, linearization of non-linear functions, linearization of operating curve, block diagrams and block diagram algebra, modeling in frequency and time dom ain, translation a nd r otational m echanical c omponents, electrical c omponents, s eries a nd pa rallel c ombinations, c ompactors for r otational a nd l inear m otions, i ntegrating de vices, h ydraulic servomotor, temperature and speed control systems. | 9                    |
| 3.     | <b>Transient Response Analysis:</b> First a nd s econd or der s ystems response t o s tep, pul se, r amp a nd s inusoidal i nputs, hi gher or der systems, Routh's Criteria.                                                                                                                                                                                                                                                                                                              | 2                    |
| 4.     | <b>Error Analysis and Introduction to system Optimization</b> : Steady state errors, Static error coefficient, dynamic error coefficients, error criteria, introduction to system optimization.                                                                                                                                                                                                                                                                                           | 2                    |
| 5.     | <b>Control Action:</b> Proportional c ontrol, i ntegral c ontrol, de rivative control, c ombination of c ontrol a ctions a nd t heir e ffect on s ystem                                                                                                                                                                                                                                                                                                                                   | 8                    |

|    | performance, t wo pos ition c ontrol, i ndustrial c ontrol s ystems us ing |    |
|----|----------------------------------------------------------------------------|----|
|    | various control actions.                                                   |    |
| 6. | Control System Analysis: S tability of control s ystems, root locus        |    |
|    | techniques, root locus plots of s imple t ransfer f unctions, s tability   | 10 |
|    | analysis and transient r esponse from r oot locus; frequency response      | 10 |
|    | analysis, logarithmic plots, stability and relative stability analysis on  |    |
|    | Bode plots, experimental determination of transfer function.               |    |
| 7. | Design and Compensation techniques: Introduction of preliminary            |    |
|    | design consideration, lead and lag compensation, compensation, lag-        | 4  |
|    | lead c ompensation, s ummary o f c ontrol s ystem c ompensation            |    |
|    | methods, practical examples.                                               |    |
| 8. | Control System Analysis Using State Variable Method: S tate                |    |
|    | variable representation, conversion of state variable model to transfer    |    |
|    | function, conversion of transfer function to canonical state of variable   | 4  |
|    | models, s olution t o s tate equations, c oncept of c ontrollability a nd  |    |
|    | observability, signal f low g raph, equivalence be tween transfer          |    |
|    | function and state variable representations.                               |    |
|    | Total                                                                      | 42 |

| S. No. | Name of Books / Authors                                                         | Year of     |
|--------|---------------------------------------------------------------------------------|-------------|
|        |                                                                                 | Publication |
| 1.     | Katsuhiko, O., "Modern Control Engineering", 3rd Ed., Prentice Hall             | 1996        |
| 2.     | Raven, F.H., "Automatic control Theory", 5 <sup>th</sup> Ed., McGraw Hill       | 1995        |
| 3.     | Kuo, B.C., "Automatic C ontrol S ystem", 5 <sup>th</sup> Ed., Prentice H all of | 1995        |
|        | India                                                                           |             |
| 4      | Nise, N.S., "Control Systems Engineering" 5 <sup>th</sup> Ed., Willey           | 2008        |
|        |                                                                                 |             |
| 5.     | Chen, C.T., "Linear S ystem T heory & Design", 3 <sup>rd</sup> Ed., Oxford      | 1999        |
|        | University Press                                                                |             |
| 6.     | Gopal, M., "Control S ystem: P rinciples and Design", 2 <sup>nd</sup> Ed., Tata | 1997        |
|        | McGraw Hill                                                                     |             |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



- 9. Objective: To de velop t he understanding of t ribological phe nomena and fluid-film lubrication.
- 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction:</b> Brief history of tribology, Tribological Considerations<br>in t he de sign of m achine e lements, role o f wear, f riction and<br>lubrication, geometrical properties of s urfaces, m ethod of s tudying<br>surface; C ontact of s mooth surfaces, contact o f rough surfaces; R ole<br>of friction, laws of static friction, cause of friction; Bowen & Tabor's<br>theory of fri ction, l aws of r olling f riction, f riction of m etal a nd<br>nonmetals, friction measurement; Wear definition, types of wear, wear<br>mechanism, a br ief i ntroduction of w ear t est e quipments, w ear i n<br>plastics. | 10                   |
| 2.     | <b>Industrial Lubricants and their Additives</b> : Functions of lubricants;<br>Types of lubricants and their industrial uses; Solid lubricants and their<br>functions, 1 iquid m ineral 1 ubricants, s ynthetic 1 iquid lubricants,<br>greases, properties o f1 iquid and grease 1 ubricants; V iscosity,<br>Newtonian a nd non -Newtonian 1 ubricants, Electrorheological,<br>Magnetorheological a nd m icropolar 1 ubricants, temperature and<br>pressure d ependence of vi scosity, ot her p roperties of 1 ubricants;<br>Lubricant additives, general properties and selection for machines and                                  | 10                   |

|    | processes; Oil reclamation and preventive maintenance for lubricants.                                                                                                                                                                                                                                                                                                                                                                   |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3. | <b>Fluid-Film Lubrication:</b> Equations of c ontinuity and m otion;<br>Generalized R eynold e quation with incompressible and c ompressible<br>lubricants; 1 ubrication r egimes, S tribeck c urve; Hydrodynamic<br>lubrication; T ower's e xperiment, f inite j ournal b earings, s olution of<br>finite be aring us ing Galerkin m ethod, f inite di fference a nd FEM,<br>significance of flow restrictors in compensated bearings. | 12 |
| 4. | <b>Bearing Design and selection of Bearings:</b> Comparative performance of various modes of lubrication, and bearing s election; Design of slider bearings and hydrostatic journal bearing, fixed type hydrodynamic and hydrostatic journal bearings, materials for sliding bearings; Bearing types, selection of rolling elements bearing, bearing life, dynamic load rating, bearing selection.                                      | 6  |
| 5. | Some case studies related to tribological failures in machines                                                                                                                                                                                                                                                                                                                                                                          | 4  |
|    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42 |

| S. No. | Name of Books / Authors                                                | Year of     |
|--------|------------------------------------------------------------------------|-------------|
|        |                                                                        | Publication |
| 1      | Balling, J., "Introduction to Tribology", Wykeham                      | 1976        |
|        | Rowe, W.B., "Hydrostatic and Hybrid B earing D esign", 2nd E d.,       |             |
| 2      | Butterworth-Heinemann.                                                 | 1983        |
|        | Khonsari, M.M., a nd Booser, E.R., " Applied T ribology: Bearing       |             |
| 3      | Design and Lubrication", 2nd Ed., John Wiley and Sons                  | 2001        |
|        | Gross, W., Matsch, L., Castelli, V., Eshel, A., Vohr, J., and Wildman, |             |
| 4      | M., "Fluid Film Lubrication", John Wiley and Sons                      | 1980        |
|        | Hamrock, B.J., J acobson, B.O., and s teven, R.S., "Fundamentals of    |             |
| 5      | Fluid Film Lubrication", 2nd Ed., Marcel Dekker                        | 2004        |
|        | Mang, T., and D resel, W., "L ubricants and L ubrication", 2nd Ed.,    |             |
| 6      | John Wiley and Sons                                                    | 2007        |
|        | Cameron A., "The Principles of Lubrication", Longmans Green and        | 1966        |
| 7      | Co. Ltd., London,                                                      |             |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department

| 1. Subject Code: MIN-411        | Course Title: Mainter<br>Compo | nance Techniques for Rotating nents |
|---------------------------------|--------------------------------|-------------------------------------|
| 2. Contact Hours: L: 3          | T: 1                           | P: 0                                |
| 3. Examination Duration (Hrs.): | Theory 3                       | Practical 0                         |
| 4. Relative Weightage: CWS      | 25 PRS 0 MTE                   | 25 ETE 50 PRE 0                     |
| 5. Credits: <b>4</b> 6. Se      | mester: Both                   | 7. Subject Area: DEC/DHC            |

#### 8. Pre-requisite: Nil

9. Objective: Provide a comprehensive understanding of the various types of rotating equipment and f ocus on m aximizing t he e fficiency, r eliability, a nd l ongevity of r otating e quipment b y providing an understanding of the characteristics, selection criteria, common problems and repair techniques, preventive and predictive maintenance.

#### 10. Details of Course

| S.  | Contents                                                                                 | Contact |
|-----|------------------------------------------------------------------------------------------|---------|
| No. |                                                                                          | Hours   |
| 1.  | Introduction to t heory a nd pr actice of m aintenance, ope rating policy a nd effective | 8       |
|     | maintenance, ope rating pr actices t or educe m aintenance w ork, r eports f rom         |         |
|     | maintenance, op erating c haracteristics of r otating e quipments a nd t he d iagnostic  |         |
|     | techniques and inspections required for critical components of rotating equipment        |         |
| 2.  | Maintenance policies and strategies: Breakdown, preventive, predictive and proactive     | 6       |
|     | maintenance, components of effective preventive maintenance, predictive maintenance,     |         |
|     | economics of preventive maintenance                                                      |         |
| 3.  | Maintenance of rotating equipment: Bearings - Plain bearings, rolling e lement           | 14      |
|     | bearings, gear dr ives an d spe ed reducers, rotating sha fts an d flywheel, pu mps -    |         |
|     | centrifugal and positive displacement, turbines – steam and gas                          |         |
| 4.  | Advanced Maintenance: Condition monitoring and its types, techniques of condition        | 10      |
|     | monitoring – analysis of vibrations, temperature and lubricating oil                     |         |
| 5.  | Testability and prognostics, Case studies.                                               | 4       |
|     | Total                                                                                    | 42      |

| S. Name of Authors/ Dooks fear of |
|-----------------------------------|
|-----------------------------------|

| No. |                                                                              | Publication |
|-----|------------------------------------------------------------------------------|-------------|
| 1.  | Lindley R. Higgins, R. K eith M obley, M aintenance E ngineering H andbook,  | 2008        |
|     | McGraw Hill, 7 <sup>th</sup> Edition                                         |             |
| 2.  | Lorenzo F edele, Methodologies and Techniques for Advanced Maintenance,      | 2011        |
|     | Springer                                                                     |             |
| 3.  | Philip K iameh, P ower P lant E quipment Operation a nd M aintenance G uide, | 2012        |
|     | McGraw-Hill, 1 <sup>st</sup> Edition                                         |             |
| 4.  | Collacott, R.A., "Mechanical F ault D iagnosis and Condition Monitoring",    | 1977        |
|     | Chapman & Hall                                                               |             |
| 5.  | Davies, "Handbook of Condition Monitoring- Techniques and Methodology",      | 2006        |
|     | Springer                                                                     |             |

## NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



9. Objective: To provide fundamental engineering principles underlying the control, stability, handling and cornering behavior of road vehicles.

| S. No. | Contents                                                                                                                                                                                                                                            | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | Introduction to Vehicle Dynamics: V arious ki nds of ve hicles;                                                                                                                                                                                     | 4                    |
|        | motions; mathematical modelling methods; methods of investigations.                                                                                                                                                                                 |                      |
| 2.     | Mechanics of Pneumatic Tyre: T yre c onstruction; ph ysics of t yre                                                                                                                                                                                 | 10                   |
|        | traction on d ry and w et s urfaces; t yre forces and moments; S AE                                                                                                                                                                                 |                      |
|        | recommended practice; rolling resistance of tyres; ride properties of                                                                                                                                                                               |                      |
|        | tyres.                                                                                                                                                                                                                                              |                      |
| 3.     | <b>Performance Characteristics</b> : E quation of m otion a nd m aximum tractive effort; aerodynamic forces and moments; vehicle transmission characteristics; prediction of ve hicle pe rformance; br aking performance; antilock braking systems. | 8                    |
| 4.     | <b>Handling and Stability Characteristics</b> : S teering geometry; s teady state handling characteristics; steady state response to steering input; transient response characteristics; directional stability.                                     | 8                    |
| 5.     | <b>Vehicle Ride Characteristics</b> : Human response to vibration; vehicle ride m odels; r oad s urface p rofile as a r andom f unction; f requency                                                                                                 | 7                    |

|    | response function; evaluation of vehicle vertical vibration in relation to ride comfort criterion.                                                                                                           |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6. | <b>Experimental Testing:</b> Instruments f or ve hicle m easurements; recording a nd e valuation m ethods; t est m ethods a nd m easurement procedures for vehicle dynamics; interpretation of test results. | 5  |
|    | Total                                                                                                                                                                                                        | 42 |

| S. No. | Name of Books / Authors                                           | Year of     |
|--------|-------------------------------------------------------------------|-------------|
|        |                                                                   | Publication |
| 1.     | Wong, J.Y., "Theory of Ground Vehicles", John Wiley.              | 2008        |
| 2.     | Gillespie, T.D., "Fundamental of Vehicle Dynamics", S.A.E.        | 1992        |
| 3.     | Rao V. Dukkipati, "Road Vehicle Dynamics", SAE International      | 2008        |
| 4.     | Hans True, "The Dynamics of Vehicles on Roads and on Tracks", 1st | 2003        |
|        | Ed., Taylor and Francis,                                          |             |

## NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



9. Objective: The course introduces design aspects for pressure vessels and pipings.

| S. No. | Contents                                                                    | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Industrial pressure vessels and piping systems. Type of       | 4                    |
|        | failures of pressure vessels and piping systems. Safety of an Industrial    |                      |
|        | plant.                                                                      |                      |
| 2.     | Design Aspects of Pressure Vessel and Piping: General theory of             | 12                   |
|        | membrane st resses, stresses in cylinders and s pheres s ubjected t o       |                      |
|        | internal and external pressure.                                             |                      |
|        | Dilation of pr essure ve ssels, a uto-frettage a nd s hrink f it s tresses, |                      |
|        | mono-block and w ire-wound c ylinders, thermal s tresses and their          |                      |
|        | significance. Design of bottoms and roofs and cylindrical ve ssels,         |                      |
|        | discontinuity stresses in vessels, deformation and stresses in flanges.     |                      |
| 3.     | Fracture Mechanics Concepts and Design Application.                         | 4                    |
| 4.     | Construction Features of Pressure Vessels: Construction features            | 6                    |
|        | of pressure vessels, localized stresses and their significance, welded      |                      |
|        | joints, bolted joints, theory of reinforced openings.                       |                      |
| 5.     | Relevant National and International Design Codes and Their                  | 2                    |
|        | Limitations.                                                                |                      |

| 6. | <b>Importance of Stress and Flexibility Analysis of Piping System:</b><br>Analysis of st resses d ue t o static and dynamic loa ds, thermal stresses; Flexibility analysis for single and multi-plane configuration, Expansion joints and anchorages. | 8  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7. | <b>Design Features of Piping System:</b> Pipe fittings, elbows and flange design, w all t hickness de termination, branched c onnections. P iping network analysis.                                                                                   | 4  |
| 8. | Selection of Pipe Materials and Economical Considerations in Piping Design.                                                                                                                                                                           | 2  |
|    | Total                                                                                                                                                                                                                                                 | 42 |

| S. No. | Name of Books / Authors                                           | Year of<br>Publication |
|--------|-------------------------------------------------------------------|------------------------|
| 1.     | Harvey, "Pressure Vessel Design", Van Nostrand                    | 1963                   |
| 2.     | Gascoyne, "Analysis of Pipe Structures for Flexibility", Pitman   | 1959                   |
| 3.     | Barsom, J. M., R olfe, S. T., "Fracture and Fatigue C ontrol i n  | 1999                   |
|        | Structures", 3 <sup>rd</sup> Ed., Butterworth Heinemann           |                        |
| 4.     | Joshi, M.V., "Process Equipment Design", Macmillan India Ltd.     | 1985                   |
| 5.     | Smith, P. " The F undamentals of P iping D esign (Process P iping | 2007                   |
|        | Design) (v. 1), Gulf Publishing Company.                          |                        |
| 6.     | Smith, P. & Botermans, R., "Advanced P iping D esign", G ulf      | 2008                   |
|        | Publishing Company.                                               |                        |

## NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



8. Pre-requisite: CEN-102

9. Objective: The course deals with the various aspects concerning the piping technology.

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Design/Analysis of Piping System:</b> Industrial, sub-sea & underground pi ping s ystems. D esign and s tress analysis of pi ping system. Pipe fittings, elbows and flange de sign, stresses in elbows and flanges. Failure t heories, N ational a nd International c odes. Branched connections. P iping ne twork analysis. Design calculation of w all thickness and w orking pr essure. U se of FEM and s oftware tools. Pipeline s izing, Design c riterion; le ast annual c ost criterion, velocity criterion, Pressure drop criterion, | 18                   |
| 2.     | <b>Vibration Problem in Piping System; Experimental Tests on</b><br><b>Piping System/Components:</b> Vibration a nalysis of pi ping s ystem,<br>Determination of n atural f requency, d amping a nd m ode s hape.<br>Design of experiments for pi ping s ystem. E stimation of leakage of<br>piping connections/joints.                                                                                                                                                                                                                         | 8                    |
| 3.     | <b>Pipeline Machinery, Operation &amp; Control:</b> Description of various components, m ethods f or c ontrol s trategies. Field m etering and                                                                                                                                                                                                                                                                                                                                                                                                  | 6                    |

|    | Total                                                                      | 42 |
|----|----------------------------------------------------------------------------|----|
|    | Water injection pumps.                                                     |    |
|    | specifications, s ources of i njected w ater, f ilters, de -oxygenation,   |    |
|    | injection, e quipments, m aterial f or c onstructions, design              |    |
|    | definition, water i njections, water s ources, treatment f or s ea w ater  |    |
| 6. | Well Head Installation & Water Injection: Introduction,                    | 4  |
|    | Recommended piping materials.                                              |    |
|    | pipelines. Internal i nspection a nd C orrosion m onitoring                |    |
|    | corrosion Anti-corrosive protective coatings Cathodic protection of        |    |
| 5. | types of corrosion in n i pelines. Techniques for the prevention of        | 4  |
| 5  | Provention of Corresion in Pipelines: Corresion process Various            | 1  |
|    | NDT t echniques t or 1 nspection a nd t ools f or quality c ontrol o f     |    |
|    | Shrouded metal arc welding, Dry under water welding, Visual and            |    |
|    | welding in O ffshore constructions, G MA welding, S MA welding,            |    |
|    | techniques f or i nspection a nd t esting, weld d efects, U nderwater      |    |
|    | techniques/processes, welding procedures and equipments, Various           |    |
| 4. | Joining Techniques and Quality Control of Pipelines: Welding               | 4  |
|    | maintenance equipments. Structural supports of piping system.              |    |
|    | operation. Linear and n onlinear pi pelines. P ipeline i nstallation and   |    |
|    | mass f low m easuring t echniques. P igging, e xamples of pi gging         |    |
|    | regulating f acilities, pr essure s urges, A nti-surge c ontrol, C oriolis |    |

| S. No. | Name of Books / Authors                                           | Year of     |
|--------|-------------------------------------------------------------------|-------------|
|        |                                                                   | Publication |
| 1.     | Harvey,"Pressure Vessel Design", Van Nostrand                     | 1963        |
| 2.     | Gascoyne,"Analysis of Pipe Structures for Flexibility", Pitman    | 1959        |
| 3.     | Joshi, M.V., "Process Equipment Design", Macmillan India Ltd.     | 2009        |
| 4.     | Sahu, G.K., "Handbook of Piping Design", New Age International    | 2008        |
|        | Publishers.                                                       |             |
| 5.     | Bausbacher, E. &Hunt, R."Process Plant Layout and Piping Design", | 1993        |
|        | Prentice Hall, ISBN: 0131386298.                                  |             |
| 6.     | Smith, P. & Botermans, R., "Advanced P iping D esign", G ulf      | 2008        |
|        | Publishing Company.                                               |             |
| 7.     | Smith, P. "The F undamentals of P iping D esign (Process Piping   | 2007        |
|        | Design), Gulf Publishing Company.                                 |             |

## NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



- 8. Pre-requisite: Nil
- 9. Objective: To introduce f unctional de tails a nd r equirements of va rious c omponents in automobiles.
- 10. Details of Course:

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | <b>Power Unit:</b> Engine c lassification, engine pe rformance         | 8                    |
|        | characteristics, description of power unit, fuel supply system, hybrid |                      |
|        | vehicles, engine lubrication.                                          |                      |
| 2.     | Transmission: Transmission r equirement, standard t ransmission        | 7                    |
|        | system, fluid transmission system, automatic tr ansmission,            |                      |
|        | performance requirements and gear ratios, tractive resistance.         |                      |
| 3.     | <b>Steering:</b> Different t ypes of s teering s ystems, performance   | 4                    |
|        | requirements, power steering.                                          |                      |
| 4.     | Vehicle Dynamics: Stability analysis of vehicle, stability on curved   | 3                    |
|        | path.                                                                  |                      |
| 5.     | Braking Systems: General br aking requirements, weight tr ansfer       | 4                    |
|        | during braking, mechanical brakes, hydraulic brakes, vacuum brakes,    |                      |
|        | power brakes.                                                          |                      |
| 6.     | Chassis and Suspension: Loads on the frame, general consideration      | 4                    |
|        | of s trength a nd s tiffness, engine m ounting, various s uspension    |                      |
|        | systems including active suspension, shock absorbers.                  |                      |
| 7.     | <b>Pneumatic Tyres:</b> Tyre-pavement interaction forces and moments,  | 2                    |

|     | SAE terminology, tyre wear.                                          |    |
|-----|----------------------------------------------------------------------|----|
| 8.  | Electrical System: Ignition s ystem, c onventional a nd electronic,  | 4  |
|     | lighting, auxiliary electrical equipment, wiring diagrams.           |    |
| 9.  | Maintenance: Preventive maintenance, trouble shooting, tuning and    | 3  |
|     | adjustment of power unit.                                            |    |
| 10. | Air Pollution: Pollution due to vehicle e mission, exhaust e mission | 3  |
|     | control systems, effect of design and operating conditions.          |    |
|     | Total                                                                | 42 |

| S. No. | Name of Authors /Books                                                           | Year of     |
|--------|----------------------------------------------------------------------------------|-------------|
|        |                                                                                  | Publication |
| 1.     | Crouse, W.A., and Anglin, D.L., "Automotive Mechanics", 10 <sup>th</sup> Ed.,    | 2007        |
|        | McGraw-Hill                                                                      |             |
| 2.     | Stockel, M.W., and Stockel, M.T., "Auto Mechanics Fundamentals",                 | 1982        |
|        | 5 <sup>th</sup> Ed., The Good Heart – Willcon Company                            |             |
| 3.     | John B. H. eywood, Internal c ombustion e ngine f undamentals,                   | 1988        |
|        | McGraw-Hill                                                                      |             |
| 4.     | Heitner, J., "Automotive Mechanics", 2 <sup>nd</sup> Ed., East-West Press        | 1999        |
| 5.     | Heisler, H., "A dvanced Vehicle T echnology", 2 <sup>nd</sup> Ed., B utterworth- | 2002        |
|        | Hienemann                                                                        |             |
| 6.     | Limpert, R., "Brake Design and Safety", 2 <sup>nd</sup> Ed., SAE International   | 1999        |
| 7.     | Reimpell, J., Stoll, H., and Betzler, J.W., "The Automotive Chassis",            | 2001        |
|        | 2 <sup>nd</sup> Ed., SAE International                                           |             |

## NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department

| 1. Subject Code: MIN-410        | Course Title: Produ | ct and Process Optimization |
|---------------------------------|---------------------|-----------------------------|
| 2. Contact Hours: L: 3          | <b>T: 1</b>         | P: 0                        |
| 3. Examination Duration (Hrs.): | Theory <b>3</b>     | Practical 0                 |
| 4. Relative Weightage: CWS      | 25 PRS 0 MTE 25     | ETE 50 PRE 0                |
| 5. Credits: 4                   | 6. Semester: Both   | 7. Subject Area: DEC/DHC    |
| 8. Pre-requisite: Nil           |                     |                             |

9. Objective: This c ourse will introduce to the s tudents, the basic conc epts, techniques and applications of engineering optimization in a comprehensive manner.

| S. No. | Contents                                                                | Contact |
|--------|-------------------------------------------------------------------------|---------|
|        |                                                                         | Hours   |
| 1.     | Introduction to Design Optimization: The design process; b asic         | 2       |
|        | terminology and notations.                                              |         |
| 2.     | Optimum Design Problem Formulation: The pr oblem f ormulation           | 3       |
|        | process; and illustration with examples.                                |         |
| 3.     | Graphical Optimization: Graphical solution process; problems with -     | 3       |
|        | bounded (single or multiple) and unbounded solutions.                   |         |
| 4.     | Optimum Design Concepts: Local and global optima; ne cessary and        | 6       |
|        | sufficient opt imality c onditions f or unc onstrained a nd constrained |         |
|        | multivariate functions.                                                 |         |
| 5.     | Linear Programming Methods for Optimum Design: Basic                    | 4       |
|        | concepts; simplex method; two-phase simplex method; post-optimality     |         |
|        | analysis.                                                               |         |
| 6.     | Numerical methods for Unconstrained and Constrained Optimum             | 6       |
|        | Design: Gradient-based and direct s earch m ethods; Sequential l inear  |         |
|        | and quadratic programming.                                              |         |
| 7.     | Multi-objective Optimization: Fundamental shift from single-objective   | 4       |
|        | optimization; Pareto-set and Pareto-optimal Front.                      |         |

| 8.  | Evolutionary Techniques for Optimization: Genetic a lgorithms;           | 6  |
|-----|--------------------------------------------------------------------------|----|
|     | Differential Evolution Algorithms; Ant colony Optimization; and Particle |    |
|     | Swarm Optimization.                                                      |    |
| 9.  | Advanced topics on Optimum Design: Meta m odels f or de sign             | 4  |
|     | optimization; de sign of e xperiments; di screte de sign with orthogonal |    |
|     | arrays; robust design approach; reliability-based design optimization.   |    |
| 10. | Practical applications of optimization: Illustration on engineering      | 4  |
|     | problems with single and multiple objectives.                            |    |
|     | Total                                                                    | 42 |

| S. No. | Name of Books / Authors                                                          | Year of     |
|--------|----------------------------------------------------------------------------------|-------------|
|        |                                                                                  | Publication |
| 1.     | S. S. Rao; Engineering Optimization; 4 <sup>th</sup> Edition, John Wiley & Sons. | 2009        |
| 2.     | K. Deb; Optimization for Engineering Design; Prentice Hall of India.             | 2005        |
| 3.     | K. Deb; Multi-objective Optimization using Evolutionary Algorithms;              | 2003        |
|        | John Wiley & Sons.                                                               |             |

## NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department



- 8. Pre-requisite: CEN-102, MIN- 205
- 9. Objective: This course expounds on the basic principles of the finite element method and its application to solve a few representative mechanical engineering problems related to solid mechanics, heat-transfer, and fluid mechanics.
- 10. Details of Course:

| S. No. | Contents                                                                | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------|----------------------|
| 1.     | Introduction: Underlying principles of the finite e lement a nalysis;   | 02                   |
|        | application examples and versatility; basic steps in FEA.               |                      |
| 2.     | Mathematical Preliminaries: Principle of virtual work; Ritz method;     | 07                   |
|        | weighted residual; collocation and Galerkin methods; classification of  |                      |
|        | partial di fferential equations a nd t he c orresponding m echanical    |                      |
|        | engineering a pplications; Poisson's, L aplace's, di ffusion a nd w ave |                      |
|        | equation; review of governing equations in solid and fluid mechanics.   |                      |
| 3.     | One Dimensional Problems: discretization, c oncept o fs hape            | 08                   |
|        | functions, natural coordinates; element equations; assembly; boundary   |                      |
|        | conditions; s olution of assembled m atrix e quations; a pplications to |                      |
|        | solid mechanics, heat and fluid mechanics problems.                     |                      |
| 4.     | Trusses: P lane tr uss, local a nd global c oordinate s ystems; s tress | 04                   |
|        | calculations; te mperature e ffect on truss me mbers; s olution of      |                      |
|        | practical problems.                                                     |                      |
| 5.     | Beams: Euler-Bernoulli beam element                                     | 04                   |

| 6. | <b>Two Dimensional Problems:</b> Plane s tress and plane s train formulation; tr iangular a nd rectangular e lements; is operimetric formulation; a xisymmetric pr oblems; computer impl ementation; steady-state heat conduction   | 08 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7. | <b>Finite Element Analysis of Time-dependent Problems:</b><br>Discretization of e quation of mot ion; ma ss a nd stiffness ma trices;<br>eigenvalue p roblem; m ode-shapes and natural f requencies; t ime-<br>integration methods. | 05 |
| 8. | <b>Computer Implementation of Finite Element Analyses:</b><br>Introduction to commercial p ackages a nd the ir c apabilities;<br>demonstration of the modeling and solution process for representative<br>cases.                    | 04 |
|    | Total                                                                                                                                                                                                                               | 42 |

| S. No. | Name of Books / Authors                                                             | Year of     |
|--------|-------------------------------------------------------------------------------------|-------------|
|        |                                                                                     | Publication |
| 1.     | Cook, R .D., Malkus, D.S., a nd P lesha, M .E., " Concepts and                      | 1989        |
|        | Applications of F inite E lement A nalysis", 3 <sup>nd</sup> Ed., J ohn W iley &    |             |
|        | Sons.                                                                               |             |
| 2.     | Bathe, K.J., "Finite Element Procedures", 2 <sup>nd</sup> Ed., Prentice Hall.       | 1996        |
| 3.     | Seshu, P., "Textbook of Finite Element Analysis", 1 <sup>st</sup> Ed., Prentice     | 2003        |
|        | Hall of India Pvt. Ltd.                                                             |             |
| 4.     | Reddy, J.N., "An Introduction t o t he F inite E lement A nalysis", 3 <sup>rd</sup> | 2005        |
|        | Ed., McGraw-Hill Education (ISE Editions).                                          |             |
| 5.     | Zienkiewicz, O.C., and Taylor, R.L., "The Finite Element Method for                 | 2006        |
|        | Solid and Structural Mechanics", 6 <sup>th</sup> Ed., Elsevier Ltd.                 |             |
| 6.     | Logan, D.L., "A First Course in the Finite Element Method", 4 <sup>th</sup> Ed.,    | 2007        |
|        | Thomson Canada Ltd.                                                                 |             |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department

| 1. Subject Code: MIN-413        | Course Title: ME | MS               |         |
|---------------------------------|------------------|------------------|---------|
| 2. Contact Hours: L: 3          | T: 1             | P: 0             |         |
| 3. Examination Duration (Hrs.): | Theory <b>3</b>  | Practical        | 0       |
| 4. Relative Weightage: CWS 25   | 5 PRS 0 MTI      | E 25 ETE 50      | PRE 0   |
| 5. Credits: <b>4</b> 6. Semest  | ter: Both        | 7. Subject Area: | DEC/DHC |
| 8. Pre-requisite: CEN-102       |                  |                  |         |

9. Objective: This course introduces the science of MicroElectroMechanical Systems, actuation and s ensing m echanisms at t he microscale, and conveys i deas r elated t o the mechanical analysis of MEMS and basics of the microfabrication techniques.

| S. No. | Contents                                                                      | <b>Contact Hours</b> |
|--------|-------------------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction:</b> Introduction t o M EMS; hi storical pe rspective;        | 02                   |
|        | application examples; course motivation.                                      |                      |
| 2.     | Preliminaries of Continuum Mechanics: Continuum h ypothesis;                  | 07                   |
|        | governing e quations of elasticity; the rmo-elasticity; r eview o f fluid     |                      |
|        | dynamics pr inciples; Navier-Stokes equation; E uler e quation;               |                      |
|        | fundamentals of e lectromagnetism; M axwell's e quations;                     |                      |
|        | electrostatics; magnetostatics; dimensional analysis and scaling laws         |                      |
|        | of forces at the microscale; different actuation and sensing techniques       |                      |
|        | used at the microscale.                                                       |                      |
| 3.     | MEMS Sensors and Actuators: Pressure s ensors; accel erometers;               | 10                   |
|        | gyroscopes; RF MEMS devices; MEMS resonators; switches; digital               |                      |
|        | micro mirror d evices: pr inciple of op eration and mathematical              |                      |
|        | modeling.                                                                     |                      |
| 4.     | Mechanical Analysis of Electrostatically Actuated MEMS                        | 15                   |
|        | <b>Devices:</b> Static ana lysis; s pring constant f or beams; el ectrostatic |                      |
|        | actuation; parallel-plates model; tor sional plate actuator; c omb drive      |                      |
|        | actuator; shape of a deformed be am under electrostatic a ctuation;           |                      |
|        | moderately large de flection analysis of fixed-fixed beams; d ynamic          |                      |

|    | analysis; mechanisms of e nergy di ssipation; a ir da mping<br>fundamentals; s queeze film da mping; R eynold's e quation; dynamics                                                                                                                                                                                                               |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | response of beam-type actuators under electrostatic loading.                                                                                                                                                                                                                                                                                      |    |
| 5. | <b>Introduction to Microfabrication Techniques:</b> Basic process tools; oxidation; sputter deposition; chemical-vapor deposition; lithography; etching; adva nced process t ools: a nodic bondi ng; s ilicon di rect bonding; SU-8 phot osensitive e poxy; N onlithographic f abrication processes: laser machining, electrodischarge machining. | 08 |
|    | Total                                                                                                                                                                                                                                                                                                                                             | 42 |

| S. No. | Name of Books / Authors                                                | Year of<br>Publication |
|--------|------------------------------------------------------------------------|------------------------|
| 1.     | Pelesko, J.A., and Bernstein D.H., "Modeling MEMS and NEMS", 1st       | 2002                   |
|        | Ed., Chapman and Hall CRC                                              |                        |
| 2.     | Beeby, S., Ensell, G., Kraft, M., and White N., "MEMS Mechanical       | 2004                   |
|        | Sensors", 1 <sup>st</sup> Ed., Artech House, Inc.                      |                        |
| 3.     | Bao, M., "Analysis and Design Principles of MEMS Devices", 1st Ed.,    | 2005                   |
|        | Elsevier B.V.                                                          |                        |
| 4.     | Mohamed Gad-el-Hak (Editor), "The MEMS Handbook", 2 <sup>nd</sup> Ed., | 2006                   |
|        | Taylor and Francis.                                                    |                        |
| 5.     | Adams, T.M., and Layton, R.A., "Introductory MEMS: Fabrication         | 2010                   |
|        | and Applications", Springer New York.                                  |                        |

### NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department

| 1. Subject Code: MIN-417         | Course Title: | Energy and Variation<br>Engineering Mechanic | al Principles in<br>cs |
|----------------------------------|---------------|----------------------------------------------|------------------------|
| 2. Contact Hours: L: 3           | T: 1          | P: 0                                         |                        |
| 3. Examination Duration (Hrs.):  | Theory 3      | Practical                                    | 0                      |
| 4. Relative Weightage: CWS 25    | PRS 0         | MTE <b>25</b> ETE <b>50</b>                  | PRE 0                  |
| 5. Credits: <b>4</b> 6. Semest   | er: Both      | 7. Subject Area:                             | DEC/DHC                |
| 8. Pre-requisite: MAN-001, PHN-0 | 01, CEN-102   |                                              |                        |

9. Objective: This course introduces the elements of energy methods and variational calculus together with their application to solve mechanical engineering problems.

| S. No. | Contents                                                                  | <b>Contact Hours</b> |
|--------|---------------------------------------------------------------------------|----------------------|
| 1.     | Motivation and Mathematical Preliminaries: Role of e nergy                | 08                   |
|        | methods; historical perspective; review of vectors and vector calculus;   |                      |
|        | basic e quations in s olid m echanics; i ndex not ation; c onservation of |                      |
|        | linear a nd angular momentum; s tress tensor; ki nematics of              |                      |
|        | deformation; strain tensor; constitutive laws.                            |                      |
| 2.     | Introduction to the Calculus of Variations: The va riational              | 07                   |
|        | operator; concept of a functional; extremum principles; functionals of    |                      |
|        | one independent variable; functionals of two independent variables.       |                      |
| 3.     | Basic Notions of Energy Methods: Virtual work; tot al pot ential          | 06                   |
|        | energy a nd complementary pot ential e nergy; s tability c riteria;       |                      |
|        | Castigliano's Theorem I; Castigliano's Theorem II; Betti and Maxwell      |                      |
|        | reciprocity theorems.                                                     |                      |
| 4.     | Energy Methods for the Static Analysis of Deformable Solids:              | 11                   |
|        | Analysis of de formable m embers s uch a s l ongitudinal ba rs, E uler-   |                      |
|        | Bernoulli be ams, m embranes a nd pl ates unde rs tatic l oading          |                      |
|        | conditions us ing va riational pr inciples; s eparation of na tural and   |                      |

|    | essential boundary conditions; introduction to Ritz, weighted residual,<br>and Galerkin methods; Introduction to the finite element method.                                                                                                                                                                                                                                          |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. | <b>Energy Methods in Structural Dynamics:</b> Hamiltonian and Lagrangian dynamics; pr inciple of le ast a ction; E uler-Lagrange equation; c onservative and non -conservative s ystems; d ynamics o f non-deformable bodi es; s tability criterion; d ynamics of de formable bodies: l ongitudinal vi bration of r od, t ransverse vibration of s trings and Euler-Bernoulli beams. | 10 |
|    | Total                                                                                                                                                                                                                                                                                                                                                                                | 42 |

| S. No. | Name of Books / Authors                                                       | Year of     |
|--------|-------------------------------------------------------------------------------|-------------|
|        |                                                                               | Publication |
| 1.     | Langhaar, H.L., "Energy M ethods in A pplied Mechanics", 1 <sup>st</sup> Ed., | 1962        |
|        | John Wiley and Sons, Inc.                                                     |             |
| 2.     | Shames, I.H., and Dym, C.L., "Energy and Finite Element Methods in            | 1991        |
|        | Structural Mechanics", 1 <sup>th</sup> Ed., New Age International Publishers  |             |
| 3.     | Reddy, J.N., "Energy Principles and Variational Methods in Applied            | 2002        |
|        | Mechanics", 1 <sup>st</sup> Ed., John Wiley and Sons, Inc.                    |             |
| 4.     | Berdichevsky, V.L., "Variational Principles of Continuum Mechanics-           | 2009        |
|        | I: Fundamentals", 1 <sup>st</sup> Ed., Springer                               |             |
| 5.     | Berdichevsky, V.L., "Variational Principles of Continuum Mechanics-           | 2009        |
|        | II: Applications", 1 <sup>st</sup> Ed., Springer                              |             |


- 8. Pre-requisite: Nil
- 9. Objective: To introduce t he ba sic c oncept of t heory of vibrations and noise c ontrol i n mechanical systems.
- 10. Details of Course:

| S. No. | Contents                                                              | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------|----------------------|
| 1.     | <b>Introduction:</b> Simple H armonic m otion, F ourier a nalysis,    | 2                    |
|        | Conservative systems.                                                 |                      |
| 2.     | Systems Having Single Degree of Freedom: Free vi brations of          | 12                   |
|        | systems w ithout damping, equilibrium a nd e nergy m ethods f or      |                      |
|        | determining na tural f requency; R ayleigh's method; Equivalent       |                      |
|        | systems, s ystems w ith c ompound s prings, shaft of di fferent       |                      |
|        | diameters; Free vi brations of s ystem with vi scous da mping, over   |                      |
|        | damped, c ritically a nd unde r da mped systems, logarithmic          |                      |
|        | decrement; Coulomb and s tructural damping; Forced vi brations of     |                      |
|        | systems with viscous damping, equivalent viscous damping, power       |                      |
|        | consumption i n vi brating s ystem, impressed f orces due t o         |                      |
|        | unbalanced masses and excitation of supports, vibration isolation,    |                      |
|        | transmissibility, commercial is olators; Vibration isolation using ER |                      |
|        | fluids.                                                               |                      |
| 3.     | Vibration Measuring Instruments: Principle of f requency,             | 2                    |
|        | displacement, velocity and acceleration measuring i nstruments,       |                      |
|        | distortion effect.                                                    |                      |

| 4. | Systems with two Degrees of Freedom: Free undamped vibrations,               | 4  |
|----|------------------------------------------------------------------------------|----|
|    | undamped d vnamic vi bration a bsorber, centrifugal pe ndulum                |    |
|    | absorber.                                                                    |    |
| 5. | Multi-Degree of Freedom Systems: Influence c oefficients, eigen              | 4  |
|    | values and eigen vectors, matrix iteration; Dunkerley and Rayleigh's method. |    |
| 6. | Whirling of Shafts: Whirling of light flexible vertical/horizontal           | 2  |
|    | shaft with a n unba lanced di sc a t t he c entre of i ts l ength with a nd  |    |
|    | without damping.                                                             |    |
| 7. | <b>Continuous Systems:</b> Vibration of s trings, free lon gitudinal         | 4  |
|    | vibrations of pr ismatic bars, torsional vibrations of c ircular s hafts,    |    |
|    | lateral vibrations of uniform beams.                                         |    |
| 8. | Noise Control in Mechanical System: Review of Fundamentals:                  | 12 |
|    | Noise a nd vi bration m easurement units, l evels, de cibels, s pectra.      |    |
|    | Objective/Subjective n oise m easurement-scales; Addition a nd               |    |
|    | subtraction of decibles; Frequency analysis bandwidths; Relationships        |    |
|    | for the measurement of free field sound propagation; The directional         |    |
|    | characteristics of sound sources; Sound power models.                        |    |
|    | Industrial Noise and V ibration C ontrol: B asic s ources of i ndustrial     |    |
|    | noise a nd vi bration, ba sic i ndustrial noi se a nd vi bration c ontrol    |    |
|    | methods; The economic factor; Sound transmission from one room to            |    |
|    | another a coustic e nclosures, a coustic ba rriers, s ound a bsorbing        |    |
|    | materials; Vibration c ontrol pr ocedures; Fault de tection f rom noi se     |    |
|    | and vibration signals.                                                       |    |
|    | Total                                                                        | 42 |

| S. No. | Name of Books / Authors                                                         | Year of     |
|--------|---------------------------------------------------------------------------------|-------------|
|        |                                                                                 | Publication |
| 1.     | Grover, G. K., "Mechanical Vibrations", 3 <sup>rd</sup> Ed., Nem Chand          | 2003        |
| 2.     | Rao, J. S. a nd Gupta, K., "Theory and P ractice of M echanical                 | 1999        |
|        | Vibration", 2 <sup>nd</sup> Ed., New Age International Publishers               |             |
| 3.     | Smith, J., and Whaley, W., "Vibration of Mechanical and Structural              | 1994        |
|        | Systems with Microcomputer Applications", 2 <sup>nd</sup> Ed., Harper and Row   |             |
| 4.     | Thomason, W.T., "Theory of Vibrations with Applications", 5 <sup>th</sup> Ed.,  | 1997        |
|        | Prentice Hall                                                                   |             |
| 5.     | Timoshenko, "Vibration P roblems i n E ngineering", 2nd Reprint                 | 2007        |
|        | Ed.,Wolfenden Press,                                                            |             |
| 6.     | Norton, M.P., and Karcazub, D.G., "Fundamentals of N oise a nd                  | 2003        |
|        | Vibration A nalysis f or Engineers", 2 <sup>nd</sup> Ed., Cambridge U niversity |             |
|        | Press                                                                           |             |



- 8. Pre-requisite: Nil
- 9. Objective: To introduce t he ba sic c oncept of t heory of vibrations and noi se c ontrol i n mechanical systems.
- 10. Details of Course:

| S. No. | Contents                                                              | <b>Contact Hours</b> |
|--------|-----------------------------------------------------------------------|----------------------|
| 1.     | Concepts in dynamical systems: phase s pace, f ixed poi nts,          | 4                    |
|        | stability, Poincaré map etc.                                          |                      |
| 2.     | Basic theorems in system dynamics: P oincaré-Lyapounov,               | 7                    |
|        | Hartmann-Grobmann, Center Manifold, Review of KAM Theorem             |                      |
| 3.     | Perturbation theory: s ecular t erms, resonance i n perturbation      | 7                    |
|        | theory, Gronwall lemma, error estimation in approximation methods     |                      |
| 4.     | Applications in ODE's: Duffing oscillator, forced oscillations, limit | 7                    |
|        | cycles; Lorentz equations                                             |                      |
| 5.     | Applications in PDE's: nonl inear di ffusion; a mplitude e quations;  | 7                    |
|        | nonlinear wave equations - Burgers, KdV & NLS equations and their     |                      |
|        | wave solutions, solitons, compactons                                  |                      |
| 6.     | Chaos: The logistic equations and the route to Chaos                  | 4                    |
| 7.     | Fractals: Fundamental concepts in Fractals and Chaos                  | 4                    |
| 8.     | Nonlinear wave equations                                              | 2                    |
|        | Total                                                                 | 42                   |

| S. No. | Name of Books / Authors                                              | Year of     |
|--------|----------------------------------------------------------------------|-------------|
|        |                                                                      | Publication |
| 1.     | Nayfeh, A., Perturbation Methods, Wiley.                             | 1978        |
| 2.     | Wiggins, S., Introduction to A pplied N onlinear D ynamical S ystems | 1992        |
|        | and Chaos, Springer-Verlag, NY, 1992.                                |             |
| 3.     | Lichtenberg, A.J. & L ieberman, M.A., R egular a nd C haotic         | 1992        |
|        | Dynamics, Springer-Verlag, NY.                                       |             |
| 4.     | Hao Bai-Lin, Chaos, World Scientific, Singapore.                     | 1984        |
| 5.     | Kahn, P. B. & Zarmi Y., Nonlinear Dynamics – Exploration Through     | 1998        |
|        | Normal Forms, Wiley, NY.                                             |             |



- 8. Pre-requisite: Nil
- 9. Objective of Course: The objective of the course is to teach the fundamentals of sound and vibration to the future engineers and develop ability to apply these principles to real life problems.
- 10. Details of Course:

| S. No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact<br>Hours |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.     | <b>Fundamental concepts:</b> Fundamentals of a pplied mechanics, sound<br>and vi bration f ields, longitudinal w aves i n gases a nd l iquids,<br>diffraction, models in room acoustics, geometrical acoustics, waves in<br>solid media, frequency a nalysis of s ound, levels and decibel, filters,<br>band pass, octave and third octave filters, summation of sound fields,<br>interference a nd f requency components, summary of impor tant<br>formulas.                     | 3                |
| 2.     | <b>Influence of Sound and Vibration</b> : Ear and hearing, ear's function, measures o f he aring, measures o f noi se, speech and masking, influence of noise on man, hearing injuries, hearing protection, sound quality, effects of s hock a nd vi bration, machinery and vehicle vibration, effects on man, international s tandards, regulations a nd recommendations on machine, vehicles, work environment, buildings and on external noise, summary of important formulas. | 3                |
| 3.     | <b>Signal Analysis and Measurements Techniques:</b> Mathematical fundamentals, fourier m ethods in s ound and vibration, measurement                                                                                                                                                                                                                                                                                                                                              | 3                |

|     | systems, summary of important formulas.                                  |    |
|-----|--------------------------------------------------------------------------|----|
| 4.  | Wave Equation in Fluids: Wave equation in a source free medium,          | 4  |
|     | general and ha rmonic solutions f or f ree one di mensional w ave        |    |
|     | propagation, sound intensity, energy and energy density, general and     |    |
|     | harmonic s olutions f or f ree s pherical w ave propagation, sound       |    |
|     | intensity, summary of important formulas.                                |    |
| 5.  | Fundamentals of Vibrations: Mechanical power, linear systems of          | 7  |
|     | one, two and multi-degree of freedom systems, damping, frequency         |    |
|     | response, mechanical-electrical circuits.                                |    |
| 6.  | Reflection, Transmission and Standing Waves: Reflection and              | 3  |
|     | transmission of plane waves, eigen-frequencies and eigen modes in        |    |
|     | enclosed spaces (rooms), summary of important formulas.                  |    |
| 7.  | Wave Equation in Solids: Introduction, wave propagation in infinite      | 4  |
|     | and semi-infinite media, quasi-longitudinal waves in beams, bending      |    |
|     | waves in beams and plates, summary of important formulas.                |    |
| 8.  | <b>Room Acoustics:</b> Energy m ethods, room a coustics, acoustic        | 3  |
|     | absorbers, sound transmission through walls, summary of important        |    |
|     | formulas.                                                                |    |
| 9.  | Sound Generation Mechanisms: Monopoles, dipoles, quadra                  | 3  |
|     | poles, influence of bou ndaries, live s ource, sound r adiation f rom    |    |
|     | vibrating s tructures, point e xcited plates, flow generated noi se,     |    |
|     | summary of important formulas.                                           |    |
| 10. | Vibration Isolation: Types, general com ments, measures and              | 6  |
|     | prediction of vibration isolation, prediction models, rigid and flexible |    |
|     | toundations, general expression, case studies.                           |    |
| 11. | Sound in Ducts: Principals f or s ound r eduction, insertion a nd        | 3  |
|     | transmission loss, sound pr opagation i n duc ts, introduction t o       |    |
|     | silencers, helmholtz resonator, case studies.                            |    |
|     | Total                                                                    | 42 |

| S. No. | Name of Books / Authors                                                | Year of     |
|--------|------------------------------------------------------------------------|-------------|
|        |                                                                        | Publication |
| 1.     | Abom, M., "Sound and Vibration", KTH, Stockholm                        | 2006        |
| 2.     | Rao, J.S., and G upta, K., "Theory and Practice of M echanical         | 1999        |
|        | Vibrations", New Age International (Pvt) Ltd                           |             |
| 3.     | Fahy, F.J,. and Walker, J.G., "Fundamentals of Noise and Vibration", E | 1998        |
|        | and FN, Spon                                                           |             |
| 4.     | Kinsler, L.E., Frey, A.R., Coppens, A.B., and S anders, J.V.,          | 1982        |
|        | "Fundamentals of Acoustics", John Wiley                                |             |
| 5      | Grover, G.K., "Mechanical Vibrations", Nem Chand & Bros.               | 2003        |

| 1. | Subject Code: MIN-302                | Course Title | e: Machine Des | ign                        |
|----|--------------------------------------|--------------|----------------|----------------------------|
| 2. | Contact Hours : L: 4                 | T: <b>0</b>  | P: <b>4</b>    |                            |
| 3. | Examination Duration (Hrs.): Theory  | 4            | Practi         | ical <b>0</b>              |
| 4. | Relative Weightage: CWS <b>15</b> PF | RS 15        | MTE <b>30</b>  | ETE <b>40</b> PRE <b>0</b> |
| 5. | Credits: <b>6</b> 6. Semester: S     | pring        | 7. Subject Ar  | rea: DCC                   |

- 8. Pre-requisite: MIN-206, MIN-301
- 9. Objectives of Course: The student is exposed to basic principles of mechanical design and applications of t hese pr inciples t o the com mon mechanical el ements us ed in general machinery.
- 10. Details of Course:

| S. No. | Contents                                                                                                                          | Contact |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|---------|
|        |                                                                                                                                   | Hours   |
| 1.     | General:                                                                                                                          | 14      |
|        | Introduction t o de sign pr ocedure; de sign r equirements; r eview of f orce a nalysis concepts; materials selection for design. |         |
|        | Types of failures; theories of failures and their applications; factor of safety concepts,                                        |         |
|        | statistical considerations in design; Motor selection and matching of machinery.                                                  |         |
|        | Causes o f st ress concentration; st ress conc entration factors; m itigation of st ress concentration.                           |         |
| 2.     | Dynamic loading:                                                                                                                  | 05      |
|        | Cyclic loading, endurance limit, effects of type of loading, size and surface finish; notch                                       |         |
|        | sensitivity; r eliability c onsiderations; G oodman and Soderberg di agrams; c umulative                                          |         |
|        | fatigue damage.                                                                                                                   |         |
| 3.     | Design of Machine Elements:                                                                                                       | 31      |
|        | Design of k eys, threaded f asteners and power screws, belt and chain drives;; coil springs. Design of welded joints              |         |
|        | Design of spur, helical and worm gears; design of shafts; analysis of forces and bearing                                          |         |
|        | reactions; selection of rolling elements bearings. Design of clutches & brakes.                                                   |         |
|        |                                                                                                                                   |         |
| 4.     | Principles of Machinery Construction:                                                                                             | 06      |
|        | Support and retainment of rotating a ssemblies, s peed and motion changing devices,                                               |         |
|        | casting and weldment design, machine frame and housing design,                                                                    |         |
|        | Self-Study                                                                                                                        |         |
|        | Design of k eys a nd c ouplings; riveted a nd w elded j oints; de sign of be vel g ears;                                          |         |

| corrosion and wear considerations in design |    |
|---------------------------------------------|----|
| Total                                       | 56 |

| S. No. | Name of Books / Authors                                                    | Year of publication |
|--------|----------------------------------------------------------------------------|---------------------|
| 1.     | Mechanical Engg. Design, Shigley and Mitchke, McGraw Hill                  | 2003                |
| 2.     | Machine Design, Robert L. Norton, Pearson Education Asia                   | 2001                |
| 3.     | Fundamentals of Machine component design, Juvinall and Marshek, John Wiley | 2002                |
| 4.     | Design Data Hand book, Mahadevan and Balaveera Reddy, CBS Publishers       | 2003                |
| 5.     | Machine Design. Paul H. Black & O. E. Adams. McGraw Hill                   | 1981                |



- 8. Pre-requisite: MIN-108
- 9. Objective: This course aims at making the students well versed with the drawing practices for common machine elements, assembly drawings and blue-print reading.
- 10. Details of Course:

| S. No. | Contents                                                               | <b>Contact Hours</b> |
|--------|------------------------------------------------------------------------|----------------------|
| 1.     | Detachable Fasteners: Screw t hreads, approximate a nd                 | 4                    |
|        | conventional r epresentations; Specifications; T hreaded fasteners;    |                      |
|        | Types, forms, s tandard, a nd s pecifications; D rawing o f t emporary |                      |
|        | connections; F oundation bol ts; L ocking D evices; Classification,    |                      |
|        | principles of operation, standard types and their proportions. Shaft   |                      |
|        | Couplings; Common types, standard proportions for some couplings.      |                      |
| 2.     | Permanent Fastenings: Rivets; Standard f orms a nd pr oportions,       | 4                    |
|        | Riveted J oints, C ommon t ypes of j oints, t erminology, proportions  |                      |
|        | and representation; Welds; Types of welds and welded joints, edge      |                      |
|        | preparation, specifications, and representation of welds on drawings.  |                      |
| 3.     | Assembly Drawings: Review of sheet preparation, boundary lines,        | 6                    |
|        | zones, t itle bl ock, revision panel, Parts List; Numbering of         |                      |
|        | components and associated detail drawings; Assembly drawings of        |                      |
|        | various m achine s ub-assemblies and assemblies f rom de tail          |                      |
|        | drawings, sketched and actual machine components.                      |                      |

| 4. | <b>Components Drawing:</b> Limits, Fits, and Tolerances of Size and Form; Types and Grade, Use of Tolerance tables and specification of tolerances, Form and Cumulative T olerances; T olerance Dimensioning; General T olerances; S urface quality s ymbols, terminology and r epresentation on dr awings, correlation of tolerances and surface quality with manufacturing techniques. | 6  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5  | Introduction t o A UTOCAD, us e of A UTOCAD for a ssembly and component drawings                                                                                                                                                                                                                                                                                                         | 4  |
| 6  | Introduction t o S olid modeling s oftware, us e of s olid m odeling<br>software f or assembly a nd c omponent d rawings, generation of<br>different views from solid models.                                                                                                                                                                                                            | 4  |
|    | Total                                                                                                                                                                                                                                                                                                                                                                                    | 28 |

| S. No. | Name of Books / Authors                                                       | Year of     |
|--------|-------------------------------------------------------------------------------|-------------|
|        |                                                                               | Publication |
| 1.     | French, T.E., Vierck, C.J., Foster, R.J., "Engineering D rawing and           | 1993        |
|        | Graphic Technology", 14 <sup>th</sup> Ed., McGraw Hill Science/Engg./Math,    |             |
| 2.     | Giesecke, F.E., Mitchel, A., Spencer, H.C., Hill, I.L., Dygdon, J.T.,         | 2008        |
|        | Novak, J.E., a nd Lockhart, S.D., "Technical D rawing", 13 <sup>th</sup> Ed., |             |
|        | Prentice Hall                                                                 |             |
| 3.     | Sidheswar, N., "Machine Drawing", McGraw Hill                                 | 2004        |
| 4.     | Goutam Pohit, G outam G hosh, M achine D rawing with A utoCAD,                | 2007        |
|        | Pearson                                                                       |             |
| 5.     | SolidWorks 2012: A Tutorial Approach, Prof. Sham Tickoo,                      | 1988        |
|        | CADCIM Technologies                                                           |             |
| 6      | SP 46: 1988 Engineering Drawing Practice for Schools and Colleges,            | 2012        |
|        | Bureau of Indian standards                                                    |             |

## NAME OF DEPTT./CENTRE: Mechanical & Industrial Engineering Department

1. Subject Code: MIN-206 Course Title: Mechanics of Materials



- 8. Pre-requisite: CEN-102
- 9. Objective: To introduce the methods and tools of mechanics of material for the analysis for various types of engineering problems.
- 10. Details of Course:

| S. No. | Contents                                                                 | <b>Contact Hours</b> |
|--------|--------------------------------------------------------------------------|----------------------|
| 1.     | Three Dimensional State of Stress and Strain: Stress and strain          | 6                    |
|        | tensor, stress and strain transformations, principal stress and strain,  |                      |
|        | Octahedral planes and stresses.                                          |                      |
| 2.     | Elastic Strain Energy and Energy Methods: Elastic strain energy          | 13                   |
|        | due to normal and shear stress, strain energy of a three dimensional     |                      |
|        | principal st ress s ystem, dilatational and distortional s train energy, |                      |
|        | strain energy due to axial, bending and torsional loads; Strain energy   |                      |
|        | and c omplimentary energy t heorems, C astigliano's t heorems,           |                      |
|        | theorem of virtual work, theorem of least work, reciprocal theorems,     |                      |
|        | application of energy methods for determining slope and deflection       |                      |
|        | in beams and twists in shafts, unit load method.                         |                      |
| 3.     | Theories of Elastic Failure: Modes of failure, the ne cessity and        | 3                    |
|        | significance of a f ailure t heory, s tatement of various t heories of   |                      |
|        | failure a nd t heir application, g raphical r epresentation, c omparison |                      |
|        | and limitations of various failure theories, safety factors.             |                      |

| 4. | <b>Curved Beams:</b> Beams of large initial curvature, location of neutral axis, di stribution of s tresses a cross s ections h aving rectangular, circular and trapezoidal shapes.                                                                                                                                                                                                                                                              | 4  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. | <b>Statically Indeterminate Beams:</b> Conditions of s tatical indeterminacy, d egree of indeterminacy, analysis of built-in be ams using i ntegration, s uperposition a nd a rea-moment m ethods, application of energy methods.                                                                                                                                                                                                                | 6  |
| 6. | <b>Unsymmetrical Bending:</b> Symmetrical and nonsymmetrical be am cross-sections and their properties, product and second moment of area, principal s econd moments of ar ea, Mohr's ci rcle of s econd moments of a rea, be nding of s ymmetrical be am with s kew l oad, bending o f be ams ha ving uns ymmetrical c ross-section, l ocation of neutral ax is, shear cent er and i ts l ocation determination for thi n-walled open-sections. | 5  |
| 7. | <b>Axi-symmetrical Problems:</b> Stresses and di splacements i n thick cylindrical shells subjected to internal and external pressure, press fits and laminated construction, thick spherical shells. Stresses in rotating cylinders a nd t hin r otating di sc, di sc ha ving uniform s trength i n rotation.                                                                                                                                   | 5  |
|    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42 |

| S. No. | Name of Books / Authors                                                           | Year of     |
|--------|-----------------------------------------------------------------------------------|-------------|
|        |                                                                                   | Publication |
| 1.     | Boresi, A.P., and Schmidt, R.J., "Advanced Mechanics of Materials",               | 2002        |
|        | 6 <sup>th</sup> Ed., John Wiley & Sons                                            |             |
| 2.     | Hearn, E.J., "Mechanics of Materials", 3 <sup>rd</sup> Ed., Pergamon              | 2003        |
| 3.     | Timoshenko, S.P., and Gere, J.M., "Mechanics of Materials", 2 <sup>nd</sup> Ed.,  | 2002        |
|        | CBS Publishers                                                                    |             |
| 4.     | Srinath, L.S., "Advanced Mechanics of Solids", 3 <sup>rd</sup> Ed., Tata McGraw   | 2009        |
|        | Hill                                                                              |             |
| 5.     | Ugural, A.C., "Advanced S trength and A pplied E lasticity", 5 <sup>th</sup> Ed., | 2012        |
|        | Pearson Education Inc.                                                            |             |



#### 9. Objective: To provide essential knowledge of basic tools of Differential Calculus, Integral Calculus, Vector Calculus and Matrix Algebra for degree students.

| 10. Details | of Course: |
|-------------|------------|
|-------------|------------|

| S. No. | Contents                                                                                  | Contact |
|--------|-------------------------------------------------------------------------------------------|---------|
|        |                                                                                           | Hours   |
| 1.     | Matrix Algebra: Elementary operations and their use in getting the Rank, Inverse          | 8       |
|        | of a matrix and solution of linear simultaneous equations. Orthogonal, Symmetric,         |         |
|        | Skew-symmetric, Hermitian, Skew-Hermitian, Normal & Unitary matrices and                  |         |
|        | their elementary properties. Eigen-values and Eigenvectors of a matrix, Cayley-           |         |
|        | Hamilton theorem, Diagonalization of a matrix.                                            |         |
| 2.     | <b>Differential Calculus:</b> Limit, Continuity and differentiability of functions of two | 12      |
|        | variables, Euler's theorem for homogeneous equations, Tangent plane and normal.           |         |
|        | Change of variables, chain rule, Jacobians, Taylor's Theorem for two variables,           |         |
|        | Error approximations. Extrema of functions of two or more variables,                      |         |
|        | Lagrange's method of undetermined multipliers                                             |         |
| 3.     | Integral Calculus:                                                                        | 12      |
|        | Review of curve tracing and quadric surfaces, Double and Triple integrals,                |         |
|        | Change of order of integration. Change of variables. Gamma and Beta functions.            |         |
|        | Dirichlet's integral. Applications of Multiple integrals such as surface area,            |         |
|        | volumes, centre of gravity and moment of inertia                                          |         |
| 4.     | Vector Calculus: Differentiation of vectors, gradient, divergence, curl and their         | 10      |
|        | physical meaning. Identities involving gradient, divergence and curl. Line and            |         |
|        | surface integrals. Green's, Gauss and Stroke's theorem and their applications.            |         |
|        | Total                                                                                     | 42      |

| S.<br>No. | Name of Authors/ Books/Publishers                                  | Year of<br>Publication/Reprint |
|-----------|--------------------------------------------------------------------|--------------------------------|
| 1.        | E. Kreyszig, Advanced Engineering Mathematics, 9th edition, John   | 2011                           |
|           | Wiley and Sons, Inc., U.K.                                         |                                |
| 2.        | R.K. Jain and S.R.K. Iyenger, Advanced Engineering Mathematics,    | 2005                           |
|           | 2nd Edition, Narosa Publishing House.                              |                                |
| 3.        | M.D. Weir, J. Hass, F.R. Giordano, Thomas' Calculus, 11th Edition, | 2008                           |
|           | Pearson Education.                                                 |                                |

| NAME OF DEPTT./CENTRE: |                      |              | Departm  | ent of Ph | nysics    |            |        |
|------------------------|----------------------|--------------|----------|-----------|-----------|------------|--------|
| 1.                     | Subject Code: PHN-00 | )1           | Course 7 | Fitle: N  | Mechani   | ics        |        |
| 2.                     | Contact Hours: L: 3  |              | T: 0     |           | P: 2      |            |        |
| 3.                     | Examination Duration | (Hrs.): Theo | ory: 3   | Pra       | ctical: 0 |            |        |
| 4.                     | Relative Weightage:  | CWS: 15      | PRS: 25  | MTE: 2    | 20 E      | CTE: 40    | PRE: 0 |
| 5.                     | Credits: 4           | 6. Semester: | Autumn   |           | 7. Subje  | ct Area: I | BSC    |

8. Pre-requisite: None

## 9. Objective: To familiarize students with the basic principles of mechanics

10. Details of Course:

| S.No. | Contents                                                                              | <b>Contact Hours</b> |
|-------|---------------------------------------------------------------------------------------|----------------------|
| 1     | STATICS OF PARTICLES.                                                                 | 8                    |
|       | Vectorial representation of f orces and moments- Vector Operation-Concepts of         |                      |
|       | Particles and R igid b odies – Composition of c oncurrent forces in pl ane free bod y |                      |
|       | Diagram – Equilibrium of Rigid bodies in Two and three dimensions-Moment of a         |                      |
|       | force about a point and about an axis-Couple moment-Reduction of a force system to    |                      |
| •     | a force and a couple                                                                  |                      |
| 2     | PROPERTIES OF SURFACES, MOMENTS AND PRODUCTS OF INERTIA                               | 6                    |
|       | Definition Moment of Inertia for areas-Parallel axis theorem –Perpendicular axis      |                      |
|       | theorem-Moment of inertia for composite area-product of inertia form an area-         |                      |
| 4     | EDICTION                                                                              | 4                    |
| 4     | FRICTION                                                                              | 4                    |
|       | Laws of c outomot fiction. Coefficient of F riction-Dry F riction-stiding             |                      |
| _     | Friction-Ladder Inction-Belt Inction – Rolling Resistance.                            | 0                    |
| 5     | KINEMIATICS OF PARTICLES                                                              | 8                    |
|       | Principle of Vi rtual work for a particle and rigid body-condition for                |                      |
|       | equilibrium f or a c onservative s ystem, stability-particle dyna mics i n            |                      |
|       | rectangular coordinate, cylindrical coordinate and in terms of path variables-        |                      |
| -     | General motion of system of particles-                                                | 0                    |
| 6     | WORK ENERGY METHODS, IMPULSE AND MOMENTUM                                             | 8                    |
|       | Work E nergy M ethod-Conservation of E nergy-Impulse a nd M omentum                   |                      |
|       | Relation-Impulsive Force-Impact force-Conservation of momentum – Moment               |                      |
| _     | of Momentum Equation.                                                                 | 0                    |
| 7     | RIGID BODY MOTION;                                                                    | 8                    |
|       | Translation and rotation of rigid bodies- Derivative of a vector fixed in moving      |                      |
|       | reference-General relationship between time derivative of a vector for different      |                      |
|       | reterences-Moment of momentum equation-kinetic energy of rigid body-work              |                      |
|       | and e nergy r elations-Euler's e quation of motion-Three di mensional m otion         |                      |
|       | about a fixed point                                                                   |                      |
|       | TOTAL                                                                                 | 42                   |

#### List of experiments:

- 1. Study of magnetic field of a pair of coils in Helmholtz arrangement
- 2. Determination of e/m
- 3. Determination of first excitation potential of a gas by Frank-Hertz experiment
- 4. Determination of Stefan's constant
- 5. Determination of Planck's constant by radiation
- 6. To study and verify Malus' law
- 7. Study of Polarization of light using quarter wave plate
- 8. Determination of Brewster's angle at glass-air interface
- 9. Determination of with of a slit by single-slit diffraction pattern
- 10. Four probe method of finding resistivity of semiconductor
- 11. Quinck's Method for determining mass susceptibility
- 12. Wavelength of Na light by Newton's ring method

| S.No. | Title/Authors/Publishers                                                             | Year of     |
|-------|--------------------------------------------------------------------------------------|-------------|
|       |                                                                                      | Publication |
| 1.    | Shames I .H. a nd Rao G .K., "Engineering M echanics-Statics a nd                    | 2006        |
|       | Dynamics", 4 Edition, Pearson Education                                              |             |
| 2.    | Beer F.P and Johnson E.R., "Vector Mechanics for Engineers- Statics and              | 2010        |
|       | Dynamics",9 Edition, Tata McGraw-Hill Publishing Company                             |             |
| 3.    | Pytel A. and Kiusalaas J., "Engineering Mechanics: Statics" 3 <sup>rd</sup> Edition, | 2010        |
|       | Cengage Learing                                                                      |             |
| 4.    | Pytel A. and Kiusalaas J., "Engineering Mechanics: Dynamics"3rd Edition              | 2010        |
|       | Cengage Learing                                                                      |             |
| 5.    | Hibberler R .C a nd G upta A ., E ngineering M echanics,", 12 <sup>th</sup> Edition, | 2012        |
|       | Pearson Education                                                                    |             |
| 6.    | Meriam J.L. and Kraige L.G., "Engineering M echanics: S tatics", 6 <sup>th</sup>     | 2012        |
|       | Edition, John Willey and Son,s                                                       |             |
| 7.    | Meriam J.L., and Kraige L.G., "Engineering Mechanics: Dynamics", 6 <sup>th</sup>     | 2012        |
|       | Edition, John Willey and Son's                                                       |             |