NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- Course Title: Abstract Algebra Subject Code: MA-401 1. **P:** 0 2. Contact Hours: **L:** 3 **T:** 1 **Theory:** 3 **3.** Examination Duration (Hrs.): **Practical:** 0 4. Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE: 20-30 ETE:** 40-50 **PRE:** 0 5. Credits: 4 6. Semester: Autumn 7. Subject Area: PCC
- **8. Pre-requisite:** Basic group theory and ring theory.
- 9. Objective: To introduce the fundamental concepts of groups, rings, modules and fields.

S.No.	Contents	Contact
		Hours
1.	Groups: Review of groups, subgroups and group homomorphism; group actions, class equation, Sylow's theorems, simplicity of alternating groups, direct product of groups, fundamental theorem of finite abelian groups.	14
2.	Rings: Review of basic ring theory, ideals and their properties, Chinese Remainder Theorem, prime and maximal ideals, rings of fractions, factorization in integral domains, principal ideal domains, Euclidean domains, unique factorization domains, polynomial rings over unique factorization domains.	11
3.	Modules: Basic definitions and examples, submodules and direct sums, quotient modules, homomorphism of modules and isomorphism theorems, cyclic modules, simple (irreducible) modules, free modules.	5
4.	Fields: Field extensions, algebraic extensions, splitting fields and algebraic closures, normal and separable extensions, finite fields, automorphisms and fixed fields, Galois extensions, The Fundamental Theorem of Galois theory.	12
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1	Dummit, D. S. and Foote, R. M., "Abstract Algebra", 3 rd Edition, John Wiley & Sons	2003
2	Bhattacharya, P. B., Jain, S. K. and Nagpaul, S. R., "Basic Abstract Algebra", 2 nd Edition, Cambridge University Press	1995
3	Artin, M., "Algebra", 2 nd Edition, Prentice Hall Inc.	2010
4	Hungerford, T. W., "Algebra", Springer	1980
5	Herstein, I. N., "Topics in Algebra", 2 nd Edition, John Wiley & Sons	2006
6	Jacobson, N., "Basic Algebra: Volume I", 2 nd Edition, Dover Publications Inc.	1985

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- **1. Subject Code:** MA-402 Course Title: Complex Analysis **P:** 0 2. Contact Hours: **L:** 3 **T:** 1 **3.** Examination Duration (Hrs.): **Theory:** 3 **Practical:** 0 4. Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0 5. Credits: 4 6. Semester: Spring 7. Subject Area: PCC
- 8. **Pre-requisite:** Basics of real analysis
- 9. Objective: To introduce the analytical aspects of functions of a complex variable.

S.No.	Contents		
		Hours	
1.	Introduction: Algebra of Complex Numbers, inequalities. Stereographic	2	
	Projection, Topological structure of Complex Plane, simply connected and		
	multiply connected domains.		
2.	Analytic Functions: Functions of a complex variable, limits, continuity, uniform	10	
	continuity, differentiability, analytic function, C-R equations, necessary and		
	sufficient conditions, applications to the problems of potential flow, Harmonic		
	functions, Harmonic conjugates, Milne's method. Sequences, Series, Uniform		
	convergence, power series, elementary functions, exponential, trigonometric and		
	hyperbolic functions and their identities in the complex plane, multiple valued		
	functions, logarithmic functions and functions with complex exponent.		
3.	Complex Integration: Rectifiable arcs, contours, complex line integration,	8	
	Cauchy's theorem for simply and multiply connected domains, Cauchy's integral		
	formula for the derivatives of an analytic function, Winding Numbers, Cauchy's		
	estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of		
	Algebra. Maximum modulus principle, Schwarz Lemma, Taylor series – Laurent		
	series – Zeros and poles of a function – Meromorphic function.		
4.	4. Residue Calculus: The residue at a singularity, Residue theorem, the argument		
	principle, Rouche's theorem, contour integration and its applications, improper		
	integrals, evaluation of a real integral, improper integrals involving sines and		
	cosines, definite integrals involving sines and cosines, integration through branch		
	cut.		
5.	Conformal Mapping: Definition, Bilinear transformation, Cross ratio, the	7	
	mappings from disc to disc, disc to half plane and half plane to half plane, fixed		
	points. Mapping of elementary transformations, the function $1/z$, z^2 , $z^{1/2}$, exp z,		
	$\sin z$ and $z + 1/z$.		
6.	Applications: Applications of conformal mapping to steady temperature,	9	
	electrostatic potential, two dimensional fluid flow, stream function. Schwarz-		
	Christoffel transformation and their applications, Poisson formula, Dirichlet		
	problem in the unit disc, Dirichlet problem in the half plane – Neumann problem		
	for the disc and the half plane.		
	Total	42	

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	L. V. Ahlfors, Complex Analysis, 3rd Edition, McGraw-Hill.	2017
2.	J. W. Churchill and R.V. Brown, Complex Analysis, McGraw-Hill.	2009
3.	J. B. Conway, Functions of one complex Variable, Vol. I,	1995
	SpringerVerlag, New York	
4.	T. W. Gamelin, Complex Analysis, Springer-Verlag	2001
5.	R. Greene and S.G. Krantz, Function Theory of One Complex	2006
	Variable, 3rd Edition, GSM, Vol. 40, American Mathematical	
	Society.	
6.	S. Lang, Complex Analysis, Springer – Verlag.	2003
7.	J. H. Mathews and R.W. Howell, Complex Analysis for	2009
	Mathematics and Engineering, Narosa	
8.	E.B. Saff and A. D. Snider, Fundamentals of Complex Analysis,	2002
	3 rd Edition, Pearson	

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- 1. Subject Code: MA-403 Course Title: Introduction to Computer Programming
- **2. Contact Hours:** L: 3 T: 0 P: 2
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 10-25 **PRS:** 25 **MTE:** 15-25 **ETE:** 30-40 **PRE:** 0
- 5. Credits: 46. Semester: Autumn7. Subject Area: PCC
- 8. Pre-requisite: Nil
- 9. Objective: To provide basic knowledge of computer programming in C++.

S.No.	Contents	
		Hours
1.	Computer Fundamentals : Introduction to computer systems; number system, integer, signed integer, fixed and floating point representations; IEEE standards, integer and floating point arithmetic; CPU organization, ALU, registers, memory, the idea of program execution at micro level.	7
2.	Basic Programming in C++: Input/output; Constants, variables, expressions and operators; Naming conventions and styles; Conditions and selection statements; Looping and control structures (while, for, do-while, break and continue); Arrays; File I/O, header files, string processing; Pre-processor directives; Compiling and linking.	10
3.	Programming through functional decomposition : Design of functions, void and value returning functions, parameters, scope and lifetime of variables, passing by value, passing by reference, passing arguments by constant reference, recursive functions; Function overloading and default arguments; Library functions.	10
4.	Pointers: Pointers; Dynamic data and pointers, dynamic arrays.	3
5.	Object Oriented Programming Concepts : Data hiding, abstract data types, classes, access control; Class implementation-default constructor, constructors, copy constructor, destructor, operator overloading, friend functions; Object oriented design (an alternative to functional decomposition) inheritance and composition; Dynamic binding and virtual functions; Polymorphism; Dynamic data in classes.	12
	Total	42

11. List of Practicals:

- 1. Number systems
- 2. Use of constants, variables, expressions and operators; Naming conventions and styles
- 3. Conditional statements and Arrays
- 4. File input and output, pre-processor directives
- 5. Functional decomposition
- 6. Recursive functions, overloading
- 7. Pointers
- 8. Object Oriented Programming: Classes and abstract data types
- 9. Constructors and destructors
- 10. Operator overloading
- 11. Friend functions and virtual functions

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	B. Stroustrup. The C++ Programming Language. Addison-Wesley,	1997
	3 rd edition.	
2.	S. Prata. C++ Primer Plus. Sams, 5th edition.	2004
3.	R. Lafore. Object-Oriented Programming in C++. Pearson,4 th edition.	2008
4.	H.M. Deitel and P.J. Deitel. C++ How to Program. Prentice Hall, 8th	2011
	edition.	
5.	S.B. Lippman, J. Lajoie, and B.E. Moo. The C++ Primer. Addison-	2012
	Wesley Professional, 5 th edition.	
6.	J.P. Mueller. C++ All-in-one for Dummies, Wiley, 4 th edition.	2020

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

1.	Subject Code:MA-404C			Cou	rse Title: Function	al Analysis
2.	Contact Hours: L: 3 T: 1		P: 0			
3.	Examination Duration (Hrs.): Theory: 3		Practical: 0			
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4 6. Semester: Spring			7. Subject A	rea: PCC	

- 8. **Pre-requisite:** Basic knowledge of real analysis.
- **9. Objective:** To introduce the concepts of Banach spaces, Hilbert spaces, linear operators and their properties.

S.No.	Contents	Contact Hours
1.	Normed linear spaces, convergence and absolute convergence of series in a normed linear space, Banach spaces.	7
2.	Inner product spaces, Cauchy-Schwarz inequality, Hilbert spaces, relation between Banach and Hilbert spaces.	2
3.	Convex sets, existence and uniqueness of a vector of minimum length, projection theorem. Orthogonal and orthonormal systems in Hilbert spaces with examples, Bessel's inequality, Parseval's identity, Characterization of complete orthonormal systems.	5
4.	Continuity of linear maps on normed linear spaces, four equivalent norms on the space of linear bounded operators, conjugate and dual spaces, The Riesz Representation Theorem, Compact operators, spectrum of bounded linear operators, spectral theorem on finite dimensional spaces.	8
5.	Adjoint operators, self adjoint operators, normal operators, unitary operators on Hilbert spaces and their properties, Isometric isomorphism of a Hilbert space onto itself under unitary operators, Projection operators on Banach spaces and Hilbert spaces. Orthogonal projections.	9
6.	The Closed Graph Theorem, The Uniform Boundedness Principle and its applications, The Hahn–Banach Extension and Separation theorems, Open Mapping Theorem and its applications.	11
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Bachman G. and Narici L., Functional Analysis, Dover Publications.	1998
2.	Conway J. B., A Course in Functional Analysis, 2nd Ed., Springer.	2007
3.	Debnath L. K. and Mikusinski P., Introduction to Hilbert Spaces	2005
	with Applications, 3 rd Ed., Academic Press.	
4.	Kreyszig E., Introductory Functional Analysis with Applications,	2007
	Wiley.	
5.	Limaye B. V., Functional Analysis, Revised 3rd Ed., New	2014
	Age International Publishers.	
6.	Nair, M. T., Functional Analysis: A First Course, PHI Pvt. Ltd.	2001
7.	Rudin W., Functional Analysis, 2nd Ed., McGraw Hill.	1991
8.	Simmons G. F., Introduction to Topology and Modern	2017
	Analysis, McGraw Hill.	
9.	Yosida K., Functional Analysis, 6th Ed., Springer.	1995

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

1.	Subject Code: MA-4	05		Course Titl	e: Linear Algeb	ra
2.	Contact Hours:	L: 3	T: 1	P :	0	
3.	Examination Duratio	n (Hrs.): Th	eory: 3	Practica	d: 0	
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Semest	er: Autumn	7. Su b	ject Area: PCC	1
8.	Prerequisite: Nil					

9. Objective: To introduce the fundamental knowledge of linear algebra.

S.No.	Contents	
		Hours
1.	Vector Spaces: Vector space, subspace, intersection, union, sum and direct sum	8
	of subspaces, linear dependence and independence, basis and dimension, ordered	
2	bases and cooldinates, quotient spaces.	10
2.	theorem, isomorphism, matrix representation of a linear transformation, change of basis, algebra of linear transformations, inverse of a linear transformation, linear functionals and annihilators, dual spaces.	10
3.	Canonical Forms: Eigenvalues and eigenvectors, the characteristic polynomial, annihilating polynomials, the minimal polynomial, algebraic and geometric multiplicities, Cayley-Hamilton theorem, triangularization, diagonalization, invariant subspaces, invariant direct sums, primary decomposition theorem, Jordan canonical form.	12
4.	Inner Product Spaces: Definition of inner product, orthogonality, Gram-Schmidt orthonormalization process, orthogonal projections, positive definite, adjoint, self-adjoint, unitary and normal operators, spectral theorem for self-adjoint and normal operators on finite-dimensional vector spaces. Bilinearforms, symmetric and skew symmetric bilinear forms, real quadratic forms, Sylvester's law of inertia.	12
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	K. Hoffman and R. Kunze, Linear Algebra, 2nd Edition, Prentice Hall of India	2015
2	S Aylar Linear Algebra Done Dight 3rd edition Undergraduate	2015
Ζ.	Texts in Mathematics. Springer.	2015
3.	P. Halmos, Finite Dimensional Vector Spaces, Springer.	1974
4.	S. Lang, Linear Algebra, Undergraduate Texts in Mathematics.	2004
	Springer-Verlag, New York.	
5.	L. Mirsky, An Introduction to Linear Algebra. Reissue edition. Dover Publications, Inc., New York.	2003

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- 1. Subject Code: MA-406 Course Title: Technical Communication
- **2. Contact Hours:** L: 2 T: 0 P: 0
- 3. Examination Duration (Hrs): Seminar mode
- **4. Relative Weightage: CWS:** 100 **PRS:** 0 **MTE:** 0 **ETE:** 0 **PRE:** 0
- 5. Credits: 26. Semester: Spring7. Subject Area: PCC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce the basics of Communication techniques in mathematics.

10. Detail of Course:

S.No.	Contents	Contact
1.	Technical terms: Basic writing procedure in Mathematics, Difference between Lemma, Proposition, Theorem and Corollary. Various procedures of writing proof. Writing methods in Research Article, thesis, monograph and Book chapters.	<u>4</u>
2.	Documentation: Advantage of Latex Documentation system over WYSIWYG programs, Numbering, citation, references and Bibliography. Graphical illustration in Latex, pgf, tikz pictures and eps figures.	6
3.	Presentation and Seminar: Beamer presentation, Animation, Keynote and Microsoft power point presentation, hyperlink with external programs and mathematical software.	5
4.	Software: Exhibiting results using Mathematical software, Outline of Mathematica, Matlab and Maple Software. Numerical techniques, Graphical illustration, 3D plot, Contour Plot and Parametric plots.	7
5.	Data simulation: Statistical and Numerical data formulation and expression, Statistical observation through spreadsheets, Database management software, Software tools for Optimization technique.	6
	Total	28

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Franco Vivaldi, Mathematical Writing, Springer	2014
2.	L. Lamport, A Document Preparation System (2 nd Edition), Pearson	1994
	Education.	
3.	C. Gilderdale, Alison Kiddle, Ems Lord, Beckey Warren, Fran Watson,	2017
	Approaches to learning and teaching Mathematics, Cambridge University	
	Press, London	
4.	M. Abell and J. Braselton, MATHEMATICA by Example (Sixth	2021
	Edition), Elsevier.	
5.	D. Etter, Introduction to MATLAB (Third Edition), Pearson.	2020
6.	Andy Field, Discovering statistics using R, SAGE publications	2000

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

1.	Subject Code: MA-407Course Title: Probability and Statist			l Statistics		
2.	Contact Hours:	L: 3	T: 1	P:	0	
3.	Examination Duration	n (Hrs.): Th	eory: 3	Practica	al: 0	
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Semeste	er: Autumn		7. Subject Area	: PCC

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the basic concepts of probability and statistics.

S.No.	Contents	
		Hours
1.	Random variables: Distribution functions, probability mass function and	4
	probability density function, moments and moment generating functions.	
2.	Special distributions: Binomial, Poisson, negative binomial, geometric,	6
	hypergeometric, uniform, exponential, gamma, beta, Weibull, normal,	
	lognormal.	
3.	Bivariate random variables: Joint, marginal and conditional distributions,	7
	statistical independence, product moments, correlation, regression, functions of	
	random variables and their probability distributions.	
4.	Convergence of random variables: Modes of convergence, Chebyshev's	3
	inequality, law of large numbers, central limit theorem	
5.	Random sampling: Random sampling with replacement and without	4
	replacement, sampling distribution of samples from normal population: normal,	
	t, χ^2, F distributions.	
6.	Theory of estimation: Basic concepts of estimation, point estimation, method	9
	of moments, method of maximum likelihood, unbiasedness, consistency,	
	efficiency, minimum variance estimation, interval estimation.	
7.	Testing of hypothesis: Null and alternative hypothesis, type I and II errors,	9
	powerfunction, Neyman Pearson lemma, uniformly most powerful tests, tests	
	for one sample and two sample problems for normal populations, tests for	
	proportions.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1	Hogg, R. V., McKean, J. and Craig, A., Introduction to Mathematical	2019
	Statistics, Pearson Education, 8 th Ed.	
2.	Miller, I. and Miller, M., John E. Freund's Mathematical Statistics with	2013
	Applications, Prentice Hall, 8 th Ed.	
3.	Rohatgi, V. K. and Md. Ehsanes Saleh, A. K., An Introduction to	2000
	Probability and Statistics, John Wiley and Sons, 2 nd Ed.	
4.	Casella, G., Berger, R. L., Statistical Inference, Duxbury Press, 2 nd Ed.	2002
5.	Lehmann, E.L. and Romano J.P., Testing Statistical Hypotheses,	2010
	Springer, 3 rd Ed.	
6.	Papoulis, A. and Pillai, S.U., Probability, Random Variables and	2021
	Stochastic Processes, Tata McGraw-Hill, 4 th Ed.	

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- 1. Subject Code: MA-408 **Course Title**: Theory of Partial Differential Equations 2. Contact Hours: **L:** 3 **T:** 1 **P:** 0 3. Examination Duration (Hrs.): **Theory:** 3 **Practical:** 0 4. Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE: 20-30 ETE:** 40-50 **PRE:** 0 6. Semester: Spring 5. Credits: 4 7. Subject Area: PCC
- 8. **Pre-requisite:** Basic concepts of ordinary and partial differential equations.
- 9. Objective: To introduce theoretical concepts of partial differential equations.

S.No.	Contents	
		Hours
1.	Introduction: Surfaces and curves, simultaneous differential equations of the first	5
	order and first degree, integral curves of vector fields, methods of solution of dx/P=	
	dy/Q = dz/R, orthogonal trajectories of a system of curves on a surface, Pfaffian	
	differential forms and equations, solution of Pfaffian differential equations in three	
	variables.	
2.	First order PDE: Classification, initial value problem for quasi-linear first order	7
	equations: existence and uniqueness of solution, nonexistence and non-uniquenessof	
	solutions, orthogonal surfaces, nonlinear PDEs of first order, Cauchy's method of	
	characteristics, compatible systems of first order equations, Charpit's method,	
	derivation of one complete integral from another, Jacobi's method.	
3.	Second order PDE: Equations with variable coefficients, classification and	5
	canonical forms of second order equations, characteristic curves of second order	
	equations in two variables, importance of characteristic curves.	
4.	Laplace and Poisson equations: Laplace equation in Cartesian, polar, spherical	9
	and cylindrical coordinates and its solution by Fourier series method, Poisson	
	equation in 2D, Green's function, eigenfunction method for finding Green's	
	function, method of images.	
5.	Wave equation: One and two dimensional wave equations, solution by method	9
	of characteristics, Fourier series and Fourier transform methods, existence and	
	uniqueness results.	
6.	Diffusion equation: Solution of homogeneous and non-homogeneous diffusion	7
	equation (1D), Duhamel's principle, Fourier series and Fourier transform methods,	
	existence and uniqueness results.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	Zachmanoglou, E.C. and Thoe, D.W., "Introduction to Partial Differential Equations with Applications", Dover Publications.	1986
2.	Sneddon, I.N., "Elements of Partial Differential Equations", Dover Publications.	2006
3.	Rao, K.S., "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd., 2 nd Ed	2012
4.	Evans, L.C., "Partial Differential Equations", American Mathematical Society, 2 nd Ed.	2014
5.	Debnath, L. and Myint-U, T., "Linear Partial Differential Equations and Scientists and Engineers", Birkhauser, 3 rd Ed.	2007
6.	McOwen, R.C., "Partial Differential Equations", Pearson Education Inc. 2 nd Ed.	2003
7.	John, F. "Partial Differential Equations", Springer, 4th Ed.	1991

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

1.	Subject Code: MA-409				Course Title:	Real Analysis
2.	Contact Hours:	L: 3	T: 1	Р:	0	
3.	Examination Duration	(Hrs.):	Theory: 3	Practica	d: 0	
4.	Relative Weightage:	CWS: 20-3	5 PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Sem	ester: Autumn	7. 5	Subject Area:	PCC

- 8. Pre-requisite: Basic knowledge of elementary real analysis
- **9. Objective:** To introduce some advanced topics in theory of real functions of several variables and metric spaces.

S.No.	Contents		
		Hours	
1.	Definition and existence of Riemann-Stieltjes integral, Properties of integrals,	10	
	Integration and differentiation, Fundamental theorem of calculus, first and		
	second mean value theorems, Integration of vector-valued functions.		
2.	Linear transformations, Derivatives in several variable calculus, Partial and	12	
	directional derivatives, Chain rule, Double derivatives and Clairaut's theorem,		
	The inverse function theorem, The implicit function theorem, Integration on n -		
	dimensional Euclidean space, Stokes' Theorem.		
3.	Metric spaces, Convergence of sequences, Open and closed subsets, Continuity,	12	
	Cauchy sequences, completeness, Compactness, Iteration and the Contraction		
	Mapping Theorem.		
4.	Length of open sets and closed sets, Inner and outer measure, Measurable sets,	8	
	Properties of measurable sets, Measurable functions.		
	Total	42	

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	Rudin. W., Principles of Mathematical Analysis, 3 rd Ed. McGraw Hill Education.	2017
2.	Goldberg, R. R., Methods of Real Analysis, Oxford and IBH Publishing Company Pvt. Ltd.	2020
3.	Royden. H. L. and Fitzpatrick. P.M., Real Analysis, 4th Ed. Pearson.	2022
4.	Apostol, T. M., Mathematical Analysis, 2 nd Ed. Narosa Publishing House.	2002
5.	Lang. S., Real and Functional Analysis, Springer-Verlag.	1993
6.	D. J. H, Garling, "A Course in Mathematical Analysis" Volume 2.	2014
7.	Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, JohnWiley & Sons, Inc.	2010

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- 1.Subject Code: MA-410Course Title: Topology2.Contact Hours:L: 3T: 1P: 03.Examination Duration (Hrs.):Theory: 3Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 4 6. Semester: Spring
- 8. **Pre-requisite:** Basic knowledge of real analysis.
- 9. Objective: To introduce the elementary properties of topological spaces and structures defined on them.

7. Subject Area: PCC

S.No.	Contents	Contact
		Hours
1	Review of set theory: Finite, countable and uncountable sets, functions,	4
	relations, axiom of choice, Zorn's lemma.	
2	Topological spaces and continuous functions: Open sets, closed sets, basis for	14
	a topology, sub basis, Hausdorff spaces, order topology, product topology,	
	subspace topology, limit points, continuous functions, general product topology,	
	metric spaces and their topology, quotient topology, gluing, and identification	
	spaces.	
3	Connectedness and compactness: Connected spaces, connected subspaces,	12
	path connected spaces, locally connected spaces, connected components,	
	compact spaces, limit point compactness, local compactness, one-point	
	compactification.	
4	Countability and separation axiom: Countability axioms, separation	12
	axioms, regular and normal spaces, Urysohn's lemma, Urysohn metrization	
	theorem, Tietze extension theorem, Tychonoff theorem.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Munkres, J.R., "Topology", 2 nd edition, Prentice-Hall India.	2010
2.	Janich, K., "Topology", 8th edition, Springer-Verlag, UTM series.	2005
3.	Simmons, G.F., "Introduction to Topology & Modern Analysis",	2003
	Krieger Publishing Company.	
4.	Armstrong, M. A., "Basic Topology", Springer-Verlag, UTM series.	1983
5.	Gamelin, T.W. and Greene, R.E., "Introduction to Topology", 2 nd Ed.,	1999
	Dover Publications.	
6.	Min, Y., "Introduction to Topology: Theory & Applications",	2010
	Higher Education Press.	

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- Subject Code: MA-411
 Course Title: Theory of Ordinary Differential Equations

 Contact Hours:
 L: 3
 T: 1
 P: 0

 Examination Duration (Hrs.):
 Theory: 3
 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Autumn7. Subject Area: PCC
- 8. **Pre-requisite:** Basic concepts of ordinary differential equations.
- 9. Objective: To introduce the theoretical concepts of ordinary differential equations.

S.No.	Contents	Contact
		Hours
1.	Existence, uniqueness and continuation of solutions of first order differential	9
	equations and system of differential equations, differential and integral	
	inequalities, fixed point methods.	
2.	Linear systems, properties of homogeneous and non-homogeneous systems,	7
	behaviour of solutions of n th order linear homogeneous equations.	
3.	Review of power series, Power series solution of second order homogeneous	6
	equations, ordinary points, regular singular points, Legendre's and Bessel's	
	equations, solution of Gauss hypergeometric equations, oscillation theory, Sturm's	
	separation and comparison theorems.	
4.	Boundary value problems for second order differential equations, Green's	8
	function and its applications, eigenvalue problems, self-adjoint form, Sturm-	
	Liouville problem and its applications.	
5.	Autonomous systems, phase plane and its phenomena, critical points and stability	12
	for linear and non-linear systems, Lyapunov's direct method, periodic	
	solutions, limit cycle, the Poincare-Bendixson theorem.	
Total		

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Braun, M. "Differential Equations and Their Applications", 4th Ed.,	2011
	Springer.	
2.	Brauer, F. and Nohel, J.A., "The Qualitative Theory of Ordinary	1989
	Differential Equations", Dover Publications.	
3.	Coddington, E. A. and Levinson, N., "Theory of Ordinary Differential	2017
	Equations", McGraw Hill Education.	
4.	Deo, S.G., Lakshmikantham, V., and Raghvendra, V., "Text Book of	2010
	Ordinary Differential Equations", 2 nd Ed., Tata McGraw Hill.	
5.	Simmons, G.F., "Ordinary Differential Equations with Applications and	2017
	HistoricalNotes", 3 rd Ed., CRC Press.	
6.	Agarwal, R.P. and O'Regan, D., "An Introduction to Ordinary	2008
	Differential Equations", Springer-Verlag.	
7.	Ahmad, S. and Rao, M.R.M., "Theory of Ordinary Differential	2014
	Equations", Affiliated East-West Press Private Limited.	

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- Subject Code: MA-501 **Course Title:** Numerical Analysis 1. 2. **Contact Hours: L:** 3 **T:** 1 **P:** 0 **3.** Examination Duration (Hrs.): **Theory:** 3 **Practical:** 0 Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0 4. 5. Credits: 4 6. Semester: Autumn 7. Subject Area: PCC
- 8. Pre-requisite: Basic course in numerical methods
- 9. Objective: To discuss the numerical methods and their analysis for solving differential equations.

S.No.	Contents	Contact
		Hours
1.	Computation of Eigenvalues of a Matrix: Method of inflation, Jacobi, Givens	5
	and Householder methods for symmetric matrices, LR and QR methods.	
2.	Initial Value Problems: Multistep methods, Error and stability analysis.	6
3	Stiff Problems and Boundary Value Problems: Stability of numerical methods	8
	for stiff systems, Backward differentiation methods for stiff systems, Gear's	
	method, Boundary value problems, Shooting methods, Matrix methods for linear	
	and non-linear boundary values problems, Collocation method.	
4.	Finite Differences: Review of finite difference operators, finite difference	2
	methods, inverse interpolation- developments and applications.	
5.	Elliptic PDE: Error analysis of the Poisson problem, The general diffusion	7
	equation, Boundary conditions on a curved boundary, Error analysis using a	
	maximum principle, Asymptotic error estimates.	
6.	Parabolic PDE: Concept of compatibility, convergence and stability, explicit, full	7
	implicit, Crank-Nicholson, du-Fort and Frankel scheme, ADI methods to solve	
	two-dimensional equations with error analysis.	
7.	Hyperbolic PDE: Characteristics, The CFL condition, Error analysis of the	7
	upwind scheme, Fourier analysis of the upwind scheme, The Lax-Wendroff	
	scheme, The box scheme, The leap-frog scheme.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1	Smith, G. D., Numerical Solution of Partial Differential Equations,	2001
	Oxford University Press.	
2	Gerald, C. F. and Wheatly P. O., Applied Numerical Analysis, 6 th Ed.,	2002
	Addison-Wesley Publishing.	
3	Froberg, C. E., Introduction to Numerical Analysis, 2nd Ed., Addison-	2004
	Wesley.	
4	Fausett, L. V., Applied Numerical Analysis, Prentice Hall, 2 nd Ed.	2007
5	Morton K. W. and Mayers D. F. Numerical Solution of Partial	2012
	Differential Equations, 2 nd Ed., Cambridge University Press.	
6	Iserles A. A first course in the numerical analysis of differential	2012
	equations, 2 nd Ed, Cambridge University Press.	

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

- **1.** Subject Code: MA-503Course Title: Operations Research
- **2.** Contact Hours: L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Autumn7. Subject Area: PCC
- 8. Pre-requisite: Nil
- 9. Objective: To acquaint the students with the basics of operations research.

10. Details of the Course:

S.No.	Contents	
		Hours
1.	Basics of LPP: Different Types of OR Models, Convex Sets, Graphical Method,	
	Simplex Method, Big – M Method, Two Phase Method, Revised Simplex Method.	
2.	Duality Theory: Duality theory, Dual Simplex Method, Sensitivity Analysis,	7
	Parametric Linear Programming.	
3.	Integer Program: Cutting Plane and, Branch and Bound Techniques for all Integer	5
	and Mixed Integer Linear Programming Problems.	
4.	Transportation Problems: Balanced and unbalanced transportation problems-	5
	formulation, Dual problem, NWCM, LCEM and VAM, u-v method. Assignment	
	Problems; Formulation, Hungarian method.	
5.	Game Theory: Minimax (Maximin) criterion, Saddle point, Notion of dominance,	4
	Graphical and Linear Programming Methods for Rectangular Games.	
6.	Queuing Theory: Steady-state solutions of Markovian Queuing Models: M/M/1,	6
	M/M/1 with limited waiting space, M/M/C, M/M/C with limited space, M/G/1.	
7.	Inventory Models: Static, Dynamic and Probabilistic models.	5
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Ravindran, A., Phillips, D.T. and Solberg, J.J., Operations Research:	2012
	Principles and Practice, John Wiley and Sons, NY, Second Edition	
	(Reprint).	
2.	Taha, H.A., Operations Research: An Introduction, Pearson Education	2018
	Limited, NY, Tenth Edition.	
3.	Pant, J.C., Introduction to Optimization/ Operations Research, Jain	2015
	Brothers, New Delhi, Seventh Edition.	
4.	Bazaraa, M.S., Jarvis, J. J. and Sherali, H. D., Linear Programming and	2013
	Network Flows, John Wiley and Sons, Fourth Edition.	
5.	Sharma, J. K., Operations Research: Theory and Applications, Laxmi	2016
	Publications Pvt.Ltd., Sixth Edition.	