Department of Physics

1	MAN-001	Mathematics-I	BSC	4
2	PHN-001	Mechanics	BSC	4
3	CEN-105	Introduction to Environmental Studies	GSC	3
4	HSN-001A	Communication Skills (Basic)	HSSC	
5	HSN-001B	Communication Skills (Advanced)	HSSC	2
6	HSN-002	Ethics and Self Awareness	HSSC	2
7	PHN-101	Introduction to Physical Science	DCC	2
8	PHN-103	Computer Programming	ESC	4
9	MAN-004	Numerical Methods	BSC	4
10	CYN-004	General Chemistry-I	BSC	4
11	PHN-110	Introduction to Electronics	DCC	4
12	EEN-112	Electrical Science	ESC	4
13	MIN-106	Engineering Thermodynamics	ESC	4
14	MIN-108	Mechanical Engineering Drawing	ESC	4
15	CYN-201	Physical Chemistry-I	BSC	3
16	CYN-202	Basic Inorganic Chemistry	BSC	3
17	MAN-205*	Ordinary and Partial Differential Equation	BSC	4
18	PHN-201	Optics	DCC	5
19	PHN-203	Elements of Classical Mechanics	DCC*	4
20	CYN-203*	Organic Chemistry-I	BSC	4
21	MAN-102	Linear algebra	BSC	4
22	PHN-202	Electricity and Magnetism	DCC	5
23	PHN-212	Thermal Physics	DCC	5

24	PHN-301	Plasma Physics	DCC	3
25	PHN-303	Quantum Physics	DCC*	4
26	PHN-305	Properties of Matter and Acoustics	DCC	4
27	PHN-307	Atomic Physics	DCC*	4
28	PHN-309	Laboratory Work I	DCC	3
29	PHN-302	Laboratory Work II	DCC	3
30	PHN-304	Elements of Condensed Matter Physics	DCC*	4
31	PHN-306	Special Theory of Relativity	DCC	3
32	PHN-308	Nuclear Physics and its Applications	DCC*	4
33	PHN-501	Semiconductor Devices	DCC	3
34	PHN-503	Quantum Mechanics – I	DCC	4
35	PHN-505	Mathematical Physics	DCC	3
36	PHN-507	Classical Electrodynamics	DCC	4
37	PHN-509	Classical Mechanics	DCC	3
38	PHN-511	Computational Physics	DCC	3
39	PHN-502	Laboratory Work III	DCC	3
40	PHN-504	Condensed Matter Physics	DCC	3
41	PHN-506	Statistical Mechanics	DCC	3
42	PHN-508	Quantum Mechanics - II	DCC	3
43	PHN-510	Nuclear and Particle Physics	DCC	2
44	PHN-512	Physics of Earth's Atmosphere	DCC	2
45	PHN-514	Molecular Spectroscopy and Lasers	DCC	2

List of Minor Specialization courses of Physics for other Departments

1	PHN-203	Elements of Classical Mechanics	Autumn	DCC/MSC	4
2	PHN-303	Quantum Physics	Autumn	DCC/MSC	4
3	PHN-307	Atomic Physics	Autumn	DCC/MSC	4
4	PHN-304	Elements of Condensed Matter Physics	Spring	DCC/MSC	4
5	PHN-308	Nuclear Physics and its Applications	Spring	DCC/MSC	4

Group A

- PH-601 Advanced Condensed Matter Physics
- PH-603 Advanced Atmospheric Physics
- PH-605 Advanced Laser Physics
- PH-607 Advanced Nuclear Physics

Group B

- PH- 609 Experiments in Condensed Matter Physics
- PH- 611 Experiments in Atmospheric Physics
- PH- 613 Experiments in Laser Physics
- PH- 615 Experiments in Nuclear Physics

Group C

- PH- 617 Advanced Characterization Techniques
- PH- 619A Primer in Quantum Field Theory
- PH- 621 Astrophysics

- PH- 623General Relativity
- PH- 625 Particle Physics
- PH- 627Quantum Theory of Solids
- PH- 629 Weather Forecasting

Group D

- PH- 602 Nuclear Astrophysics
- PH- 604 Physics of Nanosystems
- PH- 606Superfluidity and Superconductivity
- PH-608 Fiber and Nonlinear Optics
- PH-610 Quantum Optics
- PH-612 Advanced Topics in Mathematical Physics

NAME OF DEPTT./ 1. Subject Code:	CENTRE: Dej CYP-001	L	e mistry e Title:	Physical	Chen	nistry		
2. Contact Hours:	L: 3		T: 0			P: 2		
3. Examination Dura	tion (Hrs.):	Theory 3		Practical	0			
4. Relative Weightag	ge: CWS 15	PRS 25	MTE	20 E	ТЕ	40	PRE	0
5. Credits: 4	(5. Semester: Aut	umn	7. 5	Subje	ct Are	a: BSC	

8. Pre-requisite: Nil

9. Objective: To provide a theoretical and experimental knowledge of fundamental physical chemistry to engineering students.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Quantum Chemistry: Postulates, commuting and non-commuting operators, Schrödinger equation, particle in a one-, two- and three dimensional box and their implications, H-atom - radial and angular wave functions, shapes of orbitals (s, p and d), application of quantum chemistry concepts to hydrogen-like atoms and their atomic spectra.	7
2.	Chemical Equilibria: Description of equilibrium, feasibility of chemical reaction, Gibbs- Helmholtz equation, phase transition - Clapeyron equation, Clapeyron-Clausius equation, free energy changes in reversible processes, chemical potential, partial molar quantities, activity coefficient and fugacity, basic concepts of statistical thermodynamics.	6
3	Reaction Dynamics: Collision theory of bimolecular reactions and its drawbacks, potential energy surfaces, transition state theory using partition functions, thermodynamic formulation of transition state theory, mapping of transition states using ultrafast processes.	6
4.	Photochemistry: Laws of photochemistry, photophysical and photochemical processes and their quantum efficiencies, spontaneous and stimulated processes. Franck-Condon principle, photosensitizers - photosynthesis and solar cells.	6
5.	Catalysis: Homogeneous catalysis – kinetics of acid, base and enzyme catalyzed reactions with suitable examples. Heterogeneous catalysis – surface phenomenon, porosity, derivation of Langmuir adsorption isotherm, Langmuir-Hinshelwood and Rideal-Eley mechanisms, comparison of rates of homogeneous and heterogeneous reactions based on activated complex theory.	6
6.	Spectroscopy: Interaction of electromagnetic radiation with matter, instrumental spectroscopic techniques (AAS, ICP, UV-Vis and IR spectroscopy), application of spectroscopy techniques to atomic and molecular systems.	6
7.	Solid-State Chemistry: Bonding in solids, diffraction methods – scattering of X-rays from a crystal, structure factor and systematic absences, methods of synthesis of solids–ceramic, solgel, hydrothermal, microwave and sonochemical.	5
	Total	42

List of Experiments:

- 1. Determination of iron in iron ore using potassium dichromate (internal indicator method).
- 2. Heat of neutralization of a strong base by a strong acid.
- 3. Determination of surface excess concentration of 1-butanol in aqueous solution.
- 4. To study the kinetic of a redox reaction.
- 5. Blue Printing using sunlight.
- 6. pH metry/ potentiometry titrations
 - a) Strong acid strong base; b) Strong acid weak base
 - c) Weak acid strong base; d) Redox titration: Fe^{2+} or Mn^{2+}
- 7. Acid-base titrations using conductivity meter.
- a) Strong acid strong base; b) Strong acid weak base; c) Weak acid strong base;
- 8. Spectrophotometry: Determination of [Fe (III)] by colorimetry.

9. Determination of hardness of water by EDTA- complexometry titration.
 10. Determination of the composition of mixtures of liquids using viscometry.

S. No.	Authors/ Title/ Publisher	Year of Publication/ Reprint
1.	Silbey R.J. and Alberty R.A., "Physical Chemistry", 3rd Ed., John Wiley & Sons, Inc.	2003
2.	Atkins P.W., Physical Chemistry, 8 th Ed., Oxford University Press.	2006
3.	West A.R., Solid State Chemistry and its Applications, Wiley-India Edition.	2003
4.	Levine, I. N., Quantum Chemistry, Pearson Education.	2000
5.	Turro N.J., Ramamurthy V. and Scaiano J.C., Modern Molecular Photochemistry of Organic Molecules, University Science Books.	2008
6.	Skoog D.A., Holler F.J. and Crouch SR, "Principles of Instrumental Analysis", 6 th Ed., Thomson Brooks.	2006

NAME OF DEPTT./CENTRE:	Department of (Chemistry	
1. Subject Code: CYP-002	Course Title: Organic an	d Inorganic Chemistry	
2. Contact Hours L: 3	T: 0	P: 2	
3. Examination Duration (Hrs):	Theory 3	Practical 0	
4. Relative Weightage : CWS 15	PRS 25 MTE 20	ETE 40	PRE 0
5. Credits: 4	6. Semester: Spring	7.Subject Area: BSC	

8. Pre-requisite: Nil

9. Objective: To impart basic knowledge of organic and inorganic chemistry.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Heteroatoms i n O rganic C hemistry: Introduction to heterocyclic chemistry, aromaticity, reactivity and synthesis of thiophene, pyridine, furan and pyrrole.	6
2.	Stereochemistry a nd R eaction Mechanisms: Stereochemistry of addition at carbon-carbon double bond, addition of bromine to cis-, and trans- butene, oxidation across the double bond through peroxides and permanganate, Diels Alder reaction [4+2] and [2+2] cycloaddition reactions. Aromatic nucleophilic substitution mechanisms (S _N Ar, S _N 1 and arynes), reactivity and reactions.	8
3.	Synthesis a nd Ch aracterization of some important compounds such as benzocaine, saccharin, salbutamol and thyroxine.Introduction to mass spectroscopy and NMR spectroscopy for structural prediction of organic compounds.	9
4.	Novel Polymers: Stereo chemical control of synthesis, molecular mass of polymers, polyurethanes, conducting polymers, doping, Shirakawa experiments, oxidation of aniline, biopolymers, and plastics.	5
5.	Coordination Chemistry: Comparison of the stability of octahedral and tetrahedral complexes on the basis of crystal field stabilization energy, factors affecting the magnitude of Δ , applications of crystal field theory, variation of hydrated ionic radii and hydration enthalpy/stability of complexes, Jahn-Teller effect– definition and examples from d ⁹ and high-spin d ⁴ systems, static and dynamic Jahn-Teller effects.	7
6.	Organometallic C hemistry: Factors affecting M-C bond formation, synthesis, reactions and structures including spectroscopic features of metal carbonyls, transition metal- π alkene complexes- synthesis, reactions, bonding and stability. Applications of organometallic compounds in catalytic processes such as hydroformylation, hydrogenation, catalytic decarbonylation, olefin metathesis and enantioselective hydrogenation of alkenes.	7
	Total	42

- List of Experiments: 1. Determination of sodium carbonate in baking/washing soda.
 - Determination of Zn by EDTA- complexometric titration.
 Solvent less synthesis- Wittig reaction.

- 4. Determination of the equivalent weight of an organic acid.
- 5. Identification of functional groups in an organic compound.
- 6. Characterization of an organic compound by UV-Vis and IR spectra.
- 7. Synthesis of a polymer.
- 8. Determination of λ_{max} and concentration of KMnO₄/K₂Cr₂O₇ spectrophotometrically.
- 9. Determination of ligand field strength of ligands.
- 10. Synthesis of potassium trisoxalatochromate(III).
- 11. Preparation of p-nitroacetanilide and determination of melting point, and matching with known sample.
- 12. Synthesis of an azo dye and its application in textiles.
- 13. Test of carbohydrate as osazone
- 14. Determination of calcium in chalk/toothpaste.
- 11. Suggested Books:

S.N	Name of Authors/ Books/ publisher	Year of Publication/ Reprint
1	Morrison R. T. and Boyd R.N., "Organic Chemistry", 6 th Ed., Prentice Hall of India.	2001
2	Clayden, J., Greeves, N., Warren, S., and Wothers, P., "Organic Chemistry" Oxford University Press.	2009
3	Lee, J.D., "Concise Inorganic Chemistry", 5 th Ed., Chapman & Hall.	2010
4	Huheey, J.E., Keiter, E.A., Keiter, R.L. and Medhi, O.K. "Inorganic Chemistry: Principles of Structure and Reactivity", 4 th Ed., Pearson Education.	2009
5	March, J, Organic Chemistry: Reaction Mechanism and Structures, 6 th Ed, John Wiley & Sons.	2007

NAME OF DEPTT./CENTRE: Department of Chemistry

1. Subject Co	ode: C	YP-004		Cou	irse Ti	tle:	Gener	ral Chen	nistry-I	
2. Contact He	ours:	L: 3			T:	0			P:	2
3. Examination	on Duration	(Hrs.):		Theory	3		Pr	actical	0	
4. Relative W	/eightage:	CWS	15	PRS 25	Μ	ТЕ	20	ETH	E 40	PRE
5. Credits:	4	6. Se	emeste	er: Spring			7. S	ubject Aı	rea: BSC	

8. Pre-requisite: Nil

9. Objective: To provide a theoretical and experimental knowledge of basic/fundamental chemistry.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Quantum Mechanics: Introduction to quantum chemistry, particle in a box $-$ implication of i concepts, H atom, radial and angular wave functions, and shapes of orbital (<i>s</i> , <i>p</i>).	4
2.	Thermodynamics: Statistical concept of entropy, description of equilibrium, feasibility of chemical reactions, Clausius-Clapeyron equation, partial molar quantitieshemical potential.	4
3.	Kinetics and Catalysis: Theories of chemical reactions – Draw-backs of collision theory, transition state theory using partition functions, thermodynamic formulation of transition state theory, homogeneous catalysis.	4
4.	Corrosion and Fuel cells: Electrochemical corrosion and fuel cells.	2
5.	Stereoisomerism: Stereochemistry of addition at carbon-carbon double bond, addition of bromine to cis-, and trans- butene, oxidation across the double bond through peroxides and permanganate, Diels Alder reaction [4+2] and [2+2] cycloaddition reactions.	5
6.	Synthesis of some important compounds such as benzocaine, saccharin, salbutamol and thyroxine. Introduction to spectroscopic techniques for structural prediction of organic compounds.	7
7.	Novel P olymers: Stereo chemical control of synthesis, Ziegler-Natta catalyst, polyurethanes, conducting polymers.	2
8.	Coordination C hemistry: Comparison of the stability of octahedral and tetrahedral complexes on the basis of crystal field stabilization energy, factors affecting the magnitude of Δ , applications of crystal field theory, variation of hydrated ionic radii and hydration enthalpy/stability of complexes, Jahn-Teller effect– definition and examples from d ⁹ system, static and dynamic Jahn-Teller effects.	5
9.	Organometallic C hemistry: Factors affecting M-C bond formation, transition metal- π alkene complexes synthesis, reactions, bonding and stability. Applications of organometallic compounds in catalytic processes such as hydroformylation, hydrogenation, catalytic decarbonylation, olefin metathesis and enantioselective hydrogenation of alkenes.	6
10.	Spectroscopic Techniques: Interaction of electromagnetic radiation with matter, spectroscopic techniques viz., UV-Vis and IR, and their applications for characterization of simple compounds.	3
	Total	42

List of Experiments:

- Determination of sodium carbonate in baking/washing soda.
 Determination of Zn by EDTA- complexometric titration.
- 3. Solvent free synthesis -Wittig olefination of aldehyde or ketone by grinding.

- 4. Determination of viscosity of a polymer in a solution /or in a mixture of liquid.
- 5. Determination of surface excess concentration of 1-butanol in aqueous solution.
- 6. Kinetics of a reaction between hydrogen peroxide and iodine in acidic medium.
- 7. Photochemical reduction of ferric oxalate in cyanotype blue printing.
- 8. Spectrophotometric determination of [Fe (III)] by using KSCN.
- 9. Identification of functional groups in an organic compound.
- 10. Characterization of an organic/inorganic compound by UV-Vis and IR spectra.
- 11. Spectrophotometric determination of λ_{max} and concentration of $KMnO_4/K_2Cr_2O_7$.
- 12. pH metry/ potentiometry titration: strong acid strong base.
- 13. Preparation of potash alum from scrap aluminium.
- $14. \, Synthesis \ of \ potassium \ trisoxalatochromate (III).$
- 15. Synthesis of a polymer.

S. No.	Authors/ Title/ Publisher	Year of Publication/ Reprint
1.	Lee, J.D., "Concise Inorganic Chemistry", 5 th Ed., Chapman & Hall.	2002
2.	Huheey, J.E., Keiter, E.A., Keiter, R.L. and Medhi, O.K. "Inorganic Chemistry: Principles of Structure and Reactivity", 4 th Ed., Pearson Education Asia.	2009
3.	Morrison, R.T., Boyd, R.N. and Bhattacharjee, S.K., "Organic Chemistry", 7 th Ed., Pearson Education in South Asia.	2013
4.	Silbey, R.J. and Alberty, R.A., "Physical Chemistry", 3 rd Ed, John Wiley & Sons, Inc.	2003
5.	Atkins, P.W., Physical Chemistry, 8th Ed., Oxford University Press.	2006
6.	March, J., "Organic Chemistry: Reactions, Mechanisms and Structures", 6 th Ed., John Wiley & Sons.	2007

NAME OF DEPTT./CENTRE: Department of Chemistry

1. Subject Code	: CYP-006	(Course Title:	General (Chemistry-	Π	
2. Contact Hour	s: L: 3		T: 0		P: 2		
3. Examination	Duration (Hrs.):	Theory	3	Practical	0		
4. Relative Weig	ghtage: CWS 1	5 PRS	25 MTE	20 E	TE 40	PRE	0
5. Credits: 4		6. Semester	: Spring	7.5	Subject Area	a: BSC	

8. Pre-requisite: Nil

9. Objective: To impart knowledge of general chemistry.

10. Details of Course:

S. No.		Contact
1.	Molecular Reaction Dynamics: Collision theory of bimolecular reactions and its drawbacks, transition state theory and its thermodynamic formulation, comparison of collision theory and transition state theory.	Hours 4
2.	Catalysis: Homogeneous catalysis – kinetics of acid and base catalyzed reactions with suitable examples, heterogeneous catalysis – surface phenomenon, porosity, derivation of Langmuir adsorption isotherm, Langmuir-Hinshelwood mechanism.	5
3.	Photochemistry: Laws of photochemistry, photophysical and photochemical processes and their quantum efficiencies, Franck-Condon principle, photosensitizers and their application to solar cells.	5
4.	Polymerization: Synthesis of polymers, properties of polymersdegree of polymerization, molecular mass of polymers, tacticity and glass transition temperature. High temperature and conductive polymers, methods of modifying polymers, biopolymers.	6
5.	Energy R esources: Coal – calorific value, analysis, carbonization, petroleum – fractional distillation, gasoline/petrol – classification, knocking, octane number, natural gas.	3
6.	Organometallic Chemistry : Factors affecting M–C bond formation, general methods of formation of organometallic compounds, reactions of organometallic compounds, comparison of main group and transition metal organometallics, bonding in transition metal- π alkene complexes. Applications of organometallic compounds in catalytic processes such as hydroformylation, hydrogenation, Ziegler-Natta catalysis, catalytic decarbonylation and olefin metathesis.	6
7.	Volumetric a nd G ravimetric D etermination o f M etals a nd N on-metals: Redox titration- iodometric titration, acid-base titration, complexometric titrations, co- and post-precipitation, schematic description of methods for determination of Fe, Cu, Al, Zn, Ni, Pb, Sn, P and S.	5
8.	Spectroscopic T echniques : Interaction of electromagnetic radiation with matter, spectroscopic techniques viz., AAS, ICP, UV-Vis, IR and Mass spectroscopy, and their application to atomic and molecular systems.	8
	Total	42

List of Experiments:

- 1. Determination of sodium carbonate in baking/washing soda.
- 2. Determination of Zn by EDTA- complexometric titration.
- 3. Determination of nitrogen as ammonia in a sample.
- 4. Determination of viscosity of a polymer in a solution /or in a mixture of liquid.
- 5. Determination of surface excess concentration of 1-butanol in aqueous solution.
- 6. Kinetics of a reaction between hydrogen peroxide and iodine in acidic medium.
- 7. Photochemical reduction of ferric oxalate in cyanotype blue printing.
- 8. Spectrophotometric determination of [Fe (III)] by using KSCN.
- 9. Synthesis of a polymer.
- 10. Characterization of an organic/inorganic compound by UV-Vis and IR spectra.

11. Spectrophotometric determination of λ_{max} and concentration of $KMnO_4/K_2Cr_2O_7$.

12. pH metry/ potentiometry titration: strong acid - strong base.

- 13. Preparation of potash alum from scrap aluminium. 14. Synthesis of potassium trisoxalatochromate(III).
- 15. Determination of Cu by iodometric titration.

S. No.	Authors/ Title/ Publisher	Year of Publication/ Reprint
1.	Atkins, P.W., "Physical Chemistry", 8th Ed., Oxford University Press.	2006
2.	Turro, N.J., Ramamurthy, V. and Scaiano, J.C., "Modern Molecular Photochemistry of Organic Molecules", University Science Books.	2008
3.	Skoog, D.A., Holler, F.J. and Crouch, S.R., "Principles of Instrumental Analysis", 6 th Ed., Thomson Brooks.	2006
4.	Huheey, J.E., Keiter, E.A., Keiter, R.L. and Medhi, O.K. "Inorganic Chemistry: Principles of Structure and Reactivity", 4 th Ed., Pearson Education Asia.	2009
5.	Christian, G.D., "Analytical Chemistry", 6th Ed., John Wiley & Sons Inc.	2004
6.	Morrison, R.T., Boyd, R.N. and Bhattacharjee, S.K., "Organic Chemistry", 7 th Ed., Pearson Education in South Asia.	2013
7.	Mallick, A., "Engineering Chemistry", Viva Books Pvt. Ltd.	2009

NAME OF DEPTT./CENTRE: Department of Chemistry

1. Subject Code:	CYP-008	Course	Title: General	Chemistry-III		
2. Contact Hours:	L: 3		T: 0	P: 2		
3. Examination Dur	ation (Hrs.):	Theory 3	Pra	ctical 0		
4. Relative Weighta	ge: CWS 15	PRS 25	MTE 20	ETE 40	PRE	0
5. Credits: 4		6. Semester: Spri	ing	7. Subject Are	ea: BSC	

8. Pre-requisite: Nil

9. Objective: To impart basic knowledge of chemistry.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Thermodynamics: Statistical concept of entropy, description of equilibrium and feasibility of chemical reactions, Clausius-Clapeyron equation, partial molar quantities-chemical potential, ionic activity coefficients.	4
2.	Kinetics: Theories of chemical reactions – Draw-backs of collision theory, transition state theory using partition functions and its thermodynamic formulation, consecutive and parallel reactions.	4
3.	Photochemistry : Basics of photochemistry, photochemical reactions in aqueous medium and environment, free radicals as reactive intermediates, their methods of preparation and use in synthesis, CFCs and alternatives to CFCs.	4
4.	Chemistry o f N atural Water: Speciation of acids and bases, pC-pH diagrams and their applications, redox potentials – their uses in chemical speciations, acid-base and redox chemistry of compounds of sulphur, nitrogen and phosphorus including their environmental implications. Heavy metals (Pb, Hg and As) and their speciation causing toxicity.	7
5.	Corrosion: Corrosion processes in metals – electrochemical aspects, prevention strategies for corrosion.	2
6.	Cement C hemistry: Cement– its constituents and their structures, classification of cement, hydration process and importance of the products of hydration, chemistry of pozzolanic reactions. Analysis of Portland cement with reference to insoluble residue, total silica, sesquioxides, iron, lime and manganese. Role of calcium hydroxide in cement.	7
7.	Soil Chemistry: Chemical composition of soils, types of clay minerals, soil colloids, diffused double layers, sorption processes, cation and base exchange phenomenon in soils, isomorphous substitution.	5
8.	Petroleum Chemistry: Overview of petroleum processing – fractional distillation, gasoline/petrol – classification, knocking, octane number.	3
9.	Spectral T echniques : Introduction of spectroscopic techniques viz., UV-Vis, IR, and Mass spectroscopy for structural prediction of organic compounds.	6
	Total	42

List of Experiments:

- 1. Determination of sodium carbonate in baking/washing soda.
- 2. Determination of Zn by EDTA- complexometric titration.
- **3.** Determination of nitrogen as ammonia in a sample.
- 4. Determination of viscosity of a polymer in a solution /or in a mixture of liquid.
- 5. Determination of surface excess concentration of 1-butanol in aqueous solution.
- 6. Kinetics of a reaction between hydrogen peroxide and iodine in acidic medium.
- 7. Photochemical reduction of ferric oxalate in cyanotype blue printing.
- 8. Spectrophotometric determination of [Fe (III)] by using KSCN.
- 9. Identification of functional groups in an organic compound.
- 10. Characterization of an organic/inorganic compound by UV-Vis and IR spectra.

11. Sectrophotometric determination of λ_{max} and concentration of KMnO₄/K₂Cr₂O₇. 12. pH metry/ potentiometry titration: strong acid – strong base. 13. Preparation of potash alum from scrap aluminium. 14. Synthesis of potassium trisoxalatochromate(III).

S. No.	Authors / Title/ Publisher	Year of Publication/ Reprint
1.	Atkins, P.W., "Physical Chemistry", 8 th Ed., Oxford University Press.	2006
2.	Turro, N.J., Ramamurthy, V. and Scaiano, J.C., "Modern Molecular Photochemistry of Organic Molecules", University Science Books.	2008
3.	Manahan, S.E., "Environmental Chemistry", 8 th Edition, CRC Press.	2005
4.	Masters, G.M. and Ela, W.P., "Introduction to Environmental Engineering and Science", 3 rd Ed. Pearson Education.	2008
5.	Taylor, H.F.W., Cement Chemistry, 2 nd Ed. (reprinted), Thomas Telford Services Ltd., London.	2004
6.	Morrison, R.T., Boyd, R.N. and Bhattacharjee, S.K., "Organic Chemistry", 7 th Ed., Pearson Education in South Asia.	2013
7.	Huheey, J.E., Keiter, E.A., Keiter, R.L. and Medhi, O.K. "Inorganic Chemistry: Principles of Structure and Reactivity", 4 th Ed., Pearson Education Asia.	2009
8.	Sposito, G., "Chemistry of Soils", 2 nd Ed., Oxford University Press.	2008

NAME OF DEPTT./CENTRE: Department of Chemistry

1.	Subject: CYP-201M		Cours	e Title:	Physical Che	emistry -1
2.	Contact Hours:	L: 2	T: 1	P: 0		
3.	Examination Duration	n (Hrs):	Theory	02	Practical 0	0
4.	Relative weightage:	CWS	25	PRS	- MTE 25	ETE 50
5.	Credits: 03	6. Semester	:: Au	ıtumn	7. Subject Area:	BSC
8.	Pre-requisite:	CY-101				

9. Objective of Course: To make students familiar with the essentials of Physical Chemistry and to build

foundation for learning advanced topics in the area.

10. Details of Course:

S.No	Particulars	Contact
		Hours
1.	Colloidal s tate: Introduction, coagulation, kinetics of coagulation, sensitization, protection, stability of sols, electrophoresis, electroosmosis, origin of charge, determination of charge and zeta potential, emulsions, gels, Liesegang ring phenomenon, sol-gel transformation, thixotropy.	5
2.	Chemical k inetics: Introduction to its concepts, differential and integrated rate expressions for various reactions, methods for studying the kinetics of reactions, theories of reaction rates, complex reactions.	7
3.	Phase r ule: Concepts and derivation of phase rule, phase diagrams of 1,2 and 3 component systems, Lever rule.	7
4.	Electrochemistry: Introduction, anomaly of strong electrolytes, interionic attraction theory, Debye – Hückel – Onsager equation, Wein effect, Debye – Falkenhagen effect, types of electrodes, galvanic cells, liquid junction potential, concentration cells with and without transference, polarization, decomposition voltage, over voltage.	9
	Total	28

S.No.	Authors/ Title/ Publisher	Year of
		Publication/
		Reprint
1.	Levine I.N, "Physical Chemistry", 5 th Ed., Tata McGraw-Hill Publishing	2001
	Company, Ltd., New Delhi.	
2.	Silbey R.J. and Alberty, R.A., "Physical Chemistry", 3 rd Ed., John Wiley and	2003
	Sons, Inc.	
3.	Atkins P.W., "Physical Chemistry" 6 th Ed., Oxford University Press.	1998

NAME OF DEPTT./CENTRE: Department of Chemistry

- 1. Subject: CYP-211M Course Title: Basic Inorganic Chemistry
- 2. Contact Hours: L: 02 T: 01 P: 0
- 3. Examination Duration (Hrs) Theory **02** Practical **00**
- 4. Relative weightage: CWS 25 PRS MTE 25 ETE 50
- 5. Credits: 03 6. Semester: Autumn 7. Subject Area: BSC
- 8. Pre-requisite: CYP-101
- 9. Objective of Course: To impart knowledge of structure, bonding and reactivity of compounds of s, p, d and f-block elements.

10. Details of Course:

S.No.	Particulars	Contact Hours
1.	Periodic trends and its relation to chemical bonding and reactivity.	2
2.	Introduction to molecules a nd their ch emical bonding: Simple molecules, macromolecules and supramolecules. Ionic bonding: energetics of ionic bond, and lattice energy. Covalent bonding: energetics of covalent bond in hydrogen molecule –valence bond theory, VSEPR concept and hybridization (involving s, p, d orbitals) and shapes of molecules of higher (5, 6 and 7) co-ordination numbers, elementary ideas of molecular symmetry; Molecular orbital theory of both homo- and hetero-nuclear diatomic molecules, resonance and delocalized molecular orbitals; H-bonding, inter- and intramolecular and their effects; Weak intermolecular forces. Metallic bonding: band model, soft X-ray spectra and N(E) curves, binding energy in metals, conductors, semiconductors and insulators, effect of temperature and impurity on conductivity.	8
3.	Representative ch emistry of m ain g roup el ements: solvated electron in alkali metals, multicentre bonds; structures, bonding and applications– boron halides, diborane, tetraborane, borazines, boronitrides, crown ethers, carbides, fullerenes, fluorocarbons, silicon halides, silicates, siloxanes, silicon polymers, phosphonitrilic halides, synthesis, structures and reactivity of compounds of xenon, bonding in xenon fluorides.	6
4.	Principles a nd a pplications o f transition met al ch emistry: Variable valency, colour, spectral, magnetic and catalytic properties, ability to form complexes, stability constant of coordination compounds, importance of transition metals in biological systems and in medicine.	4
5.	Lanthanides and actinides: Separation and isolation of lanthanides, separation of Np, Pu and Am from U, comparison of lanthanides and actinides, and their applications in technology.	2
6.	Introduction of metal ions in medicine and materials: Preliminary ideas on bio- inorganic chemistry, oxygen transport and storage, metalloenzymes.	6
	Total	28

S.No	Authors/ Title/ Publisher	Year of
•		Publication/
		Reprint
1.	Greenwood N.N. and Earnshaw A., "Chemistry of the Elements", 2 nd Ed.,	1997
	Butterworth Heinemann, Oxford.	

2.	Cotton F.A., Wilkinson G. and Gaus P.L., "Basic Inorganic Chemistry", 3rd Ed.,	2002
	John Wiley & Sons, Inc. New York.	
3.	Shriver D.F. and Atkins P.W., "Inorganic Chemistry", 3 rd Ed., Oxford University	1999
	Press.	
4.	Huheey J.E., Keiter E.A. and Keiter R.L., "Inorganic Chemistry, Principles of	2001
	Structure and Reactivity", 4 th Ed., Pearson Education Asia.	
5.	Cotton F.A., Wilkinson G. Murillo C.A. and Bochmann M., "Advanced Inorganic	1999
	Chemistry", 6 th Ed., John Wiley & Sons, New York.	

NAME OF DEPTT./CENTRE: Department of Chemistry

- 1. Subject: CYP-202 M Course Title: Orga
- 2. Contact Hours: L: 3 T; 1 P: 0

Course Title: Organic Chemistry - 1

- Examination Duration (Hrs) Theory **03** Practical **00**
- 4. Relative weightage: CWS 25 PRS MTE 25 ETE 50

5. Credits: 04 6. Semester: Spring 7. Subject Area: BSC

8. Pre-requisite: **CY-101**

9. Objective of Course: To develop concepts of stereochemistry and organic reactions.

10. Details of Course:

3.

S.No.	Particulars	Contact hours
1.	Nature of Bonding i n O rganic M olecules : Delocalised chemical bond, hyperconjugation, tautomerism, hydrogen bonding, aromaticity of benzenoid and nonbenzenoid compounds, Hückel rule, energy levels of pi-molecular orbitals in simple systems.Brief discussion on the strength of organic acids and bases.	08
2.	Stereochemistry: Configuration and chirality, optical isomerism of compounds containing chiral centres optical isomerism of compounds without chiral centres (allenes, spiro compounds, diphenyl derivatives, and compounds containing exocyclic double bonds), R, S- convention. Prochirality, enantiotopic and diastereotopic groups, methods of resolution. Geometrical isomerism in acyclic, cyclic, condensed and bridged systems and oximes (Beckmann rearrangement) E, Z-convention.	14
3.	Reactive Intermediates: General methods of generation, their reactivity and stability.	04
4.	Aliphatic S ubstitution: SN_1 , SN_2 and SN_1 mechanisms, stereochemistry, relative reactivity in substitutions, effect of substrate structure, attacking nucleophile, leaving group and reaction medium, neighbouring group participation, competitive reactions. Introduction to SE_1 , SE_2 and SEi reactions.	08
5.	Elimination Reactions: Introduction, discussion of E_1 , E_2 , E_1cB and E_2C mechanisms, stereochemistry, relative reactivity in elimination, effect of substrate structure, attacking nucleophile, leaving group and reaction medium, competitive reactions, orientations/orientation of the double bond, Saytzeff and Hoffman rules, β -eliminations (Fritsch-Buttenberg-Wiechell rearrangements).	08
	Total	42

S.No.	Authors/ Title/ Publisher	Year of
		Publication/
		Reprint
1.	Sykes P,, "Guide book to Mechanism in Organic Chemistry", Orient Longman.	2002
2.	Morrison R.T. and Boyd R.N., "Organic Chemistry", 6th Ed., Prentice Hall of	2001
	India.	
3.	March J., "Advanced Organic Chemistry", John Willey & Sons.	1992
4.	Eliel E.L., "Stereochemistry of Carbon Compounds", Tata McGraw Hill.	2002

NAME OF DEPTT./CEN	TRE:	Department o	f Chemistry		
1. Subject Code : ICY-01	Cours	e Title : Fundame	ntals of Polyme	er Science	
2. Contact Hours :	L: 2	T: 1		P: 0	
3. Examination Duration	(Hrs.):	Theory 2	Practical	0	
4. Relative Weightage:	CWS 25	PRS 0	MTE 25	ETE 50	PRE 0
5. Credits : 3	6. Sen	nester: Autumn/S	pring 7.	Subject Area: B	SC

8. Pre-requisite: Nil

9. Objective: To introduce the fundamental and technological importance of polymers.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: General idea of the polymers and their classifications, molecular forces and chemical bonding; Polymers in technological and biomedical fields.	4
2.	Polymer C hains and Molecular Weights: Degree of polymerization, number and weight average, molecular weights; Molecular weight dispersity and characteristics of polymers; Weight and composition heterogeneity in polymers; Polymer chain dimension and solution viscosity; Thermal and spectral characteristics of polymers.	6
3.	Methods of Polymers S ynthesis: Synthesis of polymers using bulk, solution, emulsion, suspension and interfacial route of polymerization and characteristics of polymers; Addition and step growth polymers.	6
4.	Technological Polymers: Polymer blends, polymer composites, polymer films, resins, foams, polymer liquid crystals and engineering plastics, smart and responsive polymers, polymers for device applications, biodegradable polymers, conducting polymers.	6
5.	Industrial Po lymers: Vinylic and phenolics, polyessters, polyamides, polyphosphazenes, polysilanes, polysiloxanes, coordination and organometallic polymers, polyacrylates.	6
	Total	28

S. No.	Authors/Title/ Publisher	Year of Publication/ Reprint
1.	Billmeyer Jr. F.W., "Text Book of Polymer Science", 3rd Ed., Wiley-Interscience	1994
2.	Fried J.R., "Polymer Science and Technology", Prentice-Hall of india.	2002
3.	Stevens M.P., "Polymer Chemistry: An Introduction", 3 rd Ed., Oxford University Press.	1999
4.	Seymour R.B. and Carraher Jr C.E., "Polymer Chemistry", Marcel Dekker.	1991
5.	Sinha R., "Outlines of Polymer Technology: Manufacture of Polymers", Prentice-Hall of India	2000

NAME OF DEPTT./CENTRE: Department of Chemistry						
1. Subject Code:	ICY-02	Course Title: Nuclear Science and Technology				
2. Contact Hours:	L: 2	T: 1 P: 0				
3. Examination Dur	ation (Hrs.):	Theory 2	Practical 0			
4. Relative Weighta	ge: CWS 25	PRS 0 MTE 2	25 ETE 50	PRE 0		
5. Credits: 3		6. Semester: Autum	in 7.8	Subject Area: BSC		

8. Pre-requisite: Nil

9. Objective: To impart fundamental concepts and applications of nuclear science and

technology to the students.

10. Details of Course:

SI.	Contents	Contact
No.		Hours
1.	Basic nuclear science: Elementary particles, nuclear stability, properties of nucleons, mass-energy relationship, nuclear models, radioactivity, decay methods, radioactive equilibrium, nuclear reaction	7
2.	Nuclear detectors and measurements: Concept of α , β and γ radiation detection, different types of detectors – gas filled, scintillation, solid state, semiconductor.	5
3	Particle accelerators and their application: Cyclotron, Van de Graaf, Cockroft Walton, applications– ion implantation, material modification and characterization, nanostructured materials by ion beam, trace element mapping, nuclear dating	8
4.	Nuclear Reactor and applications: types of nuclear reactor enrichment of radioisotopes, power generation, isotope production, isotope, radiotracer applications, radioimmunoassay, radiopharmaceuticals, neutron activation analysis.	8

SI.	Authors/Title/Publisher	Year of
No.		Publication /
		Reprint
1.	W.D. Ehmann and D.E. Vance, "Radiochemistry and Nuclear Methods of	1991
	Analysis" John Wiley and Sons, New York.	
2.	H.J. Arnikar, "Essentials of Nuclear Chemistry" 4 th Edition, New Age	2003
	International (P) Ltd. New Delhi.	
3.	J.R. Bird, J.S. Williams, (Eds.) "Ion Beam for Material Analysis"	1989
	Academic Press, Inc. London.	

NAME OF DEPTT./CENTRE: Department of Chemistry

1. Subject Code: ICY-	Course Title: Introduction of Photochemistry					
2. Contact Hours: L:	T: 1		P: 0			
3. Examination Durati	Theory 2		Practical 0			
4. Relative Weightage:	CWS 25	PRS 0	MTE 25	ETE 50	PRE 0	
5. Credits: 3	6. Semester:	: Autumn/S	pring	7. Subject Area: BSC		

8. Pre-requisite: CY-101 and PH-101

9. Objective: The objective of the course is to learn photochemistry concepts related to physical processes and chemical reactions induced by proton absorption and their applications.

10. Details of Course:

S. No.	Contents	Contact Hours
1	Introduction: Electromagnetic radiation, color, electronic states, absorption and emission. Excited states and photophysical processes, annihilation, emission, and sensitization. Jablonski diagrams, excited state lifetimes, fluorescence and phosphorescence and quantum yield.	
2	Photophysical P rocesses: Intramolecular radiationless transitions of excited states energy gap law, Frank-Condon factor, intersystem crossing, heavy atom effects and selection rules. Intermolecular physical processes of excited states – quenching, excimers, exciplexes, electronic energy transfer and photoinduced electron transfer.	
3	Photochemical reactions: Classification of photochemical reaction pathways, and mechanisms – electron transfer and proton transfer, photochemical intermediates, photoisomerizations, chemiluminescence, bioluminescence and related processes. Chemistry of excited state molecules (alkenes, aromatics, ketones, molecular oxygen etc.). Photosensitizers, photoinitiators and photocatalysts.	
4	Photochemical de vices: Photochemical molecular machines, photodynamic therapy applied to cancer, photochromatic imaging, photostabilizers, fluorescent sensors, polarity probes, switches, light emitting diodes and photovoltaics.	
	Total	28

Sl. No	Name of Authors/Books/Publisher	Year of Publication/ Reprint
1.	Valerum B., Molecular Fluorescence: Principles and Applications, Wiley.	2002
2.	Coyle, J.D., Introduction to Organic Photochemistry, John Wiley & Sons.	1991
3.	Turro, N.J., Ramamurthy V., Scannio J.C., Principles of molecular photochemistry: an introduction, University Science Books.	2008
4.	Klan, P., Wirz J., Photochemistry of Organic Compounds: From Concepts to Practice Wiley-Blackwell.	2009

NAME OF DEPTT./CENTRE:		Department of Chemistry						
1. Subject Code : ICY-04		Course Title : Functional Materials: Structure and Propertie					nd Properties	
2. Contact Hours : L: 3		Т	T: 0			P: 0		
3. Examination Duration (Hrs.):		Theory 03			Practical 0			
4. Relative Weightage:	CWS 25	PRS 0	МТЕ	25	ETE	50	PRE 0	
5. Credits : 3 6. Semest		ester: Spring			7. Subject Area: IEC			

8. Pre-requisite: None

9. Objective: To introduce the students to the area of functional materials-structure, properties, synthesis and

processing

10. Details of Course:

S.No.	Contents	Contact Hours		
1.	Introduction to Functional Materials: Solids and materials, advanced functional materials and their			
	technological applications; classification of materials - molecular and extended solids, low			
	dimensional materials, mesoporous and microporous materials, nanomaterials and liquid crystals.			
2.	Structure and Symmetry of Solids: Bonding in solids, arrangement of atoms and molecules in	8		
	crystalline and amorphous solids, lattice, point group, space groups and crystal structure; description of			
	structures - rock salt, zinc blende, wurtzite, perovskite, spinel, rutile, pyrochlore, honey-comb and low			
	dimensional structures- chains, ladders, layered, tunnel, spiral.			
3.	Materials and Properties of Technological Importance: Optical, magnetic, transparent conductors,	10		
	superconductors, piezoelectric, relaxor ferroelectric, magnetoresistance (GMR, CMR, TMR); SMART			
	materials-multiferroic, spintronic, shape memory alloys, thermoelectric.			
4.	Synthesis and Processing of Materials: Solid state synthesis (ceramic method), precursor route, arc	3		
	melting, induction method, sol-gel, hydrothermal, thermo-mechanical, pulsed laser deposition (PLD),			
	chemical vapour deposition (CVD), molecular beam epitaxy (MBE), physical vapour deposition			
	(PVD), inert atmosphere synthesis.			
5.	Material Characterization: S tructure/morphology/chemical co mposition : X-ray diffraction	10		
	(systematic absences, indexing, lattice refinement and pattern simulation), neutron diffraction, UV-			
	visible, IR, SEM, TEM, EDAX, XRF, TGA-DTA, DSC, XPS, XAS, ARPES;			
	electrical/magnetic/thermal-resistivity, VSM, SQUID, XMCD, specific heat, thermal transport.			
6.	Electronic Structure Theory: Concept of density of states (DOS) and elementary band theory, band	5		
	structures and selected metals and simple solids, introduction to quantum mechanical methods based on			
	density functional theory (DFT)			
	Total	42		

S.No.	Authors/Title/Publisher	
		Reprint
1.	West, A.R., "Solid State Chemistry and its Applications", , Reprint, Wiley India	2013
2.	Rao, C.N.R. and Gopalakrishnan J., "New D irections in S olid S tate C hemistry", , 2 nd Ed.,	1997
	Cambridge University Press.	
3.	Stout G.H. and Jensen, L.H. "X-Ray Structure Determination: A Practical Guide", , 2 nd Ed.,	1989
	Wiley-Interscience.	
4.	"Fundamentals of Crystallography", C. Giacovazzo, G. Artioli, H.L. Monaco, Oxford University	2006
	Press.	

5.	"Structural Inorganic Chemistry", A.F. Wells, 5 th Ed, Clarendon Press, Oxford.		
6.	"Magnetic M aterials: F undamentals a nd D evice A pplications", Nicola Spaldin, Cambridge		
	University Press.		
7.	"Electronic Structure of Materials", A.P. Sutton, A.D. Sutton, Oxford University Press.	1993	
8.	"The Electronic Structure and Chemistry of Solids", P.A. Cox, Oxford University Press.	1987	

NAME OF DEPTT./CENTRE:	Department of Chemistr	У
1. Subject Code: CYN-004	Course Title: General Ch	emistry-I
2. Contact Hours: L: 3	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory: 3	Practical : 0
4. Relative Weightage: CWS: 15	5 PRS: 15 MTE: 30	ETE: 40 PRE: 0
5. Credits: 4 6.	Semester: Spring	7. Subject Area: BSC

8. Pre-requisite: Nil

9. Objective: To provide a theoretical and experimental knowledge of basic/fundamental chemistry.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Quantum Mechanics: Introduction to quantum chemistry, particle in a box – implication of its concepts, H atom, radial and angular wave functions, and shapes of orbital (s , p).	4
2.	Thermodynamics: Statistical concept of entropy, description of equilibrium, feasibility of chemical reactions, Clausius-Clapeyron equation, partial molar quantities– chemical potential.	4
3.	Kinetics and Catalysis: Theories of chemical reactions – Draw-backs of collision theory, transition state theory using partition functions, thermodynamic formulation of transition state theory, homogeneous catalysis.	4
4.	Corrosion and Fuel cells: Electrochemical corrosion and fuel cells.	2
5.	Stereoisomerism: Stereochemistry of addition at carbon-carbon double bond, addition of bromine to cis-, and trans- butene, oxidation across the double bond through peroxides and permanganate, Diels Alder reaction [4+2] and [2+2] cycloaddition reactions.	5
6.	Synthesis of some important compounds such as benzocaine, saccharin, salbutamol and thyroxine. Introduction to spectroscopic techniques for structural prediction of organic compounds.	7
7.	Novel P olymers: Stereo chemical control of synthesis, Ziegler-Natta catalyst, polyurethanes, conducting polymers.	2
8.	Coordination C hemistry: Comparison of the stability of octahedral and tetrahedral complexes on the basis of crystal field stabilization energy, factors affecting the magnitude of Δ , applications of crystal field theory, variation of hydrated ionic radii and hydration enthalpy/stability of complexes, Jahn-Teller effect– definition and examples from d ⁹ system, static and dynamic Jahn-Teller effects.	5

9.	Organometallic C hemistry: Factors affecting M-C bond formation, transition metal- π alkene complexes – synthesis, reactions, bonding and stability. Applications of organometallic compounds in catalytic processes such as hydroformylation, hydrogenation, catalytic decarbonylation, olefin metabasis and apartiagalactive hydrogenetics of alleges	6
10	metathesis and enantioselective hydrogenation of alkenes.	
10.	Spectroscopic Techniques: Interaction of electromagnetic radiation with	3
	matter, spectroscopic techniques viz., UV-Vis and IR, and their applications	
	for characterization of simple compounds.	
	Total	42

List of Experiments:

i)	Determination of sodium carbonate in baking/washing soda.
ii)	Determination of Zn by EDTA- complexometric titration.
iii)	Solvent free synthesis -Wittig olefination of aldehyde or ketone by grinding.
iv)	Determination of viscosity of a polymer in a solution /or in a mixture of liquid.
v)	Determination of surface excess concentration of 1-butanol in aqueous solution.
vi)	Kinetics of a reaction between hydrogen peroxide and iodine in acidic medium.
vii)	Photochemical reduction of ferric oxalate in cyanotype blue printing.
viii)	Spectrophotometric determination of [Fe (III)] by using KSCN.
ix)	Identification of functional groups in an organic compound.
x)	Characterization of an organic/inorganic compound by UV-Vis and IR spectra.
xi)	Spectrophotometric determination of λ_{max} and concentration of KMnO ₄ /K ₂ Cr ₂ O ₇ .
xii)	pH metry/ potentiometry titration: strong acid – strong base.
xiii)	Preparation of potash alum from scrap aluminium.
xiv)	Synthesis of potassium trisoxalatochromate(III).
xv)	Synthesis of a polymer.

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Lee, J.D., "Concise Inorganic Chemistry", 5 th Ed., Chapman & Hall.	2002
2.	Huheey, J.E., Keiter, E.A., Keiter, R.L. and Medhi, O.K. "Inorganic Chemistry: Principles of Structure and Reactivity", 4 th Ed., Pearson Education Asia.	2009
3.	Morrison, R.T., Boyd, R.N. and Bhattacharjee, S.K., "Organic Chemistry", 7 th Ed., Pearson Education in South Asia.	2013
4.	Silbey, R.J. and Alberty, R.A., "Physical Chemistry", 3 rd Ed, John Wiley & Sons, Inc.	2003
5.	Atkins, P.W., Physical Chemistry, 8 th Ed., Oxford University Press.	2006
6.	March, J., "Organic Chemistry: Reactions, Mechanisms and Structures", 6 th Ed., John Wiley & Sons.	2007

NAME OF DEPTT./C	Department of Electrical Engineering				
1. Subject Code: EE	EN-112	Course Title	Electrica	ll Science	
2. Contact Hours:	L: 3	T: 1		P: 2/2	
3. Examination Duration (Hrs.):		Theory: 3	Practical: 0		
4. Relative Weight:	CWS: 15	PRS: 15	MTE: 30	ETE: 40	PRE: 0
5. Credits: 4 6. Set		nester: Both	7.	Subject Area	: ESC

8. Pre-requisite: NIL

- 9. Objective: To introduce the students to the fundamentals of Electrical Engineering concepts of network analysis, principles of electrical machines, basics of electrical measurement and measuring instruments.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Energy Resources an d U tilization: Conventional and non-	5
	conventional energy resources; Introduction to electrical energy	
	generation from different resources, transmission, distribution and	
	utilization.	
2.	Network Fundam entals: Types of Sources and elements,	5
	Kirchoff's Laws, Mesh and Node Analysis of D.C. Networks,	
	Network Theorems: Thevenin's Theorem, Norton's Theorem,	
	Superposition Theorem, Maximum Power Theorem, Star-Delta	
	Transformation.	
3.	A.C. F undamentals: Concept of phasor, impedance and	4
	admittance; Mesh and Node analysis of AC networks; Network	
	theorems in AC networks; Active and reactive power in AC circuits;	
4	Resonance in series AC circuits; Power factor correction.	2
4.	Three-phase A.C. Circuits: Analysis of 3-phase balanced start-	2
	delta circuits, Power in 3-phase Circuits.	
5.	Measurement of E lectrical Quantities: Measurement of Voltage,	5
	Current, and Power; Measurement of 3 phase power; Energy meters.	
6.	Single P hase T ransformer: Introduction to magnetic circuit	5
	concepts, Basic constructional features, operating principle, phasor	
	diagram, equivalent circuit, voltage regulation; Eddy current and	
	Hysteresis losses, efficiency; Open circuit and Short Circuit tests.	

7.	D.C. Machines : Principle of operation, constructional features; Emf and torque equations; Types of excitation; Generator characteristics; Starting and speed control of D.C. motors.	5
8.	AC Machines: Three-phase Induction Motor - Operating principle, constructional features, torque-speed characteristics, starting and speed control; Single-phase Induction Motor - Operating principle, constructional features, torque-speed characteristics, starting methods.	5
9.	Industrial Applications an d C ontrol: V arious industrial loads, traction, heating, lighting; Concept of power electronic control of AC and DC motors.	6
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Mukhopadhyaya P., Pant A.K., Kumar V. and Chittore D.S., "Elements of Electrical Science", M/s Nem Chand & Brothers.	1997
2.	Vincent Del Toro, "Electrical Engineering Fundamentals", Prentice Hall of India.	2002
3.	Dubey G. K., "Fundamentals of Electric Drives", 2 nd Ed., Narosa Publishing House.	2007
4.	Alexander C.K., Sadiku M.N.O., "Fundamentals of Electric Circuits", McGraw Hill, 5 th Edition.	2012
5.	Chapman, Stephen, J., "Electric Machinery Fundamentals", McGraw Hill Book Company.	1985
6.	Hughes Edward, "Electrical & Electronic Technology", Pearson Publishing, 8 th edition.	2002

NAME OF DEPTT./CENTRE:	Physics Departme	ent		
1. Subject Code: PHN-001	Course Title: Mechanics			
2. Contact Hours: L: 3	T: 0	P: 2		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weightage: CWS 15	i PRS 15	30 40	0	
5. Credits: 4 6. Sem	nester: Autumn	7. Subject Area: B	BSC	
8. Pre-requisite: None				

9. Objective: To familiarize students with the basic principles of mechanics

10. Details of Course:

S. No.	Contents	Contact Hours
1.	STATICS OF PARTICLES	8
1.	Vectorial representation of forces and moments- Vector Operation-Concepts of	0
	Particles and Rigid bodies – Composition of concurrent forces in Plane	
	Free body Diagram – Equilibrium of Rigid bodies in Two and three dimensions-	
	Moment of a force about a point and about an axis-Couple moment-Reduction of a	
	force system to a force and a couple	
2.	PROPERTIES OF SURFACES, MOMENTS AND PRODUCTS OF INERTIA	6
	Definition of Moment of Inertia for areas- Parallel axis theorem - Perpendicular axis	
	theorem-Moment of inertia for composite area-product of inertia for an area-mass	
	moment of inertia	
3.	FRICTION	4
	Laws of coulomb Friction – Coefficient of Friction – Dry Friction – Sliding Friction	
	-Ladder friction - Belt friction - Rolling Resistance.	
4.	KINEMATICS OF PARTICLES	8
	Principle of virtual work for a particle and rigid body-condition for equilibrium for a	
	conservative system, stability-particle dynamics in rectangular coordinate, cylindrical	
_	coordinate and in terms of path variables-General motion of a system of particles-	
5.	WORK ENERGY METHODS, IMPULSE AND MOMENTUM	8
	Work Energy Method – Conservation of Energy – Impulse and Momentum Relation	
	- Impulsive Forces - Impact force - Conservation of momentum - Moment of	
(Momentum Equation. RIGID BODY MOTION;	0
6.	Translation and rotation of rigid bodies- Derivative of a vector fixed in moving	8
	reference-General relationship between time derivative of a vector fixed in moving	
	references-Moment of momentum equations-Kinetic energy of a rigid body-Work	
	and energy relations-Euler's equation of motion-Three dimensional motion about a	
	fixed point	
	Total	42

List of experiments:

- 1. Study of magnetic field of a pair of coils in Helmholtz arrangement
- 2. Determination of e/m
- 3. Determination of first excitation potential of a gas by Frank-Hertz experiment
- 4. Determination of Stefan's constant
- 5. Determination of Planck's constant by radiation
- 6. To study and verify Malus' law
- 7. Study of polarization of light using quarter wave plate
- 8. Determination of Brewster's angle at glass-air interface
- 9. Determination of width of a slit by single-slit diffraction pattern
- 10. Four probe method of finding resistivity of semiconductor
- 11. Quinck'e Method for determining mass susceptibility
- 12. Wavelength of Na light by Newton's ring method

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Shames I. H. and Rao G. K., "Engineering Mechanics – Statics and Dynamics", 4 th Edition, Pearson Education	2006
2.	Beer F.P and Johnson E.R., "Vector Mechnics for Engineers – Statics and Dynamics", 9 th Edition, Tata McGraw-Hill Publishing Company Ltd.,	2009
3.	Pytel A. and Kiusalaas J., "Engineering Mechanics: Statics" 3 rd Edition, Cengage Learning	2010
4.	Pytel A. and Kiusalaas J., "Engineering Mechanics: Dynamics" 3 rd Edition, Cengage Learning	2010
5.	Hibbeler R. C. and Gupta A., Engineering Mechanics, ", 12th Edition, Pearson Education	2012
6.	Meriam J.L. and Kraige L.G., "Engineering Mechanics: Statics", 6 th Edition, John Willey and Son's	2012
7.	Meriam J.L. and Kraige L.G., "Engineering Mechanics: Dynamics", 6 th Edition , John Willey and Son's	2012

Physics Department NAME OF DEPTT./CENTRE: Course Title: Introduction to Physical Sciences 1. Subject Code: PHN-101 2. Contact Hours: L: 2 T: 0 **P:** 0 3. Examination Duration (Hrs.): Practical Theory 0 2 4. Relative Weightage: CWS PRS 00 100 00 00 0 2 5. Credits: 6. Semester: Autumn 7. Subject Area: DCC

- 8. Pre-requisite: None
- 9. Objective: To introduce physics discipline

10. Details of the Course:

S. No.	Contents	Contact Hours
1.	Introduction: History, Philosophy, Core theories, Classical physics,	6
	Modern physics, Difference between classical and modern physics.	
	Relation to other fields such as chemistry, mathematics, astronomy	
	and geology. Application and influence as Applied Physics	
2.	General aspect of physics: Physics concepts in primary and secondary education curricula, important publications in physics and physicista. Parfaction in physics and abamistry. Time line of	8
	physicists, Perfection in physics and chemistry Time line of fundamental physics discoveries Time line of developments in theoretical physics	
3.	Research: Scientific method, Theory and experiment, Scope and aims. Major research fields of physics, along with their subfields and the theories they employ viz. Condensed matter, Atomic, molecular, and optical physics, High-energy physics (particle physics) and nuclear physics, Astrophysics, nano-technology, Geophysics and biophysics. Current research and some well known unsolved problems of physics	14
	Total	28

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Bose D.M., Sen S.N. & Subbarayappa B.V., (eds), "A Concise	2009
	History of Science in India", Universities Press, Hyderabad, 2 nd	
	Edition.	

2.	Varadaraja V. Raman, "Glimpses of Indian Scientists", Samvad	2006
	India Foundation, New Delhi.	
3.	Subbarayappa B.V., "Indian Perspectives on the Physical World",	2004
	vol. IV part 3 in History of Science, Philosophy and Culture in	
	Indian Civilization, Centre for Studies in Civilization, New Delhi.	
4.	Nobel Lectures in Physics, 1901-1995, World Scientific, CD-	2010
	ROM	
5.	Feynman R. P., Leighton R. B. and Sands M., "The Feynman	1964
	Lectures on Physics", Addition-Wesley Publication	
6.		2013
	http://en.wikipedia.org/wiki/Physics	

PHYSICS NAME OF DEPTT./CENTRE :

1. Subject Code: PHN-103

Course Title: Computer Programming

2. Contact He	ours:	L: 3	T: 0		P: 2					
3. Examination	on Dura	ation (Hrs.)	: Theo	ry () 3	Practio	cal	0	0	
4. Relative W	/eighta;	ge: CWS	15 PRS	15		30	40)		00
5. Credits:	0 4	4 6	. Semester:	Autumn	l	7. Subject	Area	a:	ES	SC

8. Pre-requisite: None

9. Objective: This course provides students with an entry-level foundation in computer programming. 10. Details of Course:

S. No.	Contents	Contact Hours
1	Introduction to computer hardware and software, information storage in computer memory, stored program concept, storage media. Computer operating system.	4
2	Basic concept of FORTRAN/C language and program organization. Arithmetic expressions, Numerical input/output statement, Loop instructions, Transfer of control through logical statements, arrays and subscripted variables,	6
	Standard I/O in "Fortran language", Fundamental Data Types and Storage Classes: Character types, Integer, short, long, unsigned, single and double-precision floating point, storage classes, automatic, register, static and external, Operators and Expressions: Using numeric and relational operators, mixed operands and type conversion, Logical operators, Bit operations, Operator precedence and associativity,	
3	Use of functions, subroutines, Complex numbers, Common statement, Block data, Developing and testing of computer programs for various numerical problems	8
4	Conditional Program Execution: Applying if and switch statements, nesting if and else, restrictions on switch values, use of break and default with switch, Program Loops and Iteration: Uses of while, do and for loops, multiple loop variables, assignment operators, using break and continue,	8
5	Array notation and representation, manipulating array elements, using multidimensional arrays, arrays of unknown or varying size, Structures: Purpose and usage of structures, declaring structures, assigning of structures,	6

6	Solution of linear and quadratic equations, matrix addition, subtraction and multiplication, Trace and Norm of matrix, Inverse of matrix, Numerical interpolation, differentiation and integration (Simpson, Trapezoidal and Gauss' Quadrature methods).	10
	Total	42

S.	Name of Books / Authors	Year of
No.		Publication/Reprint
1.	Metcalf M., Reid J. & Cohen M., Modern, "Fortran Explained	2011
	(Numerical Mathematics and Scientific Computation)" Oxford	
	University Press, USA; 4 edition	
2.	Clerman N. S. & Spector W., "Modern Fortran: Style and Usage",	2011
	Cambridge University Press	
3.	Hoffmann J. D., "Numerical Methods for Engineers and	2001
	Scientists", Marcel Dekker Inc. 2 nd edition	
4.	Sastry S. S., "Introductory Methods of Numerical Analysis", PHI	2012
	Learning, 5 th edition	
5.	Smolarski D. C., The essentials of FORTRAN, Research and	1989
	Education Association, USA	
6.	Lipschutz S. & Poe A, "Theory and problems of Programming	1982
	with Fortran", Schaum's Series Publications	
7.	McCormick J. M. & Salvodori M. G., "Numerical methods in	1964
	Fortran" Prentice Hall Publications	

NAME OF DEPTT./CENTRE : PHYSICS

1. Subject Code:PHN-110Course Title:Introduction to Electro2. Contact Hours:L: 3T: 1P: 0				onics	5								
3. Examination Duration (Hrs.):			́]	Theory 0 3 Practica		ractical	0	0					
4. Relative W	Veigh	tage:	CWS	25	PRS	00			25		50		00
5. Credits:	0	4	6.	Seme	ster: S	pring	g 7.	Subj	ect A	rea: DC	С		

8. Pre-requisite: None

- 9. Objective: To impart knowledge of basic concepts of electronics.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	Semiconductor: Energy band structure of Insulators, Semiconductors and Metals, Element and Compound semiconductors, Intrinsic semiconductors, Extrinsic semiconductors, electrons and holes, conductivity and mobility, effect of temperature and doping on mobility, carrier concentration and their temperature dependence, Fermi level in a semiconductor having impurities, p-n Junction fabrication (Simple Idea). Qualitative theory of the p-n junction, Volt- Ampere characteristics, Static and Dynamic Resistance of Diode.	10
2	Bipolar J unction tr ansistors: n-p-n and p-n-p transistors, Characteristics of CB, CE and CC configurations. Current gains α , β and γ and relations between them, Active, Cutoff, and Saturation regions.	6
3	Amplifiers & Os cillators : Analysis of a single-stage CE amplifier,,Coupled Amplifiers : RC-Coupled Amplifier and its Frequency Response of Voltage Gain, Operational Amplifiers: Inverting and noninverting Amplifiers. Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance and Gain, Stability, Distortion and Noise, Sinusoidal Oscillators : Barkhauson's Criterion for self- sustained oscillations, RC Phase Shift Oscillator, Determination of frequency.	10
4	Field Effect Transistors : Junction Field Effect Transistors, Pinch-Off Voltage, Volt-Ampere Characteristics of JFET, Insulated -Gate FET (MOSFET), Enhancement MOSFET, Depletion MOSFET, circuit symbols.	8
5	Digital Circuits: Difference Between Analog and Digital Circuits, Binary Numbers, Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND AND NOR Gates. Exclusive OR and Exclusive	8

NOR Gates, Basic concepts of flipflops.	
Total	42

S.	Name of Books / Authors	Year of	
No.		Publication/Reprint	
1.	Streetman B. G. and Banerjee S., "Solid State Electronic Devices"	2006	
	, Prentice Hall, 6 th Ed.		
2.	Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and	2012	
	Circuit Theory", Pearson Education, 11 th Ed.		
3.	Albert Malvino, David J. Bates, "Electronic Principles", McGraw	2007	
	Hill Publication, 7 th Ed.		
4.	Donald P Leach, Albert Paul Malvino, Goutam Saha, "Digital	2010	
	Principles and Applications", Tata Mcgraw Hill Education Pvt.		
	Ltd., 7 th Ed		
5.	Floyd T. L. and Buchla D. L., "Electronics Fundamentals:	2010	
	Circuits, Devices and Applications", 8 th Ed.		
6.	Mottershead A., "Electronic Circuits and Devices", PHI	1997	
7.	Dube D. C., "Electronics: Circuits and Analysis" Narosa	2010	
	Publication, 2 nd Edition		

NAME OF DEPTT./CENTRE : PHYSICS

1. Subject Code: **PHN-201** Course Title: **Optics**

2. Contact Ho	ours: L:	3	T: 1	P: 2				
3. Examination	on Duration	(Hrs.):	Theory	0 3	Practic	al 0	0	
4. Relative W	veightage: (CWS 15	PRS 1	5	30	40		00
5. Credits:	0 5	6. Sem	ester: Autu	ımn	7. Subject	Area:	DC	C

8. Pre-requisite: None

9. Objective: To familiarize students with the basic principles of optics

10. Details of Course:

S.No.	Contents	Contact Hours
1.	Geometrical optics : Fermat's principle, the ray equation and its solutions, matrix method in perevial optics, unit planes, nodel planes, system of this lenses.	10
2.	 method in paraxial optics, unit planes, nodal planes, system of thin lenses. Interference: Huygen's principle and its applications, interference by division of wavefront, two slit interference, Fresnel's Biprism, interference with white light, displacement of fringes, interference by division of amplitude, thin parallel films, antireflection coatings, wedge shaped films, Newton's rings, Michelson interferometer and its applications, multiple beam interference, Fabry Perot interferometer and etalon. 	12
3.	Diffraction: Fraunhofer diffraction, single, double and multiple slit diffraction, diffraction grating, diffraction at a circular aperture, Fresnel diffraction, Fresnel half period zones, the zone plate, diffraction at a straight edge, diffraction of a plane wave by a long narrow slit and transition to Fraunhofer region.	10
4.	Polarization: Polarization and double refraction, production of polarized light, Brewster's law, Malus's law, double refraction, interference of polarized light, quarter and half wave plates, analysis of polarized light, optical activity, polarimeters, Laurent's half shade and biquartz polarimeters,.	10
	Total	42
i. ii. iv. v. vi. vii. vii. vii. x. x. xi.	f experiments:Determination of wavelength of sodium light by Fresnel biprism.Determination of Young's modulus of a glass plate by Cornu's method.Determination of wavelength of laser light by Fabry Perot etalon.Normal dispersion curves and Cauchy's relations.Fresnel equations: rotation of plane of polarization by reflection.Study of single, double and multiple slit diffraction.Study of diffraction of light by a thin wire.Determination of wavelength of light by Diffraction grating.Production and analysis of polarized light using quarter wave plates.Nodal Slide Experiment. $\Delta\lambda$ by Michelson Interferometer	
xii.	Thickness of Mica sheet by Michelson Interferometer	

11.	Suggested Books:	
S.No.	Names of Books/Authors	Year of Publication/Re print
1.	Ghatak A., "Optics" 3 rd Ed., Tata McGraw Hill	2004
2.	Hecht E., "Optics" 4 th Ed., Addison Weseley	2001
3.	Jenkins F. A, and White H. E., "Fundamentals of Optics" 3 rd Edition, McGraw Hill New York	1976

NAME OF DEPTT./CENTRE:	Physics		
1. Subject Code: PHN-203	Course Title: Ele	ments of Classical Mechani	cs
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0]
4. Relative Weightage: CWS 25	PRS 0	25 50	0
5. Credits: 4 6. Sem	ester: Autumn	7. Subject Area: DCC	

- 8. Pre-requisite: None
- 9. Objective: To familiarize students with the basics of classical mechanics

S. No.	Contents	Contact Hours
1.	Introduction to Constrained Motions: Principle of virtual work,	<mark>1</mark> 0
	generalized coordinates, introduction to Lagrange's equation of	
	motion, generalized momenta, cyclic coordinates, Legendre's dual	
	transformation, Hamilton's function and Hamilton's equation of	
	motion; Configuration space, phase space and state space.	
2.	Small Os cillations: Eigenvalue problem, normal coordinates,	07
	frequencies of vibrations, forced vibrations, examples.	
3.	Central Force: Equations of motion, equivalent one body problem,	10
	orbits, Virial theorem, Kepler's problem, scattering theory, centre of	
	mass and laboratory frames of reference	
4.	Rigid B ody M otion: Orthogonal transformation, transformation	15
	matrix, Euler angles, Cayley-Klein parameters, Euler's theorem,	
	Finite & infinitesimal rotations; Rotating frames of reference,	
	Coriolis' force; Angular momentum and kinetic energy, dyadic &	
	tensors; Moment of inertia, principal axis transformation, Euler	
	equation of motion and its solutions, tops, precession, satellite orbits.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Goldstein H, "Classical Mechanics", Narosa	<mark>2001</mark>
2.	Rana N.C. and Joag P.S, "Classical Mechanics", Tata McGraw Hill	<mark>1994</mark>
3.	Gupta K.C., "Classical Mechanics of Particles and Rigid Bodies", Wiley Eastern	<mark>2001</mark>
4.	Upadhyaya J.C., "Classical Mechanics", Himalaya Publishing	<mark>2005</mark>
	House	

NAME OF DEPTT./CENTRE:	Physics		
1. Subject Code: PHN-202	Course Title: Elec	tricity and Magnetism	
2. Contact Hours: L: 3	T: 1	P: 2	
3. Examination Duration (Hrs.):	Theory 3	Practical 0]
4. Relative Weightage: CWS 15	5 PRS 15	30 40	0
5. Credits: 5 6. Sem	ester: Spring	7. Subject Area: DCC	

- 8. Pre-requisite: None
- 9. **Objective of Course:** The course aims to familiarize students with the elements of Electricity and Magnetism.

S.No.	Contents	Contact Hours
1.	Vector calculus: Vectors in Cartesian, Cylindrical, and Spherical Polar coordinate system and transformation among themselves. Vector calculus: differential length, area, volume, Del operator, line, surface and volume integrals, in all the three coordinate systems. Gradient of a scalar, divergence (Gauss's theorem) and curl of a vector (Stoke's theorem) with their physical interpretations, delta function.	10
2.	Electrostatics: Electric field, Coulomb's law, continuous charge distribution, Gauss's law and its applications. Electric potential, Poisson's equations and Laplace's equation, boundary conditions, electrostatic energy, Laplace equation (boundary value problems in 1D or reducible to 1D and in Spherical coordinates), Boundary conditions and Uniqueness theorems, method of images, multipole expansion, Polarization, bound charges, electric displacement vector, linear dielectrics (susceptibility, permittivity, dielectric constant), energy in dielectric systems, force on dielectrics, boundary conditions.	12
3.	Magnetostatics:Currents, continuity equations, Biot-Savart law, Ampere's law and its applications, magnetic vector potentials, multipole expansion, Magnetization, dia-, para- and ferromagnetism, , bound currents, Ampere's lawin magnetized materials, linear media (magnetic susceptibility and permeability, boundary conditions).	10
4.	Electrodynamics: Faraday's Law of induction, self-inductance, transient currents, magnetic energy and mechanical forces, Maxwell equations with corrections, Maxwell equations in matter.	10

	List of experiments:	
Ι	To determine the self-inductance of a given coil.	
II	To find the resonant frequency of series LCR circuit.	
III	To obtain hystersis curve (B-H Curve) for a given ferromagnetic material.	
IV	To study transient effect in LCR circuits.	
V	To measure the dielectric constant and dielectric loss of given material by using LCR	
	metre.	
VI	To measure the magnetic flux density in the middle of various wire loops with the Hall	
	probe and to investigate its dependence on the radius and number of turns.	
VII	To measure the magnetic flux density along the axis of long coils and compare it with	
	the theoretical values obtained from Biot-Savart's Law.	
VIII	Comparison of capacities (De-Sauty method)	
IX	Dielectric constant of material by Resonance method	
X	Determination of Inductance by Raleigh method	

S.No.	Names of Books/Authors	Year of Publication/ Reprint
1.	Hayt Jr. W. H., and Buck J. A., "Engineering Electromagnetics", Tata McGraw Hill Publishing Company Ltd, New Delhi, 7 th edition	2005
2.	Sadiku N. O, "Elements of Engineering Electromagnetics", Oxford University Press, 3 rd Edition	2003
3.	Rao N. N., "Elements of Engineering Electromagnetics", Prentice Hall of India, New Delhi, 4 th Edition	2000
4.	Griffiths D J, "Introduction to Electrodynamics" 3 rd Ed., Prentice Hall.	2000

PHYSICS NAME OF DEPTT./CENTRE : Course Title: Thermal Physics 1. Subject Code: PHN-212 T: 1 2. Contact Hours: L: 3 P: 2 0 3 0 3 Practical 3. Examination Duration (Hrs.): Theory 4. Relative Weightage: CWS 15 PRS 15 15 40 15 7. Subject Area: DCC 5. Credits: 5 6. Semester: Spring 8. Pre-requisite: None

- 9. Objective: The course aims at familiarizing students with laws of thermodynamics and their correspondence with statistical mechanics.
- 10. Details of Course:

S.No.	Contents	Contact Hours
1.	Thermodynamic Po tentials a nd R elations: Characteristic functions, Enthalpy, Helmholtz & Gibb's functions, Maxwell's thermodynamic relations and their applications, Volume expansivity, cubic expansion coefficient and compressibility, Closed & Open systems, Chemical potential, Internal energy equation, Heat capacity equation, Third law of thermodynamics, Equilibrium conditions, Phase Equilibrium, Phase transitions.	12
2.	Low T emperatures a nd T hird L aw: Joule-Kelvin effect, Liquefaction of gases, Magnetic cooling, Third Law of Thermodynamic and it's applications, Phase behaviour of Helium.	08
3.	Thermodynamics o f Radiation: Thermal Radiation, Radiation in a constant temperature enclosure, Kirchoff's Law, Properties of Black-body radiation, Stefan-Boltzmann Law, Wien's Law, Rayleigh-Jeans Law, Wien's displacement Law, Planck's distribution.	07
4.	Statistical Mechanics: Fundamental principles, Equilibrium distribution, phase space, Lagrangian multipliers, ensembles, Partition function, Equipartition of energy, distribution of speeds, Derivation of Classical and quantum statistics, Thermal properties of solids.	15
	Total	42

Laboratory work related to the course:

I	Measurement of temperature using thermister.
II	Specific heat measurements.
III	Stefan's constant and work function of a photo cathode using incandescent lamp.
IV	Thermal conductivity of metal by Searle's apparatus.
V	Verification of Stefan's law.
VI	J by Callendar and Barn's method.
VII	Temperature coefficient of resistance by Callandar and Griffiths bridge.
VIII	Thermal conductivity of Glass (Tube form)
IX	Co-efficient of thermal expansion
X	Thermo e.m.f by Potentionmeter

11.

S.No.	Names of Books/Authors	Year of Publication /Reprint
1.	Zemansky M.W. & Dittman R.H., "Heat & Thermodynamics" 8 th Edition, McGraw Hill	2011
2.	Reif F., "Fundamentals of Statistical and Thermal Phsyics", McGraw Hill	2008
3.	Guha E., "Basic Thermodynamics", Narosa Publishers	2002
4.	Sears F.W. & Salinger G.L., "Thermodynamics, Kinetic Theory & Statistical Thermodynamics" Narosa Publishers	1998
5.	Huang K., "Statistical Mechanics", 2 nd Edition, John Wiley	1987

NAME OF DEPTT./CENTRE:	Physics		
1. Subject Code: PHN-301	Course Title: Pla	sma Physics	
2. Contact Hours: L: 3	T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weightage: CWS 15	PRS 0	35 50	0
5. Credits: 3 6. Sen	nester: Autumn	7. Subject Area: DCC	
8. Pre-requisite: PH-202			

- 9. Objective: To familiarize students with the basic principles of plasma physics with application to other areas.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction t o Plasma Physics: Plasma definition; Debye	6
	shielding; Plasma parameters; Criteria for Plasma	
2.	Motion of Particles in t he P resence of E lectric and M agnetic	6
	Fields: Motion of charge particle in uniform and non-uniform E and	
	B fields; Time varying E and B fields.	
3.	Plasma as Fl uids: Relation of Plasma Physics with ordinary	8
	Electromagnetics; The Fluid Equation of Motion; Fluid drifts	
	perpendicular and parallel to B; The Plasma Approximation	
4.	Waves in Plasma: Representation of waves; Plasma oscillations;	10
	Electron plasma waves, ion waves; Validity of plasma	
	approximation; Comparison of ion and electron waves, Electrostatic	
	electron oscillations perpendicular to E and B; Electrostatic ion	
	waves perpendicular to B	
5.	Diffusion and Resistivity : Diffusion and mobility in weakly ionized	12
	gases; Decay of a Plasma by Diffusion; Steady state solution,	
	recombination; Diffusion across a magnetic field; Collision in a fully	
	ionized plasma; The single fluid MHD equation; Diffusion in fully	
	ionized plasma	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Chen F F, "Introduction to Plasma Physics", Plenum Press New	1990
	York	
2.	Davidson R C, "Physics of Non-Neutral Plasmas", Allied	2001
	Publishers Pvt. Ltd	
3.	Eliezer S and Eliger Y, "The Fourth State of Matter: An	2001
	Introduction to Plasma Science", CRC Press	
4.	Paul M. B., "Fundamentals of Plasma Physics", Cambridge	2004
	University Press	

NAME OF DEPTT./CENTRE:	PHYSICS		
1. Subject Code: PHN-303	Course Title: Quan	ntum Physics	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weightage: CWS 25	PRS 0	25 50	0
5. Credits: 4 6. Sem	ester: Autumn	7. Subject Area: DCC	
8. Pre-requisite: Nil			

- 9. Objective: To familiarize students with the basic principles of quantum mechanics and applying these to single-particle systems.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Wave P ackets an d U ncertainty Principle: Plane waves;	8
	Superposition of plane waves; Wave packets; Fourier analysis;	
	Group velocity; Propagation of wave packets; Wave packet	
	broadening; Gaussian wave packet.	
2.	Schrödinger Equation: The wave equation and the interpretation of	10
	ψ ; Operators and expectation values of dynamical variables;	
	Commutators and operator algebra; Stationery states; Dirac	
	notations.	
3.	Problems in on e-dimension: Potential step, rectangular potential	12
	barrier, symmetries and invariance properties, reflection and	
	transmission coefficients, potential well, Kroning-Penny Model.	
4.	Harmonic Oscillator: Energy eigen values and eigen functions of a	12
	1-D harmonic oscillator; Matrix formulation of oscillator problem,	
	N-Harmonic oscillators in contact with a heat bath of temperature T;	
	Boltzmann factor, average energy of a harmonic oscillator at	
	temperature T; Bose-Einstein and Fermi-Dirac distribution.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Gariorowicz S, "Quantum Physics", 3 rd Ed, John Wiley & Sons	<mark>2006</mark>
2.	Beiser A, "Concepts of Modern Physics", McGraw Hill International	<mark>2004</mark>
3.	Ghatak A and Lokanathan S, "Quantum Mechanics", Mcmillan India Ltd.	<mark>2004</mark>
4.	Griffiths, D. J., "Introduction to Quantum Mechanics", Pearson Prentice Hall, 2nd Edition	2004
5.	Mathews P.M and Venkatesan K., "A Text Book of Quantum Mechanics", Tata McGraw Hill	<mark>2000</mark>

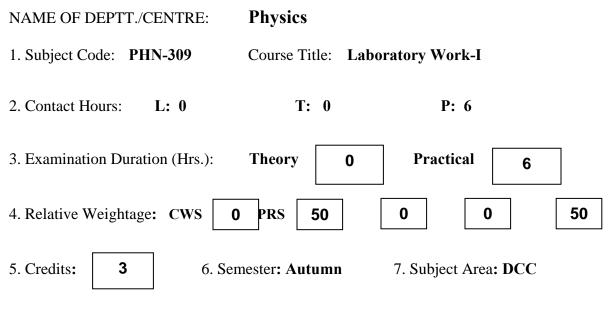
NAME OF DEPTT./CENTRE:	PHYSICS		
1. Subject Code: PHN-305	Course Title: F	Properties of Matter and	Acoustics
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weightage: CWS 2	5 PRS 0	25 50	0
5. Credits: 4 6. Ser	mester: Autumn	7. Subject Area: D	CC
8. Pre-requisite: Nil			

- 0 Objections To fouriliering stadents with four law
- 9. Objective: To familiarize students with fundamentals of properties of matter, waves and acoustics.

S. No.	Contents	Contact Hours
1.	Elasticity: Hooke's Law Stress - Strain Diagram - Elastic moduli -	8
	Relation between elastic constants - Poisson's Ratio - Expressions	
	for Poisson's ratio in terms of elastic constants - Work done in	
	stretching and twisting a wire - Twisting couple on a cylinder-	
	Rigidity modulus by static torsion - Torsional pendulum - Rigidity	
	modulus and moment of inertiaElastic materials-Tensor of strain-	
	Tensor of elasticity	
2.	Bending of beams: Cantilever - Expression for bending moment -	4
	Expression for depression - Cantilever oscillations - Expression for	
	time period - Experiment to find Young's modulus - Non uniform	
	bending - Experiment to determine Young's modulus by Koenig's	
	method - Uniform bending - Expression for elevation - Experiment to	
	determine Young's modulus using microscope	
3.	Fluids: Surface Tension: Definition and dimensions of surface tension	12
	- Excess of pressure over curved surfaces - Application to spherical	
	and cylindrical drops and bubbles - Variation of Surface tension with	
	temperature - Jaegar's method.	
	Viscosity: Steady flow of Newtonian fluids – Poiseuille's equation for	
	incompressible fluids: Statement of Stoke's law - Terminal velocity-	
	Effect of temperature on viscosity-Reynold's number –Turbulent flow	
	and critical velocity-Experiment to determine co-efficient of viscosity	
	of a liquid - Applications of viscosity.	
	Condition of equilibrium of a fluid-Fluid dynamics-Equation of	
	continuity-Bernoullie's theorem& conservation of energy	
	Physics of Low Pressure. Production and Measurement of low	
	pressure - Grades' molecular pump - Rotary pump - Knudsen absolute	

	gauge - Detection of leakage.	
5.	Waves and Oscillations: Simple harmonic motion - Free, Damped, Forced vibrations and Resonance – Coupled harmonic oscillator-eigen frequencies and normal modes-Transverse vibrations in stretched strings-Wave equation for a string-Velocity of transverse wave along a string –Energy of a vibrating string-Fourier's analysis for plucked and bowed string	10
6.	Ultrasonics: Production of ultrasonic waves - Piezo electric crystal method - Magnetostriction method - Properties - Application to science industry and medicine.	8
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Feynman R P, Leighton R B and Sands M, "The Feynman	2005
	Lectures on Physics", Vols. I, Narosa	
2.	Chakrabarthy P K, "Mechanics and General Properties of	2001
	Matter", Allied Publishers Pvt. Ltd	
3.	Flowers B H and Mendoza E, "Properties of Matter", Wiley	1991
	Publisher	
4.	Bajaj N K, "The Physics of Waves and Oscillations", Tata MC	1988
	Graw Hill	
5.	Ingard K U, "Fundamentals of Waves and Oscillations",	1988
	Cambridge Univ. Press	

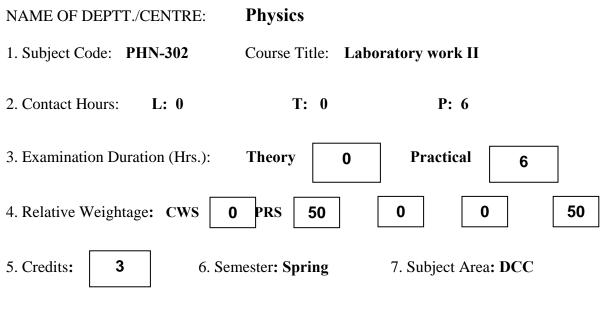

NAME OF DEPTT./CENTRE:	PHYSICS		
1. Subject Code: PHN-307	Course Title: Atom	mic Physics	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weightage: CWS	25 PRS 0	25 50	0
5. Credits: 4 6. Se	emester: Autumn	7. Subject Area: D)CC
8. Pre-requisite: Nil			

9. Objective: To familiarize students with the basics of Atomic Physics and Atomic Spectroscopy

10. Details of Course:

Sl.No	Contents	Contact Hours
1.	Basic Principles of Spectroscopy; The Optical Spectrum of the Hydrogen Atom; Bohr's Postulates; Motion of the Nucleus; Spectra of Hydrogen-like Ions; Excitation of Quantum Jumps by Collisions; Sommerfeld's model; Lifting of Orbital Degeneracy by the Relativistic Mass Change; Quantum Mechanics of hydrogen atom and selection rules for electric dipole transitions	9
2.	Magnetic Moment of the Orbital Motion; Precession and Orientation in a Magnetic Field; Stern and Gerlach experiment; Calculation of Spin-Orbit Splitting in the Bohr Model; Level Scheme of the Alkali Atoms; Fine Structure in the Hydrogen Atoms; The Lamb Shift.	9
3.	Directional Quantisation in a Magnetic Field; Electron Spin Resonance; The Zeeman Effect Experiments; Explanation of the Zeeman Effect from the Standpoint of Classical Electron Theory; Description of the Ordinary Zeeman Effect by the Vector Model; The Anomalous Zeeman Effect; Magnetic Moments with Spin-Orbit Coupling; The Paschen-Back Effect; Stark effect; Quantum Mechanics of Zeeman effect	8
4.	The Spectrum of the Helium Atoms; Electron Repulsion and the Pauli Principle; Angular Momentum Coupling, Coupling Mechanism; <i>LS</i> Coupling (Russell-Saunders Coupling); <i>jj</i> Coupling, Magnetic Moments of Many-Electron Atoms; Multiple Excitations.	8
5.	X-Radiation from Outer Shells; X-Ray Bremsstrahlung Spectra; Emission Line Spectra: Characteristic Radiation; Absorption Spectra; The Auger Effect; Nuclear Spin; Hyperfine Structure	8
	Total	42

S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Hanken H and Wolf H C, "The Physics of Atoms and Quanta", 6 th Ed., Springer	2007
2.	Eisberg R. and Resnick R., "Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles", 2nd Edition, John Wiley & Sons Inc.	1985
3.	Bransden B. H. and Joachian C. J., "Physics of Atoms and Molecules" 2nd Edition, Prentice Hall,	2003
4.	Beiser A, "Concept of Modern Physics", 6 th Ed., Tata McGraw Hill	2002

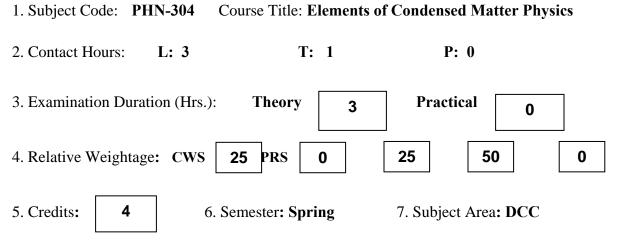


- 8. Pre-requisite: Nil
- 9. Objective: To familiarize students with the basic experiments in properties of matter and acoustics.

S. No.	Contents	Contact Hours
1.	To determine the Young's modulus of steel, aluminum and brass by method of flexure	
2.	Determination of shear modulus of steel, copper and brass	
3.	Determination of surface tension of olive oil at different temperatures	14 x 6
4.	To measure the dynamic viscosity of water and methanol at different temperatures	14 x 0
5.	To study free oscillations and forced oscillations under damped ands un-damped conditions	
6.	Determination of wavelength and frequency of sound wave by Quincke's method	
7.	Determination of phase and group velocity of ultrasonic wave in different liquids	

13. 14.	temperatures by Jaeger's method Coefficient of viscosity of water by Poiseuilles's method Determination of modulus of elasticity of different materials	
13.		
	temperatures by Jaeger's method	
12.	Determination of surface tension of a liquid at different	
11.	Coefficient of viscosity of water b rotating disc/cylinder method	
10.	Determination of the value of g (acceleration due to gravity) using Kater's type compound pendulum	
9.	Study of interference of ultrasonic wave with Michelson's interferometer	
8.	Study of stationary ultrasonic wave and determination of its wavelength	

S. No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Chattopadhayay D and Rakshit P.C., "An advanced course in	2005
	Practical Physics" 7 th Ed., New Central Book agency (P) Ltd.	
2.	G. L. Squires "Practical Physics" 4 th Ed., Cambridge University Press	2001


8. Pre-requisite: None

9. Objective: The laboratory work aims to familiarize students with the basic experiments based on various Electronic Circuits.

S. No.	Contents	Contact Hours
1.	To draw the I-V characteristics of a p-n junction diode in forward and	nours
2.	reverse bias and to determine its DC and AC resistance for a given current. To study the temperature dependence of the reverse saturation current of a	
	p-n junction diode and to determine the band gap of semiconductor.	
3.	To study half wave, full wave and bridge rectifiers and to determine ripple	
	factor.	
4.	To design a regulated power supply using Zener diode and fixed voltage	
	regulator.	
5.	(a)To draw input and output characteristic of a bipolar transistor.	
	(b)To design a CE amplifier and study its frequency response.	
6.	To draw input and output characteristic of a JFET and determine g_m , r_d and	
	verify square law.	
7.	To design inverting and non-inverting amplifiers of different gain using	
	operational amplifier and study their frequency response.	
8	To verify truth tables of various logic gates.	
9	To verify Boolean theorems using logic gates	
10	To design and study of astable, monostable multivibrators using Timer 555	

S.	Name of Books / Authors	Year of
No.		Publication/Reprint
1.	Chattopadhyay D. and Rakshit P. C., "An advanced course in	2005
	Practical Physics" 7 th Edition; New Central Book Agency (P) Ltd.	
2.	Gupta S. L. and Kumar V., "Practical Physics" 25 th Ed. Pragati	2002
	Prakashan	
3.	Paul P., Malvino A. and Miller M., "Basic Electronics: A Text-	1999
	Lab Manual, Tata McGraw Hill	

NAME OF DEPTT./CENTRE: PHYSICS

8. Pre-requisite: Nil

- 9. Objective: To familiarize students with bonding, mechanical properties, crystal structure, lattice vibrations, defects in solids and theory of ferromagnetism.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Bonding and M echanical Pr operties: Covalent bonding, ionic	6
	bonding, metallic bonding, hydrogen bonding and Van der waals	
	bonding. Elastic constants and elastic waves.	
2.	Crystal S tructure: Point symmetry, translational symmetry, two-	9
	and three- dimensional lattices, simple crystal structures, Miller	
	indices, diffraction from periodic structures, reciprocal lattice,	
	Brillouin zones.	
3.	Lattice V ibrations: One dimensional lattices (monoatomic and	7
	diatomic), quantization of elastic waves, phonon momentum, density	
	of modes.	
4.	Electrons in Solids: Free electron gas in metals, periodic potential	8
	and Bloch's theorem and Kronig-Penney model.	
5.	Defects in Solids: Lattice vacancies, diffusion, colour centers and	4
	elementary idea of dislocation.	
6.	Magnetism: Langevin theory of dia- and para- magnetism, quantum	8
	theory of dia- and para- magnetism, magnetic ordering, Weiss	
	molecular field theory of ferromagnetism and Neel theory of anti-	
	ferromagnetism.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Kittel C., "Introduction to Solid State Physics", 8 th Ed., Wiley	2004
	Eastern Ltd	
2.	Ashcroft N W and Mermin N D, "Solid State Physics", 2 nd Ed.	2000
	Holt-Saunders	
3.	Hook J R and Hall H E, "Solid State Physics", John Wiley	2001
4.	Ibach H. and Lüth H., "Solid-State Physics:	2009
	An Introduction to Principles of Materials Science", Springer; 4th	
	Edition	
5.	Blundell S., "Magnetism in Condensed Matter", Oxford	2001
	University Press, Oxford	

NAME OF DEPTT./CENTRE: PHYSICS

1. Subject Code: **PHN-306** Course Title: **Special Therory of Relativity**

2. Contact He	ours: L:	2	Г: 1	P: 0		
3. Examinati	on Duration (l	Hrs.): Theory	2	Practical	0	
4. Relative W	Veightage: C	WS 25 PRS	0	25 5	0	0
5. Credits:	3	6. Semester: S	oring	7. Subject Area	a: DCC	

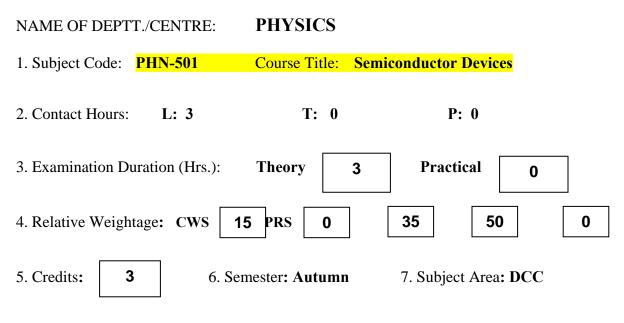
8. Pre-requisite: Nil

9. **Objective of Co urse:** The course aims to familiarize students with the special theory of relativity.

S.No.	Contents	Contact Hours
1.	Relativistic K inematics: Attempts to Locate the Absolute Frame; the Michelson- Morley Experiment, The Relativity of Simultaneity, Derivation of the Lorentz Transformation Equations, Some Consequences of the Lorentz Transformation Equations, A More Physical Look at the Main Features of the Lorentz Transformation Equations, The Observer in Relativity, The Relativistic Addition of Velocities, Aberration and Doppler Effect of Relativity	6
2.	Relativistic D ynamics: Mechanics and Relativity, Relativistic Momentum, Alternative Views of Mass in Relativity, The Relativistic Force Law and the Dynamics of a Single Particle, The Equivalence of Mass and Energy, The Transformation Properties of Momentum, Energy, Mass and Force	6
3.	Relativity a nd E lectromagnetism: The Interdependence of Electric and Magnetic Fields, The Transformation for E and B, The field of a Uniformly Moving Point Charge, Forces and Fields near a Current-Carrying Wire, Forces between Moving Charges, The Invariance of Maxwell's Equations, The Possible Limitations of Special Relativity, The Geometric Representation of Space-Time, The Twin Paradox The Principle of Equivalence and General Relativity	10
4.	Four-Vectors and Relativistic In variance: Vectors and Transformations, Rotation about the Z axis, Invariants of a Transformation, The Transformation Properties of Physical Law, Scalar invariants, Minkowski Space and Four-Vectors, The Momentum-Energy Four-Vector	6
	Total	28

S.No.	Name of Authors/ Books/Publishers	Year of Publication /Reprint
1.	Resnick R, "Introduction to Special Relativity", Wiley Eastern	<mark>1986</mark>
2.	Kleppner and Kolenkow, "An Introduction to Mechanics", McGraw Hill	<mark>1999</mark>
3.	Das Anadijban, "The Special Theory of Relativity", Springer Verlag	<mark>1993</mark>

NAME OF DEPTT./CENTRE: PHYSICS

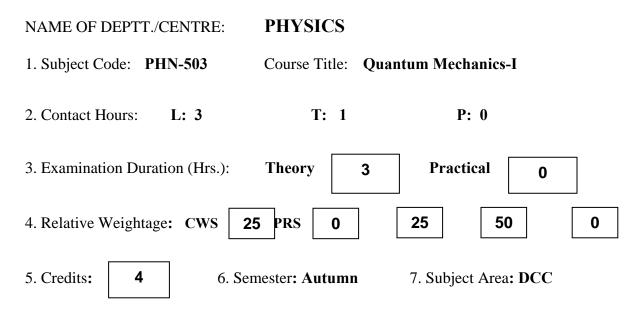

1. Subject Code: PHN-308	Course Title: Nuc	lear Physics and its App	lications
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weightage: CWS 25	PRS 0	25 50	0
5. Credits: 4 6. Sen	nester: Spring	7. Subject Area: DCC	

8. Pre-requisite: None

9. Objective: To familiarize students with the basic concepts of nuclear physics and its industrial, analytical, medicinal and energy applications.

S. No.	Contents	Contact Hours
1.	Nuclear shape, size, radii, matter/charge distributions; Nuclear force;	9
	Concept of isospin; Charge independence of nuclear forces in the	
	light of isospin. Mass defect and binding energy; Liquid drop	
	model; Semi empirical mass formula; Evidence of shell structure;	
	Shell model with harmonic oscillator and spin-orbit potential and its	
	predictions.	
2.	α-decay, its properties, range, range-energy relationship, Geiger-	8
	Nuttal law, theory of α -decay, β -decay and its classifications (only	
	basics), y-decay: range, properties, pair production, energy spectra	
	and nuclear energy levels.	
3.	Nuclear reaction, Kinematics, Direct nuclear reaction, Compound	7
	nuclear reaction, Nuclear fission and fusion.	
4.	Gas, Scintillation and Semiconductor detectors. Neutron detectors,	9
	Accelerators: Cyclotron and Linac.	
5.	Industrial, analytical and medicinal applications; Power from fission,	9
	Nuclear reactors; Source of stellar energy	
	Total	42

S.		Year of
No.	Name of Authors/ Books/Publishers	Publication/Reprint
1.	Lilley J S, "Nuclear Physics", John Wiley & Sons	2007
2.	Ghoshal S.N., "Nuclear Physics", S. Chand & Comp. Ltd	2012
3.	Povh B, Rith K, Scholz C and Zetsch F, "Particles and Nuclei", 2 nd Ed. Springer	1999
4.	Heyde K, "From Nucleons to the Atomic Nucleus", Springer	1998

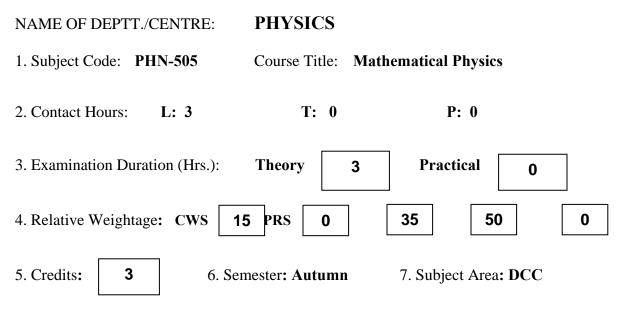


8. Pre-requisite: **PH-110**

- 9. Objective: To introduce the physics of semiconductors, p-n junction, bipolar junction transistors, FET and MOSFET.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Semiconductors: Energy bands, direct and indirect semiconductors,	12
	charge carriers, mobility, drift of carriers in field, Diamond and	
	Zinc-Blende structure, bonds and bands in semiconductors, intrinsic	
	and extrinsic semiconductors, law of mass action, Hall effect and	
	cyclotron resonance in semiconductors.	
2.	Optical I njection: Carrier life time, direct and indirect	10
	recombination of electron and holes, steady state carrier generation,	
	diffusion and drift of carriers, the continuity equation, steady state	
	carrier injection, The Haynes-Shockley experiment.	
3.	Junction Diodes: Metal-Semiconductor contact: under equilibrium,	10
	and non-equilibrium conditions, the junction diode theory, tunnel	
	diode, photodiode, LED, solar cell, Hetro-junctions and Laser diode.	
5.	FET and MOSFET: Ideal MOS capacitor, effect of work function	8
	and interface charge on threshold voltage, MOSFET.	
6.	Gunn D iode: Transferred electron mechanism and drift of space	2
	charge domain.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Streetman B G and Banerjee S "Solid State Electronic Devices",	2005
	6 th Ed. Prentice Hall	
2.	Sze S M, "Semiconductor Devices Physics and Technology" 2 nd	2003
	Ed. John Wiley & Sons	
3.	Tyagi M S, "Semiconductor Materials and Devices", John Wiley	2000
	& Sons	

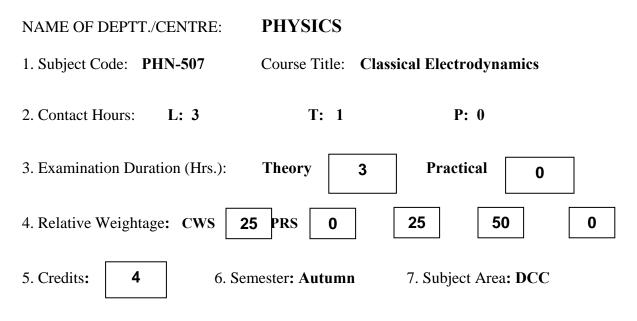


- 8. Pre-requisite: PH-303
- 9. Objective: To apply quantum mechanics to the dynamics of single particle in one-, two- and three- dimensional potential fields.

S. No.	Contents	Contact Hours
1.	Introduction: Postulates of Quantum Mechanics and meaning of measurement, Operators and their expectation values, Schrodinger	6
	equation, Particle in a box, Orthogonality of eigen functions, Dirac rotations, Hilbert space.	
2.	Matrix Formulation: Matrix formulation of 1-dimensional harmonic oscillator problem; creation and annihilation operators; Equation of motion and classical correspondence, Heisenberg equation of motion, Schrodinger, Heisenberg and Interaction picture, Motion in a one-dimensional periodic potential, Kroning-penny model.	8
3.	Motion in a Central P otential: Angular momentum operator, expressions of L^2 and L_z , eigen values and eigen functions of L^2 and L_z , hydrogen atom, solution of radial equation, energy eigen values, eigen functions of H atom, orthogonality of eigen functions, rigid rotator, matrix representation L^2 , L_x , L_y , L_z , generalized angular momentum, generator of rotation and their commutation relations, spin – ½ matrices, coupling of angular momenta, Clebsch-Gordon Coefficients.	10

5.Approximate M ethods: WKB approximation, WKB expansion, connecting formulas, variational principle and its application to Helium atom and hydrogen molecule8	4.	Scattering T heory: Scattering amplitude, differential and total cross-section, scattering by a central potential, method of partial waves, phase-shift analysis, optical theorem, scattering by a square-well potential, integral equation, the Born approximation.	10
Total 42	5.	Approximate M ethods: WKB approximation, WKB expansion, connecting formulas, variational principle and its application to Helium atom and hydrogen molecule	8

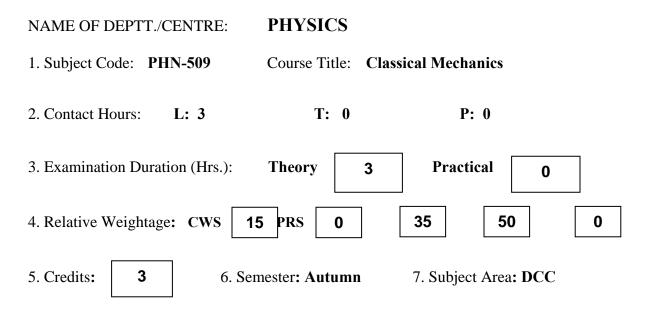
S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Schiff L.I., "Quantum Mechanics", 3 rd Ed, McGraw Hill Book	1990
	Co.	
2.	Merzbacher E, "Quantum Mechanics", 2 nd Ed., John Wiley &	1996
	Sons	
3.	Gasiorowicz S, "Quantum Physics", John Wiley	2000
4.	Mathews P. M. and Venkatesan K, "A Text Book of Quantum	2000
	Mechanics", Tata McGraw Hill	



8. Pre-requisite: Nil

9. Objective: To familiarize th e s tudents with th e s tandard te chniques with ad vance mathematical physics

S. No.	Contents	Contact Hours
1.	Complex variables and applications, analytic functions, contour	6
	integration, residue calculus, conformal mapping and its	
	applications. Fourier and Laplace transforms, evaluation of integral	
	transforms and their inverses using contour integrals.	
2.	Special equations of Mathematical Physics; Legendre and associated	8
	Legendre equations; Hermite equation; Laguerre and associated	
	Laguerre equations; Bessel's equation; Hypergeometric equation;	
	Beta and gamma functions.	
3.	Green's functions and solutions to inhomogeneous differential	8
	equations and applications.	
4.	Covariant and Contravariant tensors, covariant derivatives, affine	6
	connections Christoffel symbols, Curvature tensor.	
5.	Classification and examples of (finite) groups, homomorphisms,	8
	isomorphisms, representation theory for finite groups, reducible and	
	irreducible representations, Schur's Lemma and orthogonality	
	theorem,	
6.	Characters; Lie Groups and Lie algebra; Vector Spaces; Hilbert	6
	Space and operators	
	Total	42


S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Arfken G. B. and Weber H. J., "Mathematical Methods for	2005
	Physicists", 5 th Ed. Academic Press.	
2.	Whittaker E.T.and Watson E.W., "A Course of Modern	2008
	Analysis", Cambridge University Press	
3.	Hammermesh M., "Group Theory and Applications to Physical	1989
	Problems", Dover publications, NY.	
4.	Akhiezer N. I. and Glazman I. M., "Theory of Linear Operator	1993
	in Hilbert Space", Dover Publications	

- 8. Pre-requisite: PH-202
- 9. Objective: To emphasize electric and magnetic phenomena and introduce the covariant formulation of Maxwell's theory of electromagnetism
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Maxwell's E quation: Maxwell's equation, vector and scalar potentials, Gauge transformation, Poynting theorem., plane electro-	12
	magnetic waves, waves in non-conducting and conducting medium; Linear and Circular polarization, reflection and refraction.	
2.	Covariant Formulation of Vacuum Electrodynamics: Space-Time symmetry of the field equations; Covariant formulation; Four-vector potential; Electromagnetic field tensor and its invariants; Lorentz-Force equation in a covariant form.	12
3.	Radiation f rom A ccelerated C harges: Retarded potentials; Lienard-Wiechert potentials; Fields produced by a charge in uniform and arbitrary motion, radiated power; Angular and frequency distribution of radiation, radiation from charged particle with co- linear velocity and acceleration; Synchrotron radiation; Thomson scattering; Cherenkov radiation.	14
4.	Multipole F ields: Inhomogeneous wave equation, multipole expansion of electromagnetic fields, angular distribution, multipole moments.	4
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Jakson J D, "Classical Electrodynamics", John Wiley	2002
2.	Griffiths D J, "Introduction to Electrodynamics", Prentice Hall	1999
3.	Capri A.Z. and Panat P.V., "Introduction to Electrodynamics" Narosa Publication House	2002
4.	Franklin J., "Classical Electromagnetism", Pearson Education	2007

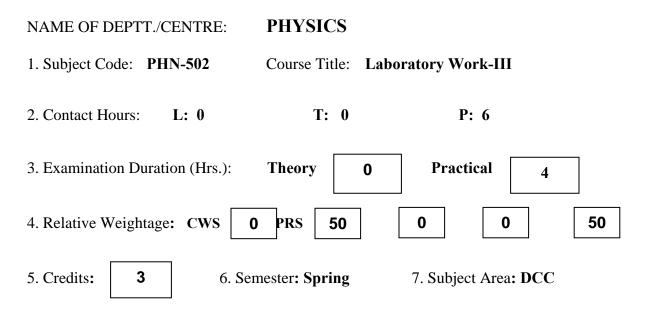
8. Pre-requisite: PH-203

9. Objective: To familiarize students with the various methods of solving problems in classical mechanics using the techniques of Lagrange, Hamilton, Hamilton-Jacobi and Poisson Brackets.

S. No.	Contents	Contact Hours
1.	Lagrange's E quation: C onstraints; D'Alembert's principle and	10
	Lagrange's equation of motion, dissipation function, Hamilton's	
	principle, calculus of variations, nonholonomic systems,	
	conservation laws, relativistic and covariant formulation.	
2.	Hamilton's Equations: Hamilton's equation of motion, cyclic co-	8
	ordinates, Routh's procedure, relativistic formation, variational	
	principle, principle of least action.	
3.	Canonical T ransformations: Equations of canonical	8
	transformations and examples, sympletic approach, Poisson brackets	
	and equation of motion, conservation laws, angular momentum,	
	symmetry groups & Louville's theorem.	
4.	Hamilton-Jacobi T heory: Hamilton-Jacobi equation's of motion,	8
	harmonic oscillations, separation of variables, action-angle variables,	
	Kepler problem, geometrical optics and wave mechanics.	
5.	Canonical Perturbation T heory: Time-dependent perturbation,	8
	examples, time-independent theory in first order and higher orders,	
	applications to celestial and space mechanics, Adiabatic invariants.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Goldstein H, "Classical Mechanics", Narosa	2001
2.	Rana W.C. and Jog P.S, "Classical Mechanics", Tata	1991
	McGraw Hill	
3.	Gupta K.C., "Classical Mechanics of particles and Rigid	2001
	Bodies", Wiley Eastern	

PHYSICS NAME OF DEPTT./CENTRE: 1. Subject Code: PHN-511 Course Title: Computational Physics T: 0 P: 2 2. Contact Hours: L: 2 3. Examination Duration (Hrs.): Theory 2 Practical 2 4. Relative Weightage: CWS <mark>15</mark> PRS 40 <mark>1</mark>5 **15** 15 7. Subject Area: DCC 3 5. Credits: 6. Semester: Autumn

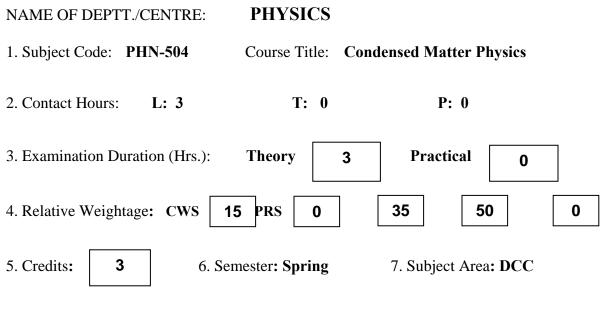

- 8. Pre-requisite: PH-103
- **9. Objective of Course:** To provide the knowledge of computation with suitable mathematical software and its applications to solve the problems of Physics.
- **10.** Details of Course:

S.No.	Contents	Contact Hours
1.	Introduction t o m athematical so ftware: Need and advantages of numerical computation in physics, programming in a suitable mathematical software (Matlab/Mathematica/Scilab/Octave), input/output, interactive input, loading and saving data, loops branches and control flow. Matrices and Vectors, Matrix and array operations, eigenvalues and eigen vectors.	08
3.	Sub programs: Advantages of modular programming, built-in functions, scripts, functions, sharing of variables between modules.	03
4.	Graphics: 2D plots, style options, axis control, overlay plots, subplot, histogram, 3D plots, mesh and surface plots, contour plots.	04
5.	Numerical c omputation: Computer programs for: solving linear system of simultaneous equations, nonlinear algebraic equation, roots of polynomials, curve fitting, polynomial curve fitting, least square curve fitting, interpolation, data analysis and statistics, numerical integration, Monte-Carlo simulation, ordinary differential equation, first order and second order ODEs, event location.	13
	Total	28

List of Experiments

- 1. Black body radiation (computation and graphical representation)
- 2. Reflection and transmission of an electromagnetic wave
- 3. Statistical distributions at different temperatures
- 4. Binding energy curve for nuclei using liquid drop model
- 5. Eigen-value problem: 1-D square potential well
- 6. Eigen-values and wave-functions of a simple harmonic oscillator
- 7. Monte-Carlo simulation
- 8. Linear/Projectile motion (simulation and solutions)

		X7 6
S.No.	Name of Authors / Books / Publisher	Year of
		Publication/
		Reprint
1.	Pratap R, "Getting started with MATLAB 7", Oxford Univ. Press	2006
2.	Gilat A, "Matlab: An introduction with applications", Wiley	2008
3.	Eaton J W, Batchman D and Hauberg S "GNU Octave Manual Version 3",	2008
	Network Theory Ltd.	
4.	Campbell S, Chancelier J P and Nikoukhah R, "Modeling and simulation	2005
	in Scilab", Springer	
5.	Wolfram S, "The Mathematica Book," 5 th Ed., Wolfram Media	2003
6.	Gerald C F and Wheatley P O, "Applied Numerical Analysis", 7 th Ed,	2003
	Addison Wesley	

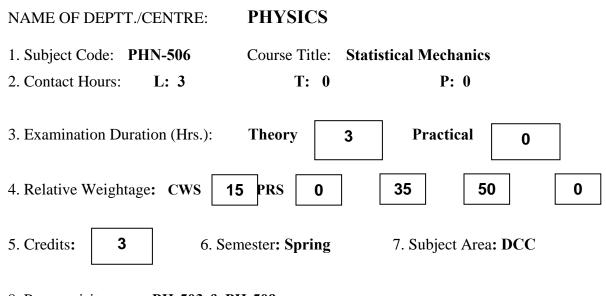

8. Pre-requisite: Nil

9. Objective: To familiarize with the basic experiments in Solid State Physics, Nuclear Physics, Laser Physics and Atmospheric Physics.

S. No.	Contents	Contact
		Hours
1	Study of Hall effect and to determine the Hall coefficient	
2	To measure resistivity of semiconductor by Four Probe method and determination of band gap.	
3	To determine reverse saturation current, material constant and band gap of PN Junction	
4	To ascertain of the Random nature of nuclear radiation	
5	To study G.M. tube characteristics and to calculate the dead time,	14 x 6
6	To determine the relative beta counting of two strong β -sources of nuclear radiation and to determine the absorption coefficients,	
7	To determine the distribution of the size of Aerosol.	
8	To measure the attenuation of laser radiation in varying atmospheric condition.	
9	The measurement of precipitation rate of water using rain gauge.	
10	To determine the numerical aperture of a given multimode fiber using the far field measurements.	

11	To measure the spot size and the angle of divergence of a laser beam, to produce the elliptically and circularly polarized light from an unpolarized laser beam and study their angular intensity profiles.	
12	Design of counter using JK flip flop and a relaxation oscillator with given frequency and duty cycle	
13.	Design a Schmitt trigger with given UTP LTP and hysteresis	
14.	To design a binary/BCD up-down counter using IC 74190/74191	
	Total	84

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Nakra B.C. &. Chaudhery K.K, "Instrumentation	2002
	Measurements & Analysis", Tata McGraw Hill	
2.	Sayer M. & Mansingh A., "Measurement,	2000
	Instrumentation & Experiment Design in Physics and	
	Engineering", Prentice Hall India	
3.	Melissinos A.C. and Napolitano J, "Experiments in	2000
	Modern Physics", Academic Press	
4.	W.R. Runyan, "Semiconductor Measurements and	2002
	Instrumentation", McGraw Hill	

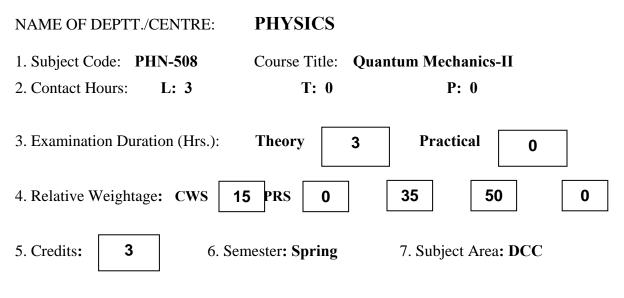

^{8.} Pre-requisite: PH-304

9. Objective: To familiarize with the structural and electronic properties of crystalline and noncrystalline materials and their dynamical properties.

S. No.	Contents	Contact Hours
1.	Crystalline Materials: Scattering of x-ray, neutrons and electrons	6
1.	from solids; Atomic scattering factor; Lattice planes and Miller	U
	indices.	
2.	Lattice Dynamics: Harmonic and adiabatic approximations; Lattice vibrations of three dimensional crystals; Periodic boundary conditions; Normal modes. Quantization of lattice vibrations; Lattice heat capacity (Einstein and Debye theories) anharmonicity of thermal expansion.	9
3.	Electronic E nergy Bands: Resume of free-electron model; Fermi energy; Fermi surface and electronic heat capacity, electrical and thermal conductivity, nearly free electron model; Periodic potential and Bloch theorem, extended and reduced zone scheme, tight binding model.	9
4.	Superconductivity: Experimental evidence (Meissner effect, heat capacity, energy gap, microwave properties and isotope effect), Thermodynamics of superconductors; London equation; Elementary BCS theory.	9

5.	Non-crystalline Mat erials: Non-crystalline solids – diffraction	9
	pattern and radial distribution function, Elementary idea of glass	
	transition, Quasi crystals, Liquid crystals – idea of orientational	
	order and Landau theory of isotropic-nematic phase transition,	
	Physics of Polymers.	
	Total	42

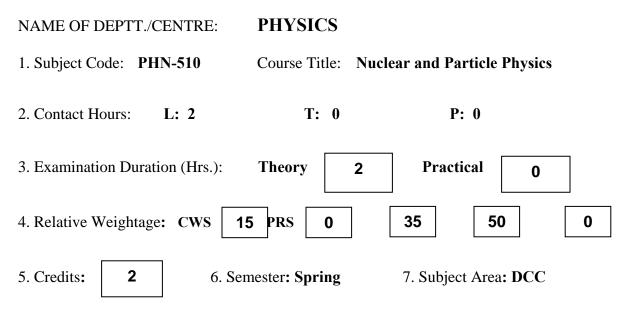
S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Taylor P. L. and Heinonen O., "A Quantum Approach to	2004
	Condensed Matter Physics", Cambridge University	
	Press	
2.	Ashcroft N W and Mermin N D, "Solid State Physics",	2000
	Holt-Saunders	
3.	Chaikin P M and Lubensky T C, "Principles of	2000
	Condensed Matter Physics", Cambridge University	
	Press	
4.	Hamley I. W., "An Introduction to Soft Matter:	2000
	Polymers, Colloids, Amphiphiles and Liquids" John	
	Wiley	


8. Pre-requisite: **PH-503 & PH-509**

- 9. Objective: To understand the macroscopic behaviour of the classical and quantum thermodynamic systems.
- 10. Details of Course:

S.No.	Contents	Contact
1.	Classical Statistical Mechanics: Macro and microstates, connection between statistics and thermodynamics, phase space; Liouville's Theorem. Microcanonical, canonical and grand canonical ensembles; Energy and Density fluctuations; equivalence of various ensembles. Equipartition and virial theorem, partition function; Derivation of thermodynamic properties; some examples including (i) classical ideal gas (ii) system of classical harmonic oscillators, (iii) system of magnetic dipoles in magnetic field.	Hours 10
2.	Quantum St atistical Me chanics: Quantum mechanical ensembles theory, the density matrix and partition function with examples including (i) an electron in a magnetic field (ii) a free particle in a box (iii) a linear harmonic oscillator. Symmetric and Antisymmetric Wavefunctions. Microcanonical ensemble of ideal Bose, Fermi and Boltzmann gases, derivation of Bose, Fermi and Boltzmann statistics; Grand Partition function of ideal Bose and Fermi gases; Statistics of the occupation.	12
3.	Ideal B ose a nd F ermi S ystems: Thermodynamic behaviour of an ideal Bose gas; Bose condensation; Liquid Helium; Blackbody radiation and Planck's law of radiation; Thermodynamic behaviour of an ideal Fermi gas; Electrons in metals, specific heat and Pauli susceptibility of electron gas.	10

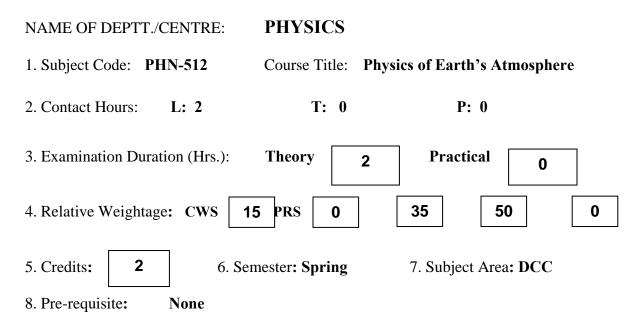
4.	Phase Transitions and Critical Phenomenon : Order parameter, Ist and IInd order phase transitions. Ising model in zeroth and first approximation. Critical exponents, thermodynamic inequalities, Landau theory of phase transitions.	10
	Total	42


S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Patharia R K "Statistical Mechanics" (2 nd Ed.), Pergaman press	2001
2.	Huang K "Statistical Mechanics" (2 nd Ed., 2 nd reprint), John Wiley & Sons	2003
3.	Landau L.D. and Lifshitz E M "Statistical Mechanics", Butteworth-Heinemaun	1998
4.	McQuarrie D A "Statistical Mechanics", Harper & Row	2003

- 8. Pre-requisite: PH-503
- 9. Objective: To introduce various approximation methods for stationary and timedependent problems; two-particle systems, basic ideas of self-consistent field theories and relativistic quantum mechanics.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Time-independent Pe rturbation T heory: Non-degenerate and degenerate perturbation theory, its application to Stark effect,	10
	Zeeman effect, spin-orbit coupling, fine structure and to anharmonic oscillator.	
2.	Time-dependent Perturbation T heory: Transition probability,	10
	harmonic perturbation, Fermi-golden rule, semi-classical theory of radiation, stimulated emission cross-section.	
3.	Identical P articles: Indistinguishability, permutation symmetry, two-particle system; Helium atoms, simple idea of Hartee self-consistent field method, Hartee-Fock method.	10
4.	Relativistic Qu antum M echanics: Klein-Gordon equation and its applications, Dirac theory of electron, spin of the electron, solution of Dirac equation for free particles, hole (positron)-Dirac equation for Hydrogen atom.	12
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Griffiths D J, "Introduction to Quantum Mechanics", 2 nd	2005
	Ed, Pearson Eduction	
2.	Bransden B H and Joachain C J, "Quantum Mechanics", 2 nd Ed, Pearson Eduction	2000
3.	Zettili N, "Quantum Mechanics: Concepts and Applications", 2 nd Ed, John Wiley	2009
4.	Schiff L I, "Quantum Mechanics", 3 rd Ed, McGraw Hill Book Co.	1990
5.	Schwabl F, "Advanced Quantum Mechanics", 4 th Ed, Springer-Verlag	2008
6	Bjorken J D and Drell S D, "Relativistic Quantum Mechanics", McGraw Hill Book Co.	1998
7.	J.J.Sakurai, "Modern Quantum Mechanics", 1 st edition, Addison Wesley	1993



8. Pre-requisite: PH-308

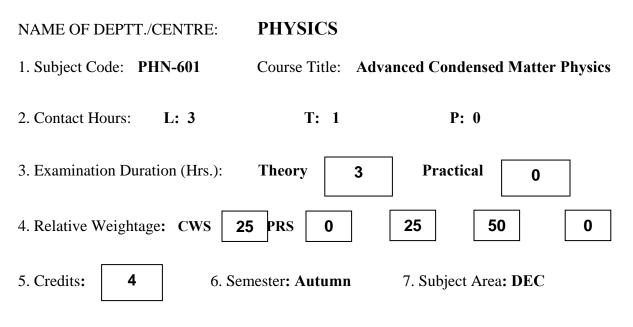
9. Objective: To introduce the foundations of nuclear and particle physics.

S. No.	Contents	Contact Hours
1.	Binding Energy and Mass Formula; Nature of nuclear force; Two nucleon problem: Ground state of deuteron, its magnetic moment and quadrupole moment; Tensor nature of nuclear force; Gamma decay selection rules; Rotational spectra in deformed nuclei; Nuclear reaction mechanisms; Compound nuclear reaction	
2.	Concept of isospin, Charge independence of nuclear force in the light of isospin; mirror nuclei; estimate of decay rates from isospin conservation.	4
3.	Strangeness, Lepton and other quantum numbers, conservation of these quantum numbers related to strong and weak reactions, Strong interaction, salient features of Quantum chromodynamics, structure of nucleon, quark model, concept of colour.	5
4.	SU(2) and SU(3) of isospin symmetry and its generators, preliminary idea of Lie algebra, SU(3) flavour symmetry and construction of meson octet, Baryon octet & decuplet and their wave functions.	5
5.	β -decay and its classifications, neutrino hypothesis, energy spectrum of β -decay, Fermi theory of β -decay, concept of parity, helicity, non- conservation of parity in β -decay and its experimental verifications, Standard model of particle physics.	6
	Total	28

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Perkins, D.H., "Introduction to High Energy Physics",	2004
	Addison-Wesley Publishing company.	
2.	Griffith D, "Introduction of Elementary Particles", John	2005
	Wiley	
3.	Burcham W E and Jobes M, "Nuclear & Particle Physics",	2002
	Addison-Wesley	
4.	Ghoshal, S.N., "Nuclear Physics", S. Chand and Company	2000
5.	Samuel S.M.Wong, "Introductory Nuclear Physics", Wiley-	1999
	VCH; 2nd edition	

9. Objective: To introduce the basics of atmospheric physics.

S. No.	Contents	
		Hours
1.	Atmospheric E volution: Solar radiation, present atmospheric constituents, evolution of the atmosphere, formation of ozone.	6
2.	Lower A tmosphere: Variation of temperature, density, ionization and pressure with altitude, hydrostatic equation, green house effect, lapse rate and stability criteria, cloud formation and precipitation.	8
3.	Upper A tmosphere: Chapman theory of layer production, formation of ionosphere, photochemistry of the thermosphere, electron, ion and neutral temperatures in the thermosphere, airglow and auroral emissions.	8
4.	Weather: weather and climate, weather modification, artificial rain making, cloud suppression, storms.	6
	Total	28

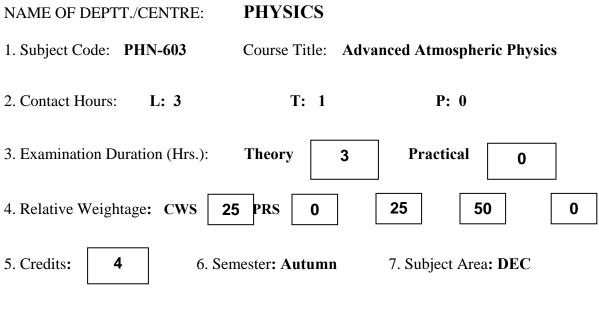

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Seeds M.A., "Solar System", Brooks/Cole Thomson	2007
	Learning	
2.	Houghton J.T. "Physics of Atmosphere", Cambridge Univ.	2002
	Press	
3.	Rogers R R, "A Short Course in Cloud Physics", Pergamon	1989
	Press	

NAME OF DEPTT./CENTRE:	PHYSICS		
1. Subject Code: PHN-514	Course Title:	Molecular Spectroscopy and Lasers	
2. Contact Hours: L: 2	T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory	2 Practical 0	
4. Relative Weightage: CWS 15	PRS 0	35 50	0
5. Credits: 2 6. Sem	nester: Spring	7. Subject Area: DCC	
8. Pre-requisite: PH-307			

9. Objective: To introduce molecular spectroscopy and the basics of lasers.

S.No.	Contents	Contact Hours
1.	Types of molecular energy states and molecular spectra, pure rotational spectra; Vibration-Rotational spectra, Raman Spectra; Electronic spectra, Classification of molecular electronic states	9
2.	Frank-Condon principle; Isotope effect on electronic spectra; Fluorescence and Phosphorecence; Classification of molecular electronic states. Idea of Line broadening mechanisms	5
3.	Lasers-Physical principles; Threshold condition; Generation of population Inversion; Properties of Lasers; He-Ne, CO ₂ and Nd;Yag Lasers	7
4.	Laser absorption Spectroscopy; Saturated absorption spectroscopy; Doppler-free two photon spectroscopy; Level crossing spectroscopy.	7
	Total	28

S.No.	Name of Authors/ Books/Publishers	Year of Publication /Reprint
1.	Hanken H and Wolf H C, "The Physics of Atoms and Quanta", (6 th edition), Springer	2007
2.	Herzberg G, "Molecular Spectra and Molecular Structure of Diatomic Molecules", Van Nostrand Reinhold	1989
3.	Bransden B H, Joachain C J, "Physics of Atoms and Molecules" (2nd Edition) Pearson Education	2003
4.	Metcalf H J, "Laser Cooling and Trapping", Peter van der Straten, Springer	2001
5.	Foot, C. J., "Atomic Physics", 1 st edition, Oxford University Press USA	2005

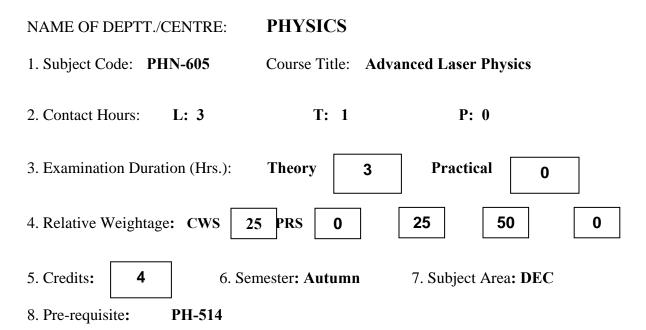


- 8. Pre-requisite: PH-504
- 9. Objective: To introduce the general aspects of phase transition, electronic transport phenomena, superconductivity, dielectric, optical and magnetic properties of solids.

S. No.	Contents	Contact
		Hours
1.	Surface an d In terfaces: Work function and contact potential;	9
	Thermoionic emission; Low-energy electron diffraction; Electronic	
	surface levels; Super lattices; Quantum wells; Quantum wires,	
	Quantum dots and carbon Nanotubes.	
2.	Magnetism: Magnetic properties of insulators, Langevin diamagnetism and Van Vleck paramagnetism, Curie paramagnets and Curie-Weiss ferromagnets, Neel Antiferromagnets, Heisenberg model; Spin Waves, Ising model; Elements of magnetic properties of metals, Landau diamagnetism, Pauli paramagnetism, Stoner ferromagnetism; Magnetic resonance; NMR and EPR.	9
3.	Transport P roperties: Boltzmann equation; Relaxation time approximation; General transport coefficients; Electronic conduction in metals; Thermoelectric effects; Transport phenomena in magnetic field; Magnetoresistance; Hall effect and Quantum Hall effect.	8
4.	Phase T ransitions: Order parameter; Critical points; First and second order phase transitions; Mean field theory; Properties near critical point; Landau theory; Bragg-Williams theory; Liquid-gas transition and Isotropic-mematic transition.	8

5.	Superconductivity: Cooper pairing and BCS theory; Ginzburg-	8
	Landau theory; Flux quantization; Supercurrent tunneling; DC and	
	AC Josephson effects; High-Tc superconductors.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Kittel C, "Introduction to Solid State Physics", 6 th Ed.	2004
	Wiley eastern Ltd	
2.	Ashcroft N W and Mermin N D, "Solid State Physics",	2000
	Holt-Saunders	
3.	Chaikin P M and Lubensky T C, "Principles of	1995
	Condensed Matter Physics", Cambridge University	
	Press	
4.	Harrison P, "Quantum Wells, Wires and Dots", Wiley &	2005
	Sons Ltd.	


8. Pre-requisite: PH-512

9. Objective: To provide the knowledge of advances in atmospheric physics.

S. No.	Contents	Contact Hours
1.	Atmospheric Dynamics: Apparent forces, effective gravity, coriolis	12
	force, pressure gradient force, gradient wind, thermal wind,	
	continuity equation, perturbation theory and atmospheric waves,	
	sound waves, gravity waves and Rossby waves, Momentum and	
	energy transports by waves in the horizontal and the vertical.	
2.	Atmospheric Instabilities	10
	Atmospheric instabilities, dynamical instabilities, barotropic	
	instability, baroclinic inertial instability, Necessary condition of	
	barotropic and baroclinic instability. Combined barotropic	
	andbaroclinic instability. Kelvin-Helmholtz instability	
3.	Ionosphere: Formation of Ionosphere, Chemical processes,	10
	Ionospheric conductivity, Planetary ionospheres, Ionospheric	
	exploration using rockets and satellites, langmuir probe, temperature	
	measurements, airglow and aurora, radio wave propagation in the	
	ionosphere.	
4.	Magnetosphere: Earth as a magnet, solar wind, types and theory of	10
	solar wind, frozen-in magnetic field, interaction of solar wind with	
	Earth's magnetic field and formation of magnetosphere, inter	
	planetary magnetic field (IMF), geomagnetic storms, van-allen	

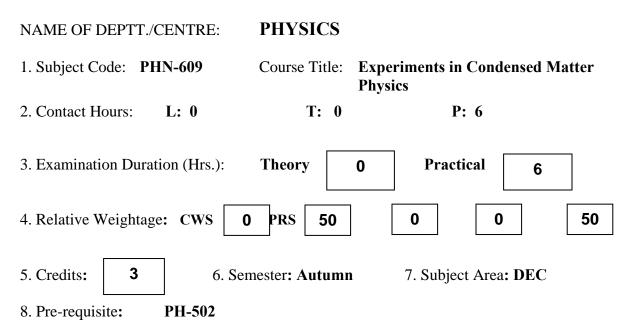
radiation belts, plasmasphere, coronal holes, CMEs, satellite observations of various plasma domains and plasma instabilities.	
Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Vallace J and Hobbs, P V, "Atmospheric Science", Academic	1997
	Press	
2.	Rees M H, "Physics & Chemistry of Upper Atmosphere",	1989
	Cambridge Univ. Press	
3.	Ratcliffe J A, "An Introduction to the Ionosphere &	1972
	Magnetosphere, Cambridge Univ. Press	
4.	Smithson P, "Fundamentals of Physical Environment", Ken	2008
	Addison and Attrinson,	
5.	Rogers R R, "A short course in Cloud Physics", Pergamon Press	1989

9. Objective: To introduce the concept of laser physics and its applications.

S. No.	Contents	Contact Hours
1.	Quantum theory for the evaluation of the transition rates and	6
	Einstein's coefficients, interaction of matter with radiation having	
	broad spectrum, interaction of near monochromatic radiation with an atom having broad frequency response.	
2.	Line broadening mechanisms, homogeneous and inhomogeneous	4
	broadening, natural collision and Doppler broadening mechanisms and line shape functions.	
3.	Laser rate equations, the three levels and four levels system,	5
	variation of power around threshold, optimum output coupling,	
	quality factor, the ultimate line width of the laser.	
4.	Optical resonators, modes of a rectangular cavity and open planar	6
	resonators, confocal resonator system, modes of a confocal resonator	
	using Huygen's principle, planar resonators, Fox and Li theory.	
5.	Pulsed lasers, Q-switching techniques, active and passive shutters,	5
	mode-locking, various techniques for mode-locking of a laser.	
6.	Mechanism and applications of Ar-ion, CO ₂ , Nd:YAG, Ti:Sapphire,	5
	Dye, Excimer and free electron lasers.	
7.	Semiconductor lasers, p-n junction diode lasers, hetrojunction lasers.	5
8.	Modulation techniques for laser light, electro-optic and acousto-optic	6
	modulation, electro-optic effect in KDP crystal, longitudinal and	
	transverse modes, acousto-optic effect, Raman-Nath and Bragg	
	diffraction, small and large angle Bragg diffraction.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Laud B B, "Lasers and Nonlinear Optics", Wiley Eastern Ltd.	1992
2.	Ghatak A K and Thyagarajan K., "Optical Electronics",	2003
	Cambridge University Press	
3.	Yariv A, "Quantum Electronics", John Wiley & Sons	1989
4.	Thyagarajan K. and Ghatak A., "Lasers: Theory and	1997
	Applications", Macmillan	
5.	Yariv A, "optical Electronics", Oxford University Press	1997


NAME OF DEPTT./C	CENTRE:	PHYSICS			
1. Subject Code: PHN-607		Course Title:	Advanced N	uclear Physi	ics
2. Contact Hours:	L: 3	T: 1		P: 0	
3. Examination Durati	ion (Hrs.): 7	Theory 3		Practical	0
4. Relative Weightage	e: CWS	25 PRS 0	25	50	0
5. Credits: 4	6. Se	emester: Autumr	1 7. Su	bject Area : D	EC

8. Pre-requisite: PH 510

9. Objective: To introduce the advanced concepts of nuclear physics.

S. No.	Contents	Contact Hours
1.	Yukawa theory of nuclear forces, Deuteron problem and tensor	6
	forces, n-p, p-p scattering and partial wave theory, effective range	
	theory.	
2.	Shell Model and its predictions: magnetic moments of nuclei and	8
	Schmidt lines, quadrupole moments; Even-even, odd-even, odd-odd	
	nuclei, pairing interaction; Many-body basis states, Hartree-Fock	
	single-particle Hamiltonian, selection of shell model space and	
	effective Hamiltonian.	
3.	Deformed nuclei and their shapes; Colletive model Hamiltonian,	7
	vibrational and rotational spectra, Nilsson model. High spin	
	phenomena (back bending), superdeformation, octopole deformation	
	Giant dipole resonances.	
4.	Kinematics of nuclear reaction, reciprocity theorem, compound	7
	nuclear reaction, direct reaction and derivation of the crossections in	
	these processes; Statistical theory of nuclear reaction and concept of	
	nuclear temperature and entropy	
5.	Shape-elastic, compound elastic scattering and dispersion relations,	7
	Electromagnetic transitions in nuclei, multipole expansion of the	
	electromagnetic field; Transition probability in semiclassical	
	treatment, Weisskopf estimate.	
6.	Angular correlation studies; Lifetime measurements; Detection of	7
	gamma rays; Hp-Ge and other detectors; Gamma arrays.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Roy R R and Nigam B P, "Nuclear Physics", John Wiley	2002
2.	Srivastava B B, "Fundamentals of Nuclear Physics", Rastogi	2006
	Publications	
3.	Eisenberg J M and Greiner W, "Nuclear Theory", Vols. 1, North	2002
	Holland	
4.	Eisenberg J M and Greiner W, "Nuclear Theory", Vols. 2, North	2002
	Holland	
5.	Eisenberg J M and Greiner W, "Nuclear Theory", Vols. 3, North	2002
	Holland	

- 9. Objective: To familiarize the students with the advanced experiments in Condensed Matter Physics.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	Study of variation of resistivity of metal and highly resistive materials with temperature by Four Probe Technique.	
2	Mapping and analysis of the resistivity of large samples (thin films, superconductors. etc.) by Four probe Technique.	
3	To study the temperature dependence of Hall coefficient of N and P type semiconductors	
4	 (a) To measure the dielectric constant and Curie temperature of given ferroelectric samples. (b) To measure the coercive field (E_c), Remanent Polarization (P_r), Curie Temperature (T_c) and Spontaneous Polarization (P_s) of Barium Titanate (BaTiO₃). 	14 x 6
5	Thermoluminescence in alkali halides crystals.(a) To produce F centers in the crystal exposing to X-ray /UV source.(b) To determine activation energy of the F-centers from initial rise method.	
6	Verification of Bragg's law and determination of wavelength/energy spectrum of X-rays.	
7	Study of Solar Cell characteristics and to determine (i) Open circuit voltage ' V_{oc} ' (ii) Short circuit current ' I_{sc} ', (iii)Efficiency ' η ',(iv) Fill factor, (v) Spectral characteristics and (vi) Chopper characteristics.	
8	To measure the magnetoresistance of semiconductor and analyze the plots of $\Delta R/R$ and log-log plot of $\Delta R/R$ Vs magnetic field.	

9	To determine the coercivity, saturation magnetization and retentivity of	
	ferromagnetic samples using Magnetic Hysteresis Loop Tracer	
10	To study the temperature dependence of Laser diode characteristics	
11	To determine transition temperature of given superconducting material and	
	study Meissner effect.	
12	To measure critical current density of given superconductor and study its	
	field dependence.	
13	To determine the value of Lande's 'g' factor using ESR spectrometer.	
14	To study C-V characteristics of various solid state devices & materials. (like	
	p-n junctions and ferroelectric capacitors	
	Total	84

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Melissinos A.C. and Napolitano J, "Experiments in Modern	2003
2.	Physics", Academic PressS.M. Sze, "Semiconductor devices Physics & Tech.", Wiley	2002

NAME OF DEPTT./CENTRE:	PHYSICS		
1. Subject Code: PHN-611	Course Title: Ex	xperiments in Atmosphe	eric Physics
2. Contact Hours: L: 0	T: 0	P: 6	
3. Examination Duration (Hrs.):	Theory 0	Practical	6
4. Relative Weightage: CWS 0	PRS 50	0 0	50
5. Credits: 3 6. Sem	nester: Autumn	7. Subject Area: DE	CC

- 8. Pre-requisite: PH-502
- **9. Objective of Course:** The lab work aims to familiarizing students with the basic experiments in Atmospheric Physics.

Sl.No		Contact
•	Contents	Hours
1	To measure fair weather electric field and do atmospheric electric field simulation	
2	To measure the concentration of salts in the ground water and rain water using	
	Flame Photometer	
3	To measure the rain water precipitation rate and to find rain drop size distribution using Rain Gauge:	14 x 6
4	To measure attenuation coefficient of a gas for a given wave length of electromagnetic radiation.	
5	To measure the size distribution of aerosol particles.	
6	To measure solar constant using Solarimeter and study the diuranal variation of solar flux in the visible spectrum.	
7	To measure the diuranal variation of sound noise: A case study.	
8	To study and analysis of VLF generated by lightning.	
9	Study and assessment of ambient air quality using spectrophotometer.	
10	To analyze Ionosonds data and obtain electron density is the ionosphere.	
	Total	84

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	McCartney E J, "Optics of the Atmosphere", Wiley	1976
2.	Hulst H C, "Light Scattering by Small Particle", Courier Dover	1964
	Pub	
3.	Lab Manual for Flame Photometer, Elico Ltd.	
4.	Lab Manual for Aerosol Size distribution, Scientific India	
5.	Lab Manual for Attenuation Constant, Spectra Laser	
6.	Lab Manual for Rain Gauge, Weather Measure Corp.	
7.	Lab Manual for Electric Field Simulation, Atmospheric Lab, IITR	

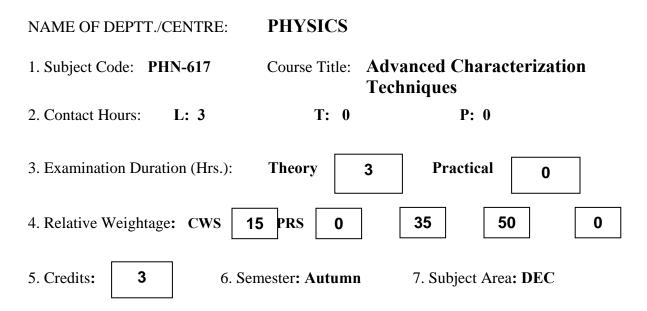
NAME OF DEPTT./CENTRE:	Physics			
1. Subject Code:PHN-6132. Contact Hours:L: 0	Course Title: F T: 0	Experiments in Laser P: 6	Physics	
3. Examination Duration (Hrs.):	Theory 0) Practical	6	
4. Relative Weightage: CWS 0	PRS 50	0 0		50
5. Credits: 3 6. Sen	nester: Autumn	7. Subject Area	: DEC	
8. Pre-requisite: PH-502				

9. Objective: The lab work aims to familiarize the students with the advanced experiments in Laser Physics Lab.

S No	alls of Course.	Contact Hours
S. No.	Contents	Contact Hours
1.	To determine the mode field diameter (MFD) of the fundamental	
	mode of a given single-mode fiber using the far field technique.	
2.	To measure the near field intensity profile of a multimode fiber and	
	thereby its refractive index profile.	
3.	To measure the propagation constants of a given optical waveguide	
	using the prism coupling technique.	
4.	To study electrical and optical characteristics of LED and LD.	
5.	To measure power loss at a splice between two multimode fibers and	
	study the variation of splice loss with transverse, longitudinal and	
	angular offsets.	
6.	To study bend-induced loss in a single mode fiber.	14 x 6
7.	To study faraday effect and to measure the angle of rotation as a	
	function of mean flux density at different wavelengths thereby	
	evaluate Verdet's constant as a function of wavelength.	
8.	To study Kerr effect and to determine Kerr constant of a given	
	material.	
9.	To study fiber grating based pressure sensor.	
10.	To construct EDF ring laser and characterize it in terms of slope	
	efficiency, lasing threshold and intra-cavity loss.	
11.	To record and reconstruct holograms.	
12.	To characterizes a WDM based optical communication system in	
-	terms of insertion/return loss, isolation/extinction ratio, narrowband	
	wavelength response of WDM components and chromatic dispersion.	
13.	To construct and characterize a diode pumped Nd:YVO ₄ /Nd:YAG	
	laser and to do second harmonic generation.	

14.	To study the acousto-optic effect and determine the velocity of acoustic waves in a given medium using a laser beam	
	Total	84

S.		Year of
No.	Name of Authors/ Books/Publishers	Publication/Reprint
1.	Ghatak and Shenoy, "Fiber Optics through experiments", Viva	1994
	Books	
2.	Laud B B, "Lasers and Nonlinear Optics", Wiley Eastern Ltd.	1992
3.	Ghatak A.K., Pal, B.P., Shenoy M. R. and Khijwania S.K, "Fiber	2009
	Optics through Experiment", Viva Books	
4.	Ghatak A. K. and Thyagrajan K., "Optical Electronics",	2003
	Cambridge University Press	

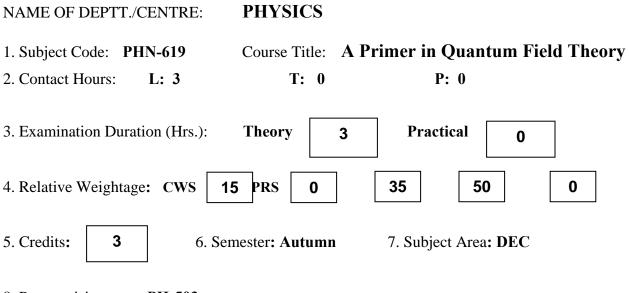

NAME OF DEPTT./CENTRE:	PHYSICS		
 Subject Code: PHN-615 Contact Hours: L: 0 	Course Title: I T: 0	Experiments in Nuclear Phys P: 6	ics
3. Examination Duration (Hrs.):	Theory () Practical 6	
4. Relative Weightage: CWS 0	PRS 50	0 0	50
5. Credits: 3 6. Sen	nester: Autumn	7. Subject Area: DEC	

- 8. Pre-requisite: PH-502
- 9. Objective: The lab work aims to familiarizing students with the advanced experiments in Nuclear Physics.

S. No.	Contents	Contact Hours
1.	To do the energy analysis of an Unknown Gamma Source by Gamma RaySpectroscopy using NaI(Tl) - Single Channel Analyzer(i)Energy Calibration(ii)Energy Analysis of an Unknown Gamma Source.(iii)Energy Resolution.	
2.	To do Spectrum Analysis of ⁶⁰ Co and ¹³⁷ Cs by Gamma Ray Spectroscopy using NaI(Tl) - Multi Channel Analyzer and study the Energy resolution dependence on detector size.	14 x 6
3.	To find the Mass Absorption Coefficient of lead for 662 KeV gamma ray	
4.	 Alpha Spectroscopy with surface barrier detectors (i) Alpha spectrum and energy calibration. (ii) Energy determination of an Unknown alpha source of alpha particles. 	
5.	Spectrum expansion with Multi-channel Analyzer and decay ratios of ²⁴¹ Am.	
6.	Beta spectroscopy(i)Calibration with a pulser(ii)Beta end point determination for ²⁰⁴ Tl(iii)Conversion electron ratio.	
7.	Compton Scattering(i)Simple Compton Scattering (Energy Determination)(ii)Simple Compton Scattering (Cross-section Determination)	

8.	To study Rutherford Scattering of alpha particles from thin gold foil and Al foil.	
9.		
	To determine Half-Lives of Radioactive sources prepared by neutron activation – In and Ag isotopes	
10.		
	To study Gamma-gamma coincidence by	
	(i) Overlap coincidence method $-{}^{22}$ Na	
	(ii) Time to pulse height converter method $-{}^{22}$ Na	
	Total	84

S.	Name of Books / Authors	Year of
No.		Publication/Reprint
1.	Leo W R, "Techniques for Nuclear & Particle Physics	2000
	Experiments", Narosa	
2.	Kapoor S S and Ramamurthy V, "Nuclear Radiation Detectors",	1986
	New Age Publishers	
3.	ORTEC Lab Manual, "Experiments in Nuclear Science", ORTEC	1992


8. Pre-requisite: **PH-201, PH-202**

9. Objective: To introduce the various methods of characterization of materials for their structural, electrical, magnetic and optical properties.

S.No.	Contents	Contact Hours
1	Crystal Structure Determination: Brief description of Crystal Lattices; X-ray diffractometer; Determination of Crystal Structure using X-ray diffraction	12
2	Electron M icroscopes: Brief description of different microscopes like TEM, SEM, AFM; Different modes of operation of microscopes, sample preparation, Interpretation of electron diffraction and determination of Crystal Structure; Morphology of the Crystals.	11
3	Thermal Analysis: Thermogravimetric analysis, Differential thermal analysis and Differential scanning calorimetry and methodology; Determination of phase transitions using these methods.	05
4	Electrical and Magnetic Property: Measurement of Electrical conductivity in different materials, e.g. insulators, metals and semiconductors. Using Four Probe and Hall Effect method. Vibrating Sample Magnetometer (VSM), Superconducting Quantum interference Devices (SQUID)	8
5	Optical Characterization: Optical characterization of materials using Photoluminescence and UV-visible spectroscopy.	03

6	Chemical Analysis: Brief description to X-ray fluorescence, Atomic absorption and electronic spin resonance spectroscopy.	03
	Total	42

S.No.	Name of Authors/ Books/Publishers	Year of Publication /Reprint
1.	Culity B D, "Elements of X-ray Diffraction", Addison-Wesley.	2001
2.	Grundy P J and Jones G A, "Electron Microscopy in the Study of Materials",	1976
	Edward Arnold	
3.	Egerton R F, "Physical Principles of Electron Microscopy", Springer	2008
4.	Willard, Merritt, Dean and Settle, "Instrumental Methods of Analysis", CBS	1991
	publications	
5.	Fultz B and Howe J M, "Transmission Electron Microscopy and Diffractometry	2007
	of Materials", Springer.	

- 8. Pre-requisite: PH-503
- 9. Objective: To familiarize students with applications of relativistic quantum mechanics.
- 10. Details of Course:

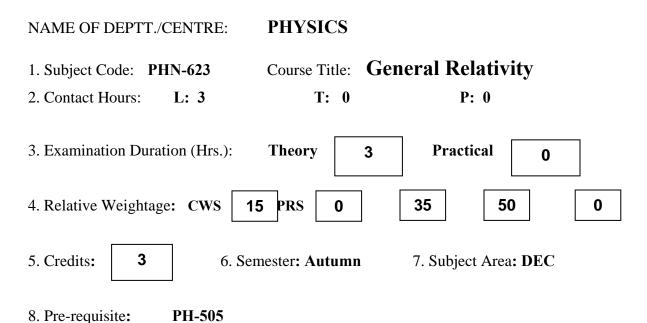
S.No.	Contents	Contact Hours
1.	Basics: Action principle; Euler-Lagrange equations of motion, second quantization;	4
	Symmetry (space-time and internal) Conserved Nöther charges.	
2.	Tensors: Definitions of contravariant, covariant and mixed tensors, need to use tensors in relativistic quantum mechanics.	2
3.	Spin-0 (Klein Gordon Field Theory): Real scalar field theory and its canonical quantization; Normal Ordering; Charged scalar field theory and its canonical quantization, conserved Nöther current and charge, Propagator (also as vacuum expectation value of a time-ordered product), interpretation of negative-energy solutions as anti-matter; Recasting Klein-Gordon equation as a Schrödinger equation, Zitterbewegung.	7
4.	Spin-1/2 (Dirac Field Theory): Dirac Lagrangian for spinor fields, Feynman Gamma matrices and related identities; Covariance of the Dirac equation; Canonical quantization of the spinor fields, positive- and negative-energy spinors, positive- and negative-energy projectors, Lorentz transformations to boost from rest frame to lab frame; Propagator (also as vacuum expectation value of a time-ordered product), Discrete symmetries: Charge conjugation, Parity and Time reversal symmetries.	9
<mark>4.</mark>	Spin-1 (Gauge Field Theory): Covariant formulation of Maxwell's equations, (transverse) canonical quantization of the gauge field (in the Coulomb gauge),	5
<mark>1.</mark>	Scattering: LSZ reduction (for bosons and fermions), Wick's theorem, S-matrix, cross sections.	6

2.	Quantum Electrodynamics: Quantization of abelian gauge theories with fermions;	9
	Feynman Rules; Compton effect; Møller Scattering, radiative corrections; Anomalous	
	Magnetic Moment; Infrared Divergence; Lamb shift.	
	Total	42

S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Michio K, Quantum Field Theory: A Modern Introduction, Oxford University Press.	1993
2.	Claude I and Jean B. Z., "Quantum Field Theory, McGraw Hill College Div.	2006
3.	Lewis H R, "Quantum Field Theory", Cambridge University Press	2001
4.	Michael E. P, "An Introduction to Quantum Field Theory, Perseus Books Publishing	2002
5.	Lahiri A, Pal P B., A First Book of Quantum Field Theory, Narosa Publishing House	2005

NAME OF DEPTT./CENTRE:	PHYSICS		
1. Subject Code: PHN-621	Course Title: Astr	ophysics	
2. Contact Hours: L: 3	T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weightage: CWS 15	PRS 0	35 50	0
5. Credits: 3 6. Sem	nester: Autumn	7. Subject Area: I	DEC

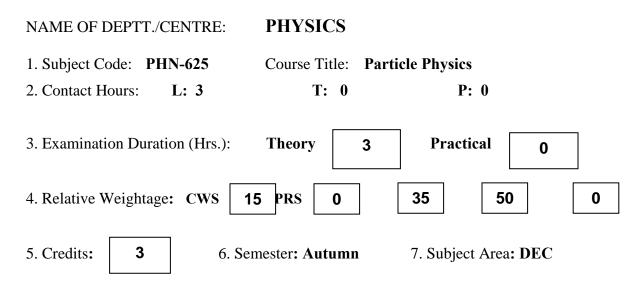
8. Pre-requisite: PH-202 and PH-303


9. Objective: The course exposes the students to a broad field of astrophysics and cosmology at the introductory level.

10. Details of Course:

S.No.	Contents	Contact Hours
1	Introduction: Celestial sphere, elliptical orbits, Newtonian mechanics, Kepler's laws, Virial theorem, magnitude scales, color index, stellar parallax, distance measurements, astronomical instruments.	8
2	Physics of Sun: Spectralclassification of stars, structure of the Sun, solar cycle, sun spots, properties and structure of our solar system, extrasolar planets.	6
3	Physics of Stars: Star formation, stellar evolution from pre-main sequence through the main sequence, binaries, clusters. Final stages of stellar evolution and stellar remnant: giants, white dwarfs, supernovae, neutron stars, pulsars, blackholes.	10
4	Physics of Galaxies: Galactic structure and classification, our galaxy, active galactic nuclei, quasars, galactic rotation curves and dark matter, galaxy clusters and large-scale structure.	10
5.	Cosmology: Big bang cosmology, redshift and expansion of the universe, the cosmic microwave background, physics of the early universe.	8
	Total	42

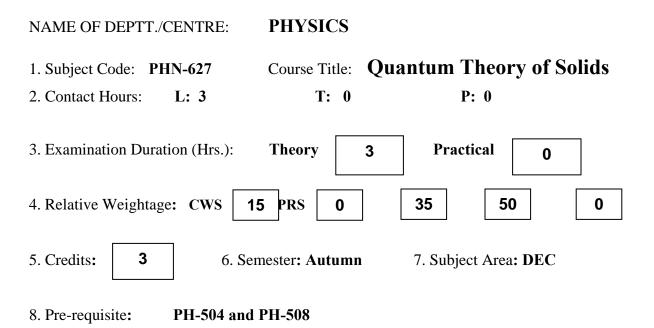
S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Carroll B W &Ostlie D A, "An introduction to modern astrophysics", 2 nd ed., Pearson Education	2007
	eu., realson Euucation	


2.	Basu B,Tanuka C, &Nath B S, "An introduction to astrophysics", 2 nd ed.,	2010
	Prentice Hall of India,	
3.	Abhyankar K D, "Astrophysics: Stars and Galaxies", 1 st ed., Universities	2000
	Press (India) Limited.	
4.	Shu Frank, "The Physical Universe: An Introduction to Astronomy",1st	1982
	ed., University Science Books	
5.	Padmanabhan T, "Theoretical Astrophysics: vol.1,2,3", Cambridge	2010
	University Press	

- 9. Objective: To introduce the basics of non-Euclidean Geometry and Einstein's theory of general relativity and its applications.
- 10. Details of Course:

S.No.	Contents	Contact
		Hours
1.	Inertial mass and gravitational mass, gravitational redshift, action in relativity	3
2.	Principle of equivalence, metric tensor and the affine connection, geodesics.	5
3.	Covariant differentiation, analogy with electromagnetism, p-forms, generalized Stokes theorem.	5
4.	Curvature tensor, parallel transport, algebraic properties of the curvature tensor, Bianchi identities.	7
5	Lorentz transformation, representation of Lorentz group, conserved currents and energy momentum tensor	5
6	Einstein's field equations and some of their solutions: Robertson-Walker metric, Schwarzschild metric, black holes, deflection of light by Sun, precession of perihelia of planets. Expanding universe	8
7.	Expanding universe, Tetrad formalism, Killing vectors, maximally symmetric spaces.	5
8.	Kaluza-Klein theories an approach towards unification of, e.g., electromagnetism and gravity.	4
	Total	42

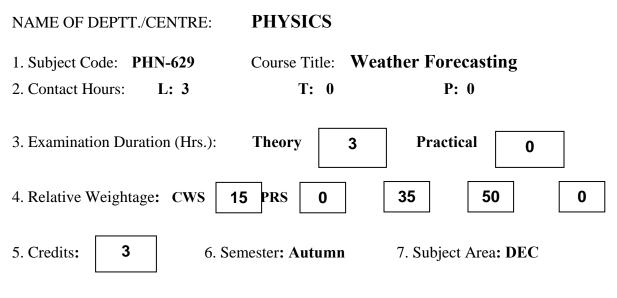
11.	Suggested Books:	
S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Landau L D and Lifshitz E M, "The Classical Theory of Fields", 4 th Ed. Elsevier.	2005
2.	Weinberg S, "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity", Wiley	1972
3.	Kaku M, "Quantum Field Theory: A Modern Introduction", Oxford University Press.	1993


8. Pre-requisite: PH-510

9. Objective: To introduce the basics of elementary particle physics.

S.No.	Contents	Contact Hours
1.	Qualitative preview: A preview of particle physics, basic ideas of the four	2
	interactions – gravitational, electromagnetic, strong and weak.	
2.	Tools	8
	(i) Tensors: Definitions of contravariant, covariant and mixed tensors, need	
	to use tensors in relativistic quantum mechanics and particle physics; (ii)	
	Relativistic Kin ematics: Lorentz transformations, 4-Vectors, energy and	
	momentum, collisions;	
	(iii) Scattering: Lifetimes and Cross Sections, Fermi's Golden Rule,	
	Feynman Rules, evaluation of scattering amplitudes and cross sections using	
	Feynman Rules.	
3.	Symmetries: Symmetries, Groups and Conservation Laws; Spin and Orbital	6
	Angular Momentum, Addition of Angular Momentum; Flavor symmetries;	
	Parity; Charge Conjugation; CP violation; Time reversal symmetry; CPT	
	Theorem; Noether's Theorem: Symmetry and conservation laws.	
4.	Electromagnetic Interaction:	8
	(i) Gauge Fi eld Theory: Covariant formulation of Maxwell's equations,	
	(transverse) canonical quantization of the gauge field (in the Coulomb gauge);	
	(ii) QED (quantization of abelian gauge theories with fermions): Feynman	
	Rules, Compton effect, Møller Scattering, radiative corrections, Anomalous	
	Magnetic Moment, Lamb shift.	

5.	 Strong Interaction: (i) Pre-QCD: The structure of Hadrons, Probing a charge distribution with electrons: Inelastic electron -proton scattering, Partons and Bjorken scaling; (ii) QCD (quantization of non-abelian gauge theories with fermions): Yang-Mills theory, Parton model revisited, Feynman rules, Asymptotic freedom. 	8
6.	 Weak Interaction: (i) Phenomenology: Parity violation and the V-A form of the weak current, Muon decay, Pion decay, charged current, neutral currents, Cabibbo angle, weak mixing angle, CP Invariance, CP violation; (ii) Electroweak Unification (Glas how-Salam-Weinberg model): The basic electroweak interaction, effective current-current Interaction, Spontaneous symmetry breaking, Higgs mechanism and choice of the Higgs field, masses of gauge bosons and fermions, the complete Lagrangian. 	10
	Total	42


S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Halzen F and Martin A D, "Quarks and Leptons: Introductory Course in	1990
	Modern Particle Physics", John Wiley and Sons, Inc	
2.	Griffiths D, "Introduction to Elementary Particles", John Wiley and Sons	1987
	Inc.	
3.	Perkins D H, "Introduction to High Energy Physics", Cambridge	2000
	University Press	
4.	Georgi H, "Weak Interactions and Modern Particle Theory", Benjamin-	1984
	Cummings Pub Co	
5.	Kane G L and Kane G, "Modern Elementary Particle Physics", Westview	1993
	Press	

- 9. Objective: To provide deeper understanding of cooperative phenomenon in solids using the many body technique.
- 10. Details of Course:

S.No.	Contents	Contact Hours
1.	Many Body Techniques and the Electron Gas: Creation and annihilation operators, many particle wave function in occupation number representation,	12
	commutation relations, N-electron Hamiltonian in creation- annihilation	
	operators form; One electron and two-electron, parts. Hartree-Fock ground state energy, free electron gas; Ground State energy in Ist order. Elementary idea of Greens functions.	
2.	Plasma Oscillations i n F ree E lectron Gas : Resume of plasma theory, quantum mechanical plasma theory, Energy of the ground state; Correlation Energy; Short range and long range correlation energy.	10
3.	Magnetism: Magnetism in Insulators; Heisenberg model; Spin waves; quantization of spin waves; Acoustic and optical magnons; Magnon specific heat; Antiferromagnitic Magnons; Magnetism in metals; Itinerant Ferromagnetism.	10
4.	Superconductivity: Electron-phonon interactions; Bound electron-pairs in a Fermi gas; Superconducting ground state; Hamiltonian solution of BCS equation for the energy-gas; Electrodynamics of superconductors, coherence length.	10
	Total	42

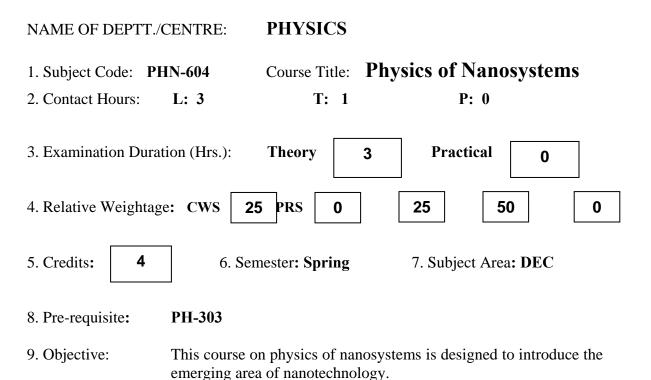
11.	Suggested Books:	
S.No.	Name of Authors/ Books/Publishers	Year of Publication /Reprint
1.	Raimes S, "Many Electron Systems", North Holland Publishing Co.	2000
2.	Kittel C, "Quantum Theory of Solids", John Wiley and Sons	1987
3.	Ziamn J M, "Principles of Theory of Solids", Cambridge Univ. Press	2000
4.	Chaikin P M and Lubensky T C, "Principles of Condensed Matter", Cambridge Univ. Press	2000
5.	Kantorovich L, "Quantum Theory of the Solid State:An Introduction", Kluwer Academic Publishers	2004

8. Pre-requisite: None

9. Objective: To familiarize with the dynamic meteorology of earth's atmosphere

S.No.	Contents	Contact Hours
1.	Atmospheric Dynamics: Equation of motion, the geostrophic approximation, cyclostrophic motion; The thermal wind equation; The equation of continuity.	8
2.	The Ge neral C irculation: A symmetric circulation, Inertial instability, Barotropic instability; Baroclinic instability; Sloping convection; The general circulation of the middle atmosphere.	8
3.	Numerical Modelling of Weather: A barotropic model; Baroclinic models; Primitive equation models; Moist processes; Radiation transfer; Forecasting models.	
4.	Global Ob servations: Conventional observations; Remote sounding from satellites; Remote sounding of atmospheric temperature; Remote measurements of composition.	8
5.	Atmospheric Predictability and Climate change: Short term predictability; Variations of climate; Atmospheric feedback processes; Different kind of predictability	8
	Total	42

S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Houghton J T, "The physics of atmospheres", Cambridge University Press	1997
2.	Holton J R, "Introduction to dynamic meteorology", Academic Press,	1992
3.	Zdunkowski W and Boot A, "Dynamics of the Atmosphere", Cambridge University Press,	2003


NAME OF DEPTT./CENTRE:	Physics		
1. Subject Code: PHN-602	Course Title: Nucle	ear Astrophysics	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weightage: CWS 25	PRS 0	25 50	0
5. Credits: 4 6. Sem	ester: Spring	7. Subject Area: DEC	C

8. Pre-requisite: PH-503

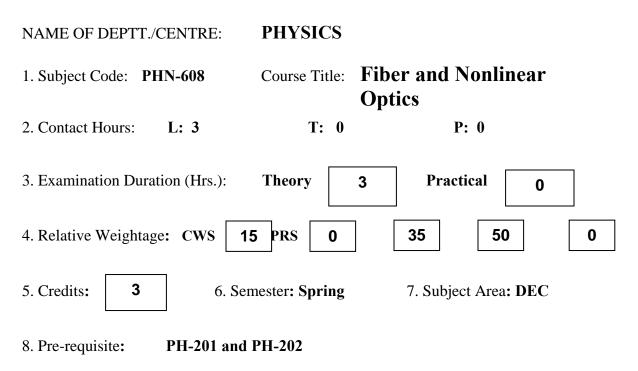
- 9. Objective: To introduce the emerging field of nuclear astrophysics which attempts to understand how nuclear processes generate the energy of stars over their lifetimes and synthesize heavier elements.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction : Astronomy-Observing the universe, Astrophysics-	10
	'Explaining' the universe; General characteristics of Thermonuclear	
	reactions; Sources of nuclear energy; Cross sections, stellar reaction	
	rates, mean lifetime; Maxwell-Boltzmann velocity distribution,	
	Astrophysical <i>S</i> – factor,	
2.	Determination of reaction rates : Neutron and charged particle	8
	induced non-resonant reactions; Reactions through narrow and broad	
	resonances	
3.	Hydrogen and Helium burning : p-p chain, CNO cycles, other	9
	cycles like NeNa, MgAl; Creation and survival of ¹² C	
4.	Explosive Burning and Nucleosynthesis beyond Iron : Silicon	9
	burning; Nucleosynthesis in massive stars, s – process, r - process	
5.	Indirect methods in Nuclear Astrophysics : Coulomb dissociation,	6
	Trojan Horse and ANC methods; Neutron stars; Radioactive Ion	
	Beams	
	Total	42

Sl. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Rolfs C E and Rodney W S, "Cauldrons in the Cosmos : Nuclear	2005
	Astrophysics", The University of Chicago Press	
2.	Clayton D D, "Principles of Stellar Evolution and	1984
	Nucleosynthesis", The University of Chicago Press	
3.	Glendenning N K, "Compact Stars", Springer	2000
4.	Boyd R, "An Introduction to Nuclear Astrophysics", The	2008
	University of Chicago Press	

S.No.	Contents	Contact Hours
1.	<i>Introduction</i> - An overview of quantum mechanical concepts related to low-dimensional systems.	2
2.	<i>Hetrostructures</i> – Heterojunctions, Type I and Type II heterostructures, Classification of Quantum confined systems, Electrons and holes in Quantum wells, Electronic wavefunctions, energy subbands and density of electronic states in Quantum wells, Quantum wires, and Quantum dots, Effective mass mismatch in heterostructures, Coupling between Quantum wells, Superlattices	5
3.	<i>Electron states</i> - Wavefunctions and Density of States for superlattices, Excitons in bulk, in Quantum structures and in heterostructures, The unit cell for quantum well, for quantum wire and for quantum dot	6
4.	<i>Nanoclusters and Nanoparticles</i> – introduction, Metal nanoclusters- Magic numbers, Geometric structures, Electronic structure, Bulk to nanotransition, Magnetic clusters; Semiconducting nanoparticles; Rare-gas and Molecular clusters.	4
5.	<i>Carbon Nanostructures</i> – Introduction, Carbon molecules, Carbon clusters, Structure of C60 and its crystal, Small and Large Fullerenes and Other Buckyballs, Carbon nanotubes and their Electronic structure	3

6.	Properties of Nano Materials: Size dependence of properties, Phenomena and Properties at nanoscale, Mechanical/Frictional, Optical, Electrical Transport, Magnetic properties.	4
7.	Nanomaterial C haracterization: Electron Microscopy, Scanning Probe Microscopies, near field microscopy, Micro- and near field Raman spectroscopy, Surface-enhanced Raman, Spectroscopy, X-ray photoelectron spectroscopy.	7
8.	Synthesis of n anomaterials: Fabrication techniques: Self-Assembly, Self- Replication, Sol-Gels. Langmuir-Blodgett thin films, Nanolithograph, Bio- inspired syntheses, Microfluidic processes, Chemical Vapor Deposition, Pulse laser deposition.	8
9.	Applicationsof Nanomaterials:Nanoelectronics,Nanosensors,Environmental, Biological, Energy Storage and fuel cells.	3
	Total	42

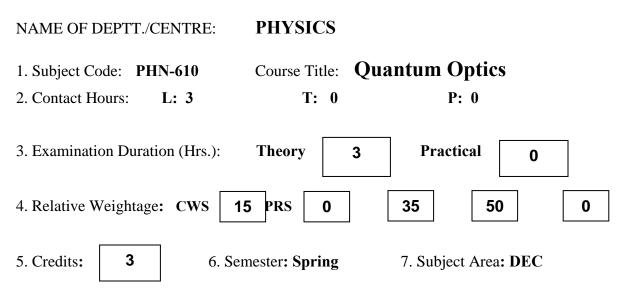

11.	buggested books.	
S.No.	Name of Authors/ Books/Publishers	Year of Publication /Reprint
1.	Edelstein A. A. and Cammarata R .C., "Nanomaterials- Synthesis,	1998
	Properties and Applications", Institute of Physics Publishing, London	
2.	Shik, A, "Quantum Wells: Physics and Electronics of two-dimensional	1999
	systems", World Scientific	
3.	Benedek et al G., "Nanostructured Carbon for advanced Applications",	2001
	Kluwer Academic Publishers	
4.	Harrison, P, "Quantum Wells, Wires, and Dots: Theoretical and Computational Physics", John Wiley	2000
5.	Mitin, VV, Kochelap, VA and Stroscio, MA "Quantum Heterostructures:	1999
	Microelectronics and Optoelectronics", Cambridge University Press	
6.	Poole, Jr. CP and Owens, FJ, "Introduction to Nanotechnology", Wiley	2006
	India.	

NAME OF DEPTT./CENTRE:	PHYSICS			
1. Subject Code: PHN-606	Course Title:	Superfluidity and Superconductivity		
2. Contact Hours: L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weightage: CWS 25	5 PRS 0	25 5	0	0
5. Credits: 4 6. Sen	nester: Spring	7. Subject Are	a: DEC	
8. Pre-requisite: PH-504				

9. Objective: It introduces advanced concepts of superfluidity and superconductivity and their interrelationship.

S. No.	Contents	Contact Hours
1.	Superfluidity: Basic properties of superfluid ⁴ He and ³ He; Bose-	8
	Einstein condensation in an Ideal Bose Gas; Bose-Einstein	
	Condensation in Interacting Gases, Condensate Wave Function.	
2.	Theory of B ose F luids: Landau Criterion for Superfluidity.	9
	Excitations in a uniform Gas – Bogoliubov Transformation;	
	Excitations in a Trapped Gas – Weak Coupling, Excitations in Non-	
	uniform Gases.	
3.	Vortex States: Quantization of Circulation, Quantized Vortices in	9
	He-II; Quantized Vortices in Superconductors; Comparison of He-II	
	and Superconducting Vortices; Dynamics of Vortex States.	
4.	Ginzburg-Landau T heory: Ginzburg Landau equations, second	8
	order critical fields; Abrikosov vortex lattice; Relation of GL theory	
	with BCS theory; Ginzburg-Pitaevskii equations for He-II; Broken	
	symmetry.	
5.	High-Tc S uperconductivity: Nature and various mechanisms of	8
	High Tc superconductivity; Equation for the critical temperature and	
	strong electron-phonon coupling; SDW and CDW.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Chaikin P M and Lubensky T C, "Principles of Condensed Matter	1995
	Physics", Cambridge University Press	
2.	Tilley D R and Tilley J, "Superfluidity and Superconductivity"	2005
	(3 rd Ed), Overseas Press	
3.	Suneto T and Nakahara M, "Superconductivity and Superfluidity",	2005
	Cambridge University Press	
4.	Pethick C J and Smith H, "Bose-Einstein Condensation in Dilute	2002
	Gases", Cambridge University Press	
5.	Pitaevskii L and Stringari S, "Bose-Einstein Condensation",	2003
	Clarendon Press	
6.	Annett J. F., "Superconductivity, Superfluids and Condensates",	2004
	Oxford University Press	



9. Objective: To introduce applications of lasers in nonlinear optics, optical fiber communication and sensors.

S.No.	Contents	Contact
		Hours
1.	Fiber optics: <u>Rectangular waveguides:</u> optical waveguides, planar mirror waveguides, electromagnetic analysis of planar optical waveguides, TE and TM modes of a symmetric and asymmetric planar waveguide, power associated with a mode.	12
2.	<u>Optical fiber:</u> optical fiber waveguide, the numerical aperture, pulse dispersion in a step-index fiber, scalar wave equation and modes of a fiber, LP modes, single-mode fibers, material and waveguide dispersion for a communication link, attenuation, splice loss, methods of fabrication of optical fibers, optical fiber components, directional coupler, multiplexer, demultiplexer, fiber Bragg gratings, long-period fiber gratings, optical fibers in sensors, photonic crystal fibers.	12
3.	Nonlinear optics: Nonlinear optical media, nonlinear polarization and susceptibility 2^{nd} order nonlinear optics: optical second harmonic generation, sum frequency generation, difference frequency generation, optical parametric amplification and oscillation, three wave mixing.	10

4.	<u>3rd order nonlinear optics:</u> third harmonic generation, optical Kerr effect, self phase modulation, self focusing, spatial solitons, Raman gain, four wave mixing, optical phase conjugation, Raman and Brillouin scattering.	8
	Total	42

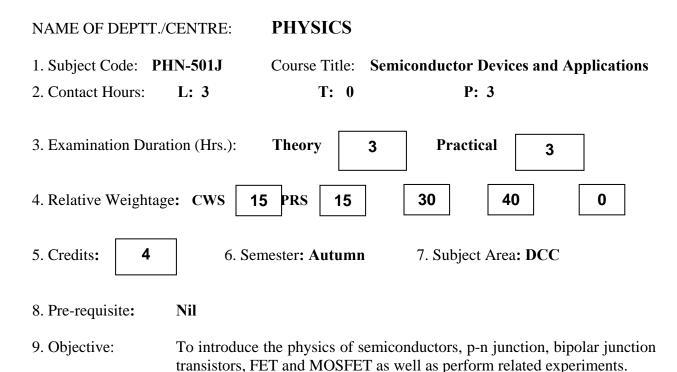
S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Ghatak A K and Thyagarajan K, "Optical Electronics", Cambridge University Press	2003
2.	Ghatak A K and Thyagarajan K, "Introduction to Fiber Optics", Cambridge University Press	1998
3.	Laud B B, "Lasers and Nonlinear Optics", Wiley Eastern	1992
4.	Saleh B E A and Teich M C, "Fundamantals of Photonics", Wiley Interscience	2007
5.	Snyder A and Love J, "Optical Waveguide Theory", Chapmann and Hall	1983
6.	Keiser G, "Optical Fiber Communications", McGraw Hill	2000

8. Pre-requisite: PH-201 and PH-202

9. Objective: The course provides an understanding of the physical principles of quantum optics and its use in laser cooling trapping of atoms.

S.No.	Contents	Contact Hours
1	Two-level atom and classical electric field. Rabi solutions. Comparison to	6
	Lorentz atom. Multi-level atoms, selection rules for electric dipole transitions, Raman coupling in 3-level systems, optical pumping.	
2	Density-matrix formalism: Application to two-level atom , optical Bloch equations, the Bloch vector, Ramsey fringes, photon echoes, adiabatic following, optical Bloch equations with dissipation (Relaxation. Spontaneous emission and collisions).	10
3	Dressed states: ac Stark effect, the Mollow triplet, Electromagnetically Induced Transparency (EIT), "slow light", Coherent Pouplation Trapping (CPT), cavity QED, Jaynes-Cummings model.	10
4	Laser cooling and trapping: scattering force (Light forces on two-level atoms), Doppler cooling limit, magneto-optic trap (MOT), Optical lattices, Polarization gradient cooling overview, Raman transitions,	10
5	Magnetic trapping, evaporative cooling and Bose–Einstein condensation	6
	Total	42

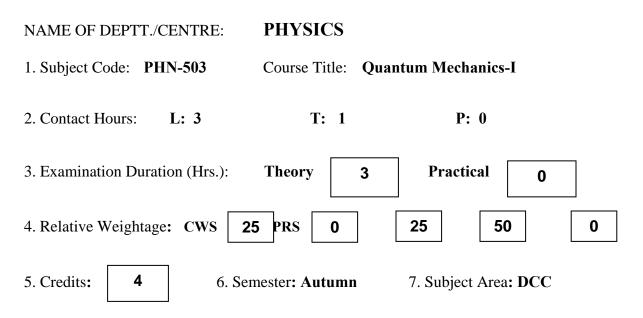
11.	Suggested Books:	
S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1	Foot C. J., "Atomic Physics", Oxford University Press	2005
2	Loudon R., "The Quantum Theory of Light", Oxford University Press	2001
3	Metcalf H. J. and Straten P. der, "Laser Cooling and Trapping", Springer- Verlag New York, Inc.	2001


NAME OF DEPTT./CENTRE:	PHYSICS		
1. Subject Code: PHN-612		Advanced Topics in Mathematic Physics	al
2. Contact Hours: L: 3	T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weightage: CWS 1	5 PRS 0	35 50	0
5. Credits: 3 6. Sen	nester: Spring	7. Subject Area: DEC	

8. Pre-requisite: PH-505

9. Objective: The objective of this course is to familiarize the students with techniques that are part and parcel in a variety of fields in theoretical physics, specially, theoretical high energy physics, cosmology, etc.

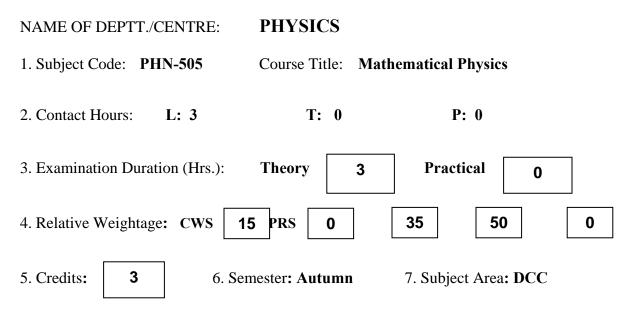
S.No.	Contents	Contact Hours
1.	Topology : topological spaces, connectedness and compactness of spaces, continuous functions, homeomorphisms	8
2.	Real Manifolds : definition, vector fields, differential forms, frames, connection, curvature, torsion, integration of differential forms, Stokes theorem, Laplacian on forms.	8
3.	Homology And Cohomology: Simplicial Homology and De-Rham Cohomology	6
4.	Homotopy: Loops and homotopies, fundamental and higher homotopy groups.	6
5.	Fibre Bundles : the concept, tangent and cotangent bundles, vector and principal bundles.	6
6.	Complex Manifolds And Cohomology : Definition, Dolbeault Cohomology of complex forms, harmonic analysis, basic ideas about Kähler and Calabi-yau manifolds.	8
	Total	42


S.No.	Name of Authors/ Books/Publishers	Year of Publication/ Reprint
1.	Brian R. Greene, "String Theory on Calabi-Yau Manifolds", Lectures given at Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96) Published in *Boulder 1996, Fields, strings and duality* 543-726	1996
2.	Mukhi S. and Mukunda N., "Introduction to Topology, Differential Geometry and Group Theory for Physicists", Wiley Eastern, New Delhi.	1990

S. No.	Contents	Contact Hours
1.	Semiconductors: Energy bands, direct and indirect band gap	12
	semiconductors, charge carriers, mobility, drift of carriers in field,	
	Diamond and Zinc-Blende structure, bonds and bands in	
	semiconductors, intrinsic and extrinsic semiconductors, law of mass	
	action, Hall effect and cyclotron resonance in semiconductors.	
2.	Carrier Injection: Carrier life time, direct and indirect	8
	recombination of electron and holes, steady state carrier generation,	
	diffusion and drift of carriers, the continuity equation, steady state	
	carrier injection, The Haynes-Shockley experiment.	
3.	Junctions: Metal-Semiconductor contact: under equilibrium, and	10
	non-equilibrium conditions, the junction diode theory, tunnel diode,	
	photodiode, LED, solar cell, Hetero-junctions and Laser diode.	
4.	Bipolar Junction Transistors: Charge transport and amplification,	4
	minority carrier distribution and terminal currents, switching	
	behaviour in bipolar transistor.	
5.	FET and MOSFET: Ideal MOS capacitor, effect of work function	6
	and interface charge on threshold voltage.	
6.	Gunn Diode: Transferred electron mechanism and drift of space charge	2
	domain.	
	Total	42

S. No.	List of Experiments
1.	To draw the I-V characteristics of a p-n junction diode in forward and reverse bias and
	to determine its DC and AC resistance for a given current.
2.	To study the temperature dependence of the reverse saturation current of a p-n junction
	diode and to determine the band gap of semiconductor.
3.	To study half wave, full wave and bridge rectifiers and to determine ripple factor.
4.	To design a regulated power supply using Zener diode and fixed voltage regulator.
5.	(a)To draw input and output characteristic of a bipolar transistor.
	(b)To design a CE amplifier and study its frequency response.
6.	To draw input and output characteristic of a JFET and determine g_m , r_d and verify
	square law.
7.	To design inverting and non-inverting amplifiers of different gain using operational
	amplifier and study their frequency response.
8	To verify truth tables of various logic gates.
9	To verify Boolean theorems using logic gates
10	To design and study of astable, monostable multivibrators using Timer 555

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Streetman B G and Banerjee S "Solid State Electronic Devices", 6 th Ed. Prentice Hall	2005
2.	Sze S M, "Semiconductor Devices Physics and Technology" 2 nd Ed. John Wiley & Sons	2003
3.	Tyagi M S, "Semiconductor Materials and Devices", John Wiley & Sons	2000
4.	Chattopadhyay D. and Rakshit P. C., "An advanced course in Practical Physics" 7 th Edition; New Central Book Agency (P) Ltd.	2005
5.	Gupta S. L. and Kumar V., "Practical Physics" 25 th Ed. Pragati Prakashan	2002
6.	Paul P., Malvino A. and Miller M., "Basic Electronics: A Text- Lab Manual, Tata McGraw Hill	1999

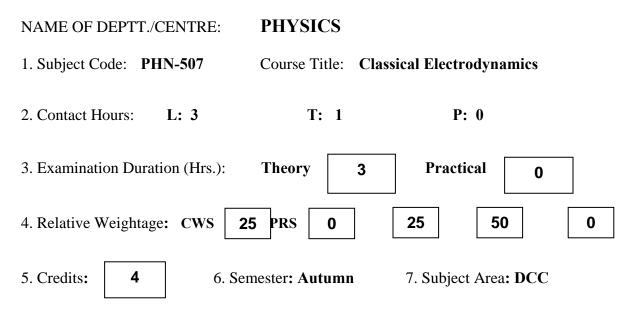


- 8. Pre-requisite: PH-303
- 9. Objective: To apply quantum mechanics to the dynamics of single particle in one-, two- and three- dimensional potential fields.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Postulates of Quantum Mechanics and meaning of measurement, Operators and their expectation values, Schrodinger equation, Particle in a box, Orthogonality of eigen functions, Dirac rotations, Hilbert space.	6
2.	Matrix Formulation: Matrix formulation of 1-dimensional harmonic oscillator problem; creation and annihilation operators; Equation of motion and classical correspondence, Heisenberg equation of motion, Schrodinger, Heisenberg and Interaction picture, Motion in a one-dimensional periodic potential, Kroning-penny model.	8
3.	Motion in a Central P otential: Angular momentum operator, expressions of L^2 and L_z , eigen values and eigen functions of L^2 and L_z , hydrogen atom, solution of radial equation, energy eigen values, eigen functions of H atom, orthogonality of eigen functions, rigid rotator, matrix representation L^2 , L_x , L_y , L_z , generalized angular momentum, generator of rotation and their commutation relations, spin – ½ matrices, coupling of angular momenta, Clebsch-Gordon Coefficients.	10

4.	Scattering T heory: Scattering amplitude, differential and total	10
	cross-section, scattering by a central potential, method of partial	
	waves, phase-shift analysis, optical theorem, scattering by a square-	
	well potential, integral equation, the Born approximation.	
5.	Approximate M ethods: WKB approximation, WKB expansion,	8
	connecting formulas, variational principle and its application to	
	Helium atom and hydrogen molecule	
	Total	42

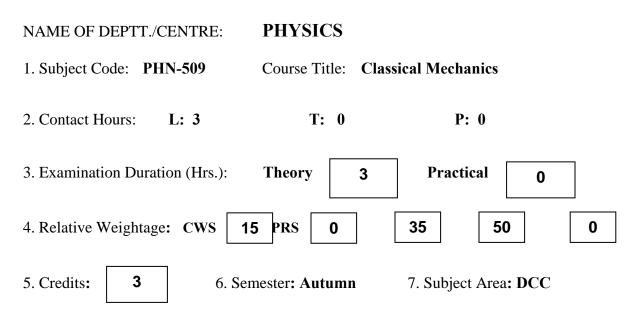
S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Schiff L.I., "Quantum Mechanics", 3 rd Ed, McGraw Hill Book	1990
	Co.	
2.	Merzbacher E, "Quantum Mechanics", 2 nd Ed., John Wiley &	1996
	Sons	
3.	Gasiorowicz S, "Quantum Physics", John Wiley	2000
4.	Mathews P. M. and Venkatesan K, "A Text Book of Quantum	2000
	Mechanics", Tata McGraw Hill	



8. Pre-requisite: Nil

9. Objective: To familiarize thes tudents with thes tandard te chniques in modern mathematical physics

S. No.	Contents	Contact Hours
1.	Complex variables and applications, analytic functions, contour	6
	integration, residue calculus, conformal mapping and its	
	applications. Fourier and Laplace transforms, evaluation of integral	
	transforms and their inverses using contour integrals.	
2.	Special equations of Mathematical Physics; Legendre and associated	8
	Legendre equations; Hermite equation; Laguerre and associated	
	Laguerre equations; Bessel's equation; Hypergeometric equation;	
	Beta and gamma functions.	
3.	Green's functions and solutions to inhomogeneous differential	8
	equations and applications.	
4.	Covariant and Contravariant tensors, covariant derivatives, affine	6
	connections Christoffel symbols, Curvature tensor.	
5.	Classification and examples of (finite) groups, homomorphisms,	8
	isomorphisms, representation theory for finite groups, reducible and	
	irreducible representations, Schur's Lemma and orthogonality	
	theorem,	
6.	Characters; Lie Groups and Lie algebra; Vector Spaces; Hilbert	6
	Space and operators	
	Total	42


S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Arfken G. B. and Weber H. J., "Mathematical Methods for	2005
	Physicists", 5 th Ed. Academic Press.	
2.	Whittaker E.T.and Watson E.W., "A Course of Modern	2008
	Analysis", Cambridge University Press	
3.	Hammermesh M., "Group Theory and Applications to Physical	1989
	Problems", Dover publications, NY.	
4.	Akhiezer N. I. and Glazman I. M., "Theory of Linear Operator	1993
	in Hilbert Space", Dover Publications	

- 8. Pre-requisite: PH-202
- 9. Objective: To emphasize electric and magnetic phenomena and introduce the covariant formulation of Maxwell's theory of electromagnetism
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Maxwell's E quation: Maxwell's equation, vector and scalar	12
	potentials, Gauge transformation, Poynting theorem., plane electro-	
	magnetic waves, waves in non-conducting and conducting medium;	
	Linear and Circular polarization, reflection and refraction.	
2.	Covariant Formulation of Vacuum Electrodynamics: Space-Time	12
	symmetry of the field equations; Covariant formulation; Four-vector	
	potential; Electromagnetic field tensor and its invariants; Lorentz-	
	Force equation in a covariant form.	
3.	Radiation f rom A ccelerated C harges: Retarded potentials;	14
	Lienard-Wiechert potentials; Fields produced by a charge in uniform	
	and arbitrary motion, radiated power; Angular and frequency	
	distribution of radiation, radiation from charged particle with co-	
	linear velocity and acceleration; Synchrotron radiation; Thomson	
	scattering; Cherenkov radiation.	
4.	Multipole F ields: Inhomogeneous wave equation, multipole	4
-•	expansion of electromagnetic fields, angular distribution, multipole	
	moments.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Jakson J D, "Classical Electrodynamics", John Wiley	2002
2.	Griffiths D J, "Introduction to Electrodynamics", Prentice Hall	1999
3.	Capri A.Z. and Panat P.V., "Introduction to Electrodynamics" Narosa Publication House	2002
4.	Franklin J., "Classical Electromagnetism", Pearson Education	2007

8. Pre-requisite: PH-203

- 9. Objective: To familiarize students with the various methods of solving problems in classical mechanics using the techniques of Lagrange, Hamilton, Hamilton-Jacobi and Poisson Brackets.
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Lagrange's E quation: C onstraints; D'Alembert's principle and	10
	Lagrange's equation of motion, dissipation function, Hamilton's	
	principle, calculus of variations, nonholonomic systems,	
	conservation laws, relativistic and covariant formulation.	
2.	Hamilton's Equations: Hamilton's equation of motion, cyclic co-	8
	ordinates, Routh's procedure, relativistic formation, variational	
	principle, principle of least action.	
3.	Canonical T ransformations: Equations of canonical	8
	transformations and examples, sympletic approach, Poisson brackets	
	and equation of motion, conservation laws, angular momentum,	
	symmetry groups & Louville's theorem.	
4.	Hamilton-Jacobi T heory: Hamilton-Jacobi equation's of motion,	8
	harmonic oscillations, separation of variables, action-angle variables,	
	Kepler problem, geometrical optics and wave mechanics.	
5.	Canonical Pe rturbation T heory: Time-dependent perturbation,	8
	examples, time-independent theory in first order and higher orders,	
	applications to celestial and space mechanics, Adiabatic invariants.	

	Total	42
--	-------	----

S.		Year of
No.	Name of Authors/ Books/Publishers	Publication/Reprint
1.	Goldstein H, "Classical Mechanics", Narosa	2001
2.	Rana W.C. and Jog P.S, "Classical Mechanics", Tata	1991
	McGraw Hill	
3.	Gupta K.C., "Classical Mechanics of particles and Rigid	2001
	Bodies", Wiley Eastern	

NAME OF DEPTT./CENTRE: Depa			artment of]	Mathematics		
1.	Subject Code: MAN-(004	Cou	urse Title:	Numerical N	lethods
2.	Contact Hours: L: 3		T: 1	Р:	0	
3.	Examination Duration	(Hrs.): Theo	ory: 3	Practi	cal: 0	
4.	Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5.	Credits: 4	6. Semeste	er: Spring	7.	Subject Area:	BSC

- 8. Pre-requisite: Nil
- 9. Objective: To introduce various numerical methods to get approximation solutions.
- 10. Details of Course:

S.No.	Contents	Contact Hours
1	Error A nalysis: Exact and approximate numbers, Rounding of	3
	numbers, Significant digits, Correct digits, various types of errors	
	encountered in computations, Propagation of errors.	
2	Solution of s ystem of lin ear e quations: (i) Direct methods: Gauss	8
	elimination method without pivoting and with pivoting, LU-	
	decomposition method. (ii) Iterative methods: Jacobi and Gauss-Seidel	
_	methods.	
3	Roots of n on-linear e quations: Bisection method, Regula-Falsi	6
	method, Newton-Raphson method, direct iterative method with	
	convergence criteria, Newton-Raphson method for solution of a pair of	
	non-linear equations.	2
4	Eigen val ues an d Eigen vectors: Dominant and smallest Eigen	3
_	values/Eigen vectors by power method.	(
5	Interpolation : Finite difference operator and their relationships, difference tables. Newton Bassel and Stieling's interpolation formulas	6
	difference tables, Newton, Bessel and Stirling's interpolation formulae,	
	Divided differences, Lagrange interpolation and Newton's divided difference interpolation.	
6	Numerical d ifferentiation: First and second order derivatives by	4
U	various interpolation formulae.	4
7.	Numerical in tegration: Trapezoidal, Simpsons 1/3 rd and 3/8 th rules	6
/•	with errors and their combinations, Gauss Legendre 2-points and 3-	v
	points formulae	
8.	Solution of first and second or der or dinary differential equations:	4
	Picard's method, Taylor's series method, Euler, Modified Euler, Runge-	-
	Kutta methods and Milne's method.	
9.	Case studies	2
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1	Gerald, C. F. and Wheatly, P. O.," Applied Numerical Analysis", 6 th Edition, Wesley.	2002
2	Jain, M. K., Iyengar, S. R. K. and Jain, R. K., "Numerical Methods for Scientific and Engineering Computation", New Age Pvt. Pub, New Delhi.	2000
3	Conte, S. D. and DeBoor, C., "Elementary Numerical Analysis", McGraw- Hill Publisher	1982
4	Krishnamurthy, E. V. & Sen, S. K., "Applied Numerical Analysis", East West Publication.	1998

NAME OF DEPTT./CENTRE	E: Departn	Department of Mechanical & Industrial Engineering			
1. Subject Code: MIN-106	Course T	itle: Engineer	ring Thermo	dynamics	
2. Contact Hours: L: 3	T: 1		P: 2/2		
3. Examination Duration (Hrs	.): Theor	·y: 3	Practical	: 0	
4. Relative Weightage: CWS	S: 15 PRS: 15	MTE: 30	ETE: 40	PRE: 0	
5. Credits: 4	6. Semester: Bot	h 7. Sul	bject Area: I	DCC/ESC	
8. Pre-requisite: Nil					

9. Objective: To familiarize the students with basic concepts of macroscopic thermodynamics.

S. No.	Contents	Contact Hours
1.	Introduction: Introduction to thermodynamic system, surrounding,	3
	state, process, properties, equilibrium, heat and work, Zeroth Law of	
	Thermodynamics	
2.	Properties of Pure Simple Compressible Substance: PvT surface,	6
	Pv, Tv, TP diagrams. Equation of state for ideal and real gases.	
	Virial equation of state, van der Waal equation, use of steam tables	
	and Mollier diagram	
3.	First Law of Thermodynamics: First law application to non-flow	7
	processes such as isochoric, isobaric, isothermal, adiabatic and	
	polytropic processes. Steady flow energy equation, flow work.	
	Application to various practical systems viz. nozzles, diffuser,	
	turbines, heat exchangers etc. Application of energy equation to	
	transient flow problems.	
4.	Second L aw of T hermodynamics: Second law, reversible and	6
	irreversible processes, Clausius and Kelvin Planck statements,	
	Carnot cycle, corollaries of second law: thermodynamic temperature	
	scale, Clausius inequality, entropy as a property, principle of	
	increase of entropy. Calculation of entropy change.	
5.	Entropy and Exergy: Entropy and its generation, entropy balance	5
	for closed system and for control volume, basic concepts of exergy	
	and irreversibility, exergy for closed system and control volume,	
	exegetic efficiency.	

6.	Gas-Vapour M ixtures an d A ir-conditioning: Properties of gas- vapour mixtures, adiabatic-saturation and wet-bulb temperatures, psychrometric chart, human comfort and air conditioning, various air conditioning processes.	4
7.	Gas and Vapour Power Cycles: Otto, Diesel, Dual, Stirling, Joule- Brayton cycle. Thermal efficiency and mean effective pressure, Rankine cycle.	5
8.	Refrigeration C ycles: reverse Carnot cycle, vapour compression refrigeration cycle.	4
	TOTAL	42

List of Experiments:

- 1. Study of P-V-T surface of H_2O and CO_2 .
- 2. Determine P-T relationship for steam and verify Clausius Clapeyron equation.
- 3. Determine the calorific value of coal using Bomb calorimeter.
- 4. Analysing exhaust gases using Orsat apparatus.
- 5. Determine Relative Humidity and Specific Humidity of air using Sling Psychrometer and Psychrometric Chart.
- 6. Determine COP of a vapour compression refrigeration unit.
- 7. Analysing different processes on an air conditioning unit.

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Borgnakke, C. and Sonntag, R.E., " Fundamentals of	2011
	Thermodynamics," Wiley India	
2.	Cengel, Y.A. and Boles, M.A., "Thermodynamics an Engineering	2008
	Approach", Tata McGraw-Hill	
3.	Moran, M.J. and Shapiro, H.M., "Fundamentals of Engineering	2010
	Thermodynamics", 4 th Ed., John Wiley	
4.	Russel, L.D., Adebiyi, G. A.," Engineering Thermodynamics", Oxford	2007
	University Press	
5.	Arora, C.P., "Thermodynamics", Tata-McGraw Hill	2001
6.	Nag, P.K., "Engineering Thermodynamics", Tata-McGraw Hill	2005

NAME OF DEPTT. /CE	Department of Mechanical and Industrial Engineering				
1. Subject Code: MIN-	Course Title:	Mechanical Engineering Drawing			
2. Contact Hours: L	: 2	T: 0		P: 4	
3. Examination Duration (Hrs.):		Theory: 3	Practical: 0		
4. Relative Weightage:	CWS: 0	PRS: 25	MTE: 25	ETE: 50	PRE: 0
5. Credits: 4 6. Sen		nester: Both	7. Subject Area: DCC/ESC		DCC/ESC

- 8. Pre-requisite: Nil
- 9. Objective: The course objective is to teach the basic concepts of Mechanical Engineering Drawing to the students. The emphasis is on to improve their power of imagination.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	General Instructions : Sheet Layout, Line Symbols and	1
	Groups, Preferred Scales, Technical Sketching	
2	Types of projections: Reference Planes and Quadrants,	2
	Orthographic Projection	
3	Projection of point and lines	3
4	Projection of plane figures	2
5	Projection of solids	2
6	Section of solid and development	2
7	Shape Description(External): Multiplanar Representation,	2
	Systems of Projection, Sketching of Orthographic Views	
	from Pictorial Views, Conventional Practices, Precedence	
	of Views, Precedence of Lines	
8	Uniplaner Representation: Sketching of Pictorial Views	2
	(Isometric and Oblique) from Multiplaner Orthographic	
	Views	
9	Shape Description (Internal): Sectioning as an Aid to	3
	Understanding internal features, Principles of Sectioning,	
	Types of Sections, Section Lines, Cutting Plane Lines and	
	Conventional Practices	
10	Size Description: Dimensioning, Tools of Dimensioning,	4
	Size and Position Dimensions, Unidirectional and Aligned	
	Systems, Principle and Practices of Dimensioning,	
11	Conventional Representation: Representation and	1

	Identification of Common Machine Elements and Features	
12	Introduction to Solid Modeling	4
	Total	28

Practical Exercises:

Topics	Practice Classes of Two
	Hour Duration
Projection of points and lines	04
Projection of plane figures	02
Projection of solids	03
Section and development	02
Sketching of Orthographic Views from Pictorial Views	04
Sketching of Pictorial Views (Isometric and Oblique) from Multiplanar	04
Orthographic Views, Missing Lines Exercise, Missing Views Exercise	
Sectioning Exercise	02
Dimensioning exercise	02
Identification Exercise	01
Solid Modeling, orthographic views from solid models	04

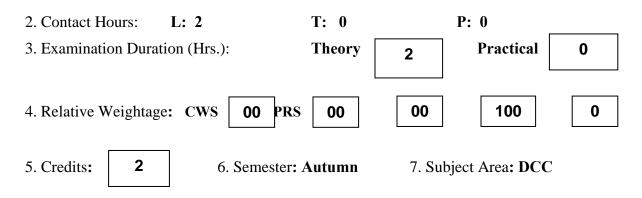
S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Technical Drawing, Giesecke, Mitchell, Spencer, Hill, Dygdon and Novak, Macmillan Publishing Company	2003
2.	Engineering Graphics, A. M. Chandra and Satish Chandra, Narosa Publishing House, New Delhi	2003
3.	Engineering Drawing and Graphics Technology, T.E. French, C.J. Vierck and R.J. Foster, McGraw-Hill Inc	1993
4.	Fundamentals of Engineering Drawing, W.J. Luzadder, J. Warren and J.M. Duff, Prentice Hall International Editions	1989
5.	SP 46:1988 Engineering Drawing Practice for Schools and Colleges, Bureau of Indian standards	

NAME OF DEPTT./CENTRE:	Department of P	hysics	
1. Subject Code: PHN-003	Course Title: Elect	tromagnetic Field Theory	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weight: CWS 25	PRS 0	25 50	0
5. Credits: 4 6. Sem	nester: Autumn	7. Subject Area: BSC	

8. Pre-requisite: NIL

9. Objective:

The objective of the course is to present the basic elements of electrostatics, magnetostatics, electromagnetic waves, Maxwell's equations, and transmission lines.


S. No.	Contents	Contact Hours
1.	Vectors an d F ields: Cartesian coordinate System, Cylindrical and Spherical coordinate Systems, Constant coordinate surfaces, Del operator, Gradient, Divergence of a Vector and Divergence Theorem, Curl of a vector and Stoke's theorem, Gradient, Divergence, Curl and Laplacian in the three coordinate Systems, Laplacian of a scalar, Scalar & Vector Fields, Classification of Vector field. Sinusoidally time-varying fields, Complex Numbers and Phasor technique.	8
2.	 Electrostatics: Field intensity, Gauss's law & its applications, Maxwell's 1st eqn. (Electrostatics), Electric Energy and potential, the line integral, Potential gradient, the dipole fields, Energy density in an electrostatic field. Current and current density, Continuity of current, Metallic conductors, Conductor properties and boundary conditions, the nature of Dielectric materials and related Boundary conditions, Capacitance, Capacitance of a two-wire line, Current analogies. Electrostatic boundary-value problems, Laplace's and Poisson's equations, Uniqueness theorem, General procedure for solving Laplace's and Poisson's equation, Resistance and capacitance, Method of images. 	8

S. No.	Contents	Contact Hours
3.	 Magnetostatics: Biot-Savart's law, Ampere's circuital law, Applications of Ampere's law, Magnetic flux and magnetic flux density - Maxwell's eqn., Maxwell's eqn. for static electromagnetic fields, Scalar and vector magnetic potentials. Magnetic dipole, Force due to Magnetic field on a differential current element, force between two differential current elements, Force and torque on a closed circuit, The nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions, Inductors and inductances, Magnetic energy, Magnetic circuits, Potential energy and force on magnetic materials. 	10
4.	Maxwell's e quations an d Electromagnetic w ave propagation: Faraday's law, Displacement current, Maxwell's equations in point form, Maxwell's equations in integral form, Kirchoff's Voltage law and Kirchoff's Current law from Maxwell's equations, EM waves in general, EM wave propagation in Lossy Dielectrics, Wave propagation in lossless dielectrics, Plane waves in free space, Plane waves in Good conductors, Power & Poynting Vector, Reflection of a plane wave at normal incidence, Reflection of a plane wave at oblique incidence.	8
5.	Transmission L ines: Physical description of transmission lines, The transmission line equation, Lossless propagation, Lossless propagation of sinusoidal voltages, Complex analysis of sinusoidal waves, Transmission line eqns and their solution in phasor form, Lossless and low-loss propagation, Power transmission and loss characterization, Wave reflection at discontinuities, Voltage Standing Wave Ratio, Transmission lines of finite length, Some transmission-line examples.	8
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Engineering Electromagnetics, William H Hayt, Jr., and John A. Buck,	2005
	Tata McGraw Hill Publishing Company Ltd, New Delhi, 7 th edition	
2.	Elements of Engineering Electromagnetics, Matthew N.O. Sadiku,	2003
	Oxford University Press, 3 rd Edition	
3.	Elements of Engineering Electromagnetics, Nannapaneni Narayan Rao,	2000
	Prentice Hall of India, New Delhi, 4 th Edition	
4.	Introduction to Electrodynamics, D.J. Griffiths, Prentice Hall, 3 rd Edition	2000

NAME OF DEPTT./CENTRE: Physics Department

1. Subject Code: **PHN-101** Course Title: **Introduction to Physical Sciences**

- 8. Pre-requisite: None
- 9. Objective: To introduce physics discipline
- 10. Details of the Course:

S. No.	Contents	Contact Hours
1.	Introduction: History, Philosophy, Core theories, Classical physics, Modern physics, Difference between classical and modern physics. Relation to other fields such as chemistry, mathematics, astronomy and geology. Application and influence as Applied Physics	6
2.	General aspect of physics: Physics concepts in primary and secondary education curricula, important publications in physics and physicists, Perfection in physics and chemistry Time line of fundamental physics discoveries Time line of developments in theoretical physics	8
3.	Research: Scientific method, Theory and experiment, Scope and aims. Major research fields of physics, along with their subfields and the theories they employ viz. Condensed matter, Atomic, molecular, and optical physics, High-energy physics (particle physics) and nuclear physics, Astrophysics, nano-technology, Geophysics and biophysics. Current research and some well known unsolved problems of physics	14
	Total	28

S.		Year of
No.	Name of Authors/ Books/Publishers	Publication/Reprint
1.	D.M. Bose, S.N. Sen & B.V. Subbarayappa, (eds), A Concise	2009
	History of Science in India, Universities Press, Hyderabad, 2 nd	
	Edition.	
2.	Varadaraja V. Raman, Glimpses of Indian Scientists, Samvad	2006
	India Foundation, New Delhi.	
3.	B.V. Subbarayappa, Indian Perspectives on the Physical World,	2004
	vol. IV part 3 in History of Science, Philosophy and Culture in	
	Indian Civilization, Centre for Studies in Civilization, New Delhi.	
4.	Nobel Lectures in Physics, 1901-1995, World Scientific, CD-	2010
	ROM	
5.	R. P. Feynman, R. B. Leighton and M. Sands, The Feynman	1964
	Lectures on Physics, Addition-Wesley Publication	
6.		2013
	http://en.wikipedia.org/wiki/Physics	

NAME OF DEPTT./CENTRE : PHYSICS

1. Subject Code: PHN-103	Course T	itle: Comp	outer Progr	amming	
2. Contact Hours: L: 3	T: 0	P: 2			
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0 0	
4. Relative Weightage: CWS	15 PRS 15	3	60 4	0	00
5. Credits: 0 4 6. S	emester: Autu	mn 7	7. Subject Are	a: B S	SC

8. Pre-requisite: None

9. Objective:

This course provides students with an entry-level foundation in computer programming.

S. No.	Particulars	Contact Hours
1	Introduction to computer hardware and software, information storage in computer memory, stored program concept, storage media. Computer operating system.	4
2	 Basic concept of FORTRAN/C language and program organization. Arithmetic expressions, Numerical input/output statement, Loop instructions, Transfer of control through logical statements, arrays and subscripted variables, Standard I/O in "Fortran language", Fundamental Data Types and Storage Classes: Character types, Integer, short, long, unsigned, single and double-precision floating point, storage classes, automatic, register, static and external, Operators and Expressions: Using numeric and relational operators, mixed operands and type conversion, Logical operators, Bit operations, Operator precedence and associativity, 	6
3	Use of functions, subroutines, Complex numbers, Common statement, Block data, Developing and testing of computer programs for various numerical problems	8
4	Conditional Program Execution: Applying if and switch statements, nesting if and else, restrictions on switch values, use of break and default with switch, Program Loops and Iteration: Uses of while, do	8

	and for loops, multiple loop variables, assignment operators, using break and continue,	
5	Array notation and representation, manipulating array elements, using multidimensional arrays, arrays of unknown or varying size, Structures: Purpose and usage of structures, declaring structures, assigning of structures,	6
6	Solution of linear and quadratic equations, matrix addition, subtraction and multiplication, Trace and Norm of matrix, Inverse of matrix, Numerical interpolation, differentiation and integration (Simpson, Trapezoidal and Gauss' Quadrature methods).	10
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	M.Metcalf, J.Reid & M. Cohen, Modern, "Fortran Explained	2011
	(Numerical Mathematics and Scientific Computation)" Oxford	
	University Press, USA; 4 edition	
2.	N. S. Clerman & W. Spector, "Modern Fortran: Style and Usage",	2011
	Cambridge University Press	
3.	J. D. Hoffmann, "Numerical Methods for Engineers and Scientists",	2001
	Marcel Dekker Inc. 2 nd edition	
4.	S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI	2012
	Learning, 5 th edition	
5.	D. C. Smolarski, The essentials of FORTRAN, Research and	1989
	Education Association, USA	
6.	S. Lipschutz & A Poe, "Theory and problems of Programming with	1982
	Fortran", Schaum's Series Publications	
7.	J. M. McCormick & M. G. Salvodori , "Numerical methods in	1964
	Fortran" Prentice Hall Publications	

NAME OF DEPTT/CENTRE: DEPARTMENT OF CIVIL ENGINEERING

1. Subject code: CEN-105 Course Title: Introduction to Environmental Studies

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Examination Duration (Hrs): **Theory:** 3 **Practical:** 0

4. Relative Weightage: CWS: 15 PRS: 0 MTE: 35 ETE: 50 PRE: 00

- 5. Credits: **3** 6. Semester: **Autumn** 7. Subject Area: **GSC**
- 8. Pre-requisite: Nil

9. Objective: To introduce fundamentals of environmental pollution and its control.

S. No.	Contents	Contact Hours
1.	Overview: Environment and Natural Processes; Development (Resource Utilization & Waste Generation); Environmental issues; Concept of Sustainable Development; Issues affecting future development (population, urbanization, health, water scarcity, energy, climate change, toxic chemicals, finite resources etc.); Environmental units	6
2.	Air –Water interaction: (Liquid phase-gas phase equilibrium) Henry's Law Constant with units, Dimensionless Henry's Law Constant	3
3.	Water –Soil Interaction: Carbonate System (Alkalinity and buffering capacity); Major ions in water; Natural Organic Matter (NOMs); Water quality parameters; Physical processes (Mass Balance): Spatio-temporal variation in quality of river water, lake water, ground water; Water quality standards	9
4.	Wetlands, water treatment and wastewater treatment .	6
5.	Air resources: Atmosphere; Air pollutants; Emissions and control of air pollutants; Atmospheric meteorology and dispersion; Transport of air (global, regional, local); Air/ atmospheric stability; Plume shape; Gaussian modeling; Air quality standards	9
6.	Land pollution and solid waste management	3
7.	Ecosystem: Structure and function; Energy flow in ecosystem; Material flow in ecosystem; Biodiversity and ecosystem health; Bio-amplification and bio-magnification	3
8.	Hazardous Waste: Definition; Classification; Storage and management; Site remediation; Environmental Risk: assessment, and management	3
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Davis M. L. and Cornwell D. A., "Introduction to Environmental Engineering", McGraw Hill, New York 4/e	2008
2.	Masters G. M., Joseph K. and Nagendran R. "Introduction to Environmental Engineering and Science", Pearson Education, New Delhi. 2/e	2007
3.	Peavy H. S., Rowe D.R. and Tchobanoglous G., "Environmental Engineering", McGraw Hill, New York	1986
4.	Mines R. O. and Lackey L. W. "Introduction to Environmental Engineering", Prentice Hall, New Yark	2009
5.	Miheicic J. R. and Zimmerman J. B. "Environmental Engineering: Fundamentals, Sustainability, Design" John Wiley and Sons, Inc.	2010

NAME OF DEPTT./CENTRE:	Department of Huma Sciences	anities & Social
1. Subject Code: HS-001A	Course Title: Communi	cation Skills (Basic)
2. Contact Hours: L: 1	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory 2 F	Practical 0
4. Relative Weight: CWS 25	5 PRS 00 MTE 25	ETE 50 PRE 0
5. Credits: 2 6. Sen	nester: Autumn/Spring	7. Subject Area: HSS

8. Pre-requisite: NIL

9. Objective: The course intends to build the required communication skills of the students having limited communicative abilities, so that they may communicate effectively in real-life situations

S. No.	Contents	Contact Hours
1.	Understanding the Basics of Communication Skills: Listening, Speaking, Reading & Writing, Scope and Importance	01
2.	Grammar & Composition: Time and Tense, Agreement, Active-Passive, Narration, Use of Determiners, Prepositions & Phrasal Verbs	05
3.	Vocabulary Building & Writing: Word-formation, Synonyms, Antonyms, Homonyms, One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words	02
4.	Introduction to Sounds (Vowels & Consonants) Organs of Speech, Place and Manner of Articulation, Stress & Intonation, Listening Comprehension (Practical Sessions in Language Laboratory)	02

5.	Speaking, Countering Stage-fright and Related Barriers to Communication.	02
6.	Reading and Comprehension: Two lessons to be identified by the department.	02
	Total	14

List of Practicals:

- **1.** Ice-breaking Exercises
- 2. Assignments on Time and Tense, Agreement, Active-Passive
- **3.** Laboratory Session on Narration, Use of Determiners, Prepositions & Phrasal Verbs, Revisionary Exercises & Quiz
- 4. Laboratory Session on Synonyms, Antonyms, Homonyms
- 5. Assignments and Practice Sheets on One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words
- **6.** Laboratory Session on Practice of sounds, Intonation and Stress, Listening Comprehension
- 7. Individual presentation, debates, Extempore & Turncoats
- 8. Exercises in Composition and Comprehension
- 11. Suggested Books:

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Murphy, Raymond. <i>Intermediate English Grammar</i> , New Delhi, Cambridge University Press.	2009
2.	Quirk, Randolph & Sidney Greenbaum. A University Grammar of English, New Delhi, Pearson.	2009
3.	McCarthy, Michael & Felicity O' Dell. <i>English Vocabulary in Use</i> , New Delhi, Cambridge University Press	2010
4.	Jones, Daniel. <i>The Pronunciation of English</i> , New Delhi, Universal Book Stall.	2010
5.	Birchfield, Susan M. Fowler's Modern English Usage, New Delhi, OUP.	2004
6.	Llyod, Susan M. Roget's Thesaurus of English Words and Phrases. New Delhi: Penguin.	2010

NAME OF DEPTT./CENTRE:	Department of Hu Sciences	imanities & Social
1. Subject Code: HS-001B	Course Title: Commu (Advan	unication Skills ced)
2. Contact Hours: L: 1	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory 2	Practical 0
4. Relative Weight: CWS	25 PRS 00 MTE 2	25 ETE 50 PRE 0
5. Credits: 2 6. Se	mester: Autumn/Spring	7. Subject Area: HSS

8. Pre-requisite: NIL

9. Objective: The course intends to train the learners in using both verbal and non-verbal communication effectively.

S. No.	Contents	Contact Hours
1.	Advanced Communication Skills: Scope, Relevance, & Importance	01
2.	Soft Skills: Interpersonal Communication; Verbal & Non-verbal, Persuasion, Negotiation, Neuro-Linguistic Programming	03
3.	Communication and Media (Social and Popular), The Social and Political Context of Communication, Recent Developments and Current Debates in Media	04
4.	Cross-cultural and Global Issues in Communication: Race, Ethnicity, Gender & Diaspora	03
5.	Rhetoric and Public Communication, Audience Awareness, Emotionality	03
	Total	14

List of Experiments:

- 1. Discussion on the Process of Communication in Personal and Professional Life
- 2. Group Discussion, Case Studies and Role-Play
- **3.** Assignments on E-mail Etiquette, Social Networking, Blog Writing, Discussions on Current Issues
- 4. Non-Verbal Communication in Cross-Cultural Situations, Case Studies, Group Discussions and Readings on Topics Related to Race, Ethnicity, Gender and Diaspora
- 5. Individual Presentations (Audience Awareness, Delivery and Content of Presentation)

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Rentz, Kathryn, Marie E. Flatley & Paula Lentz.	2012
	Lesikar's Business Communication CONNECTING IH A DIGITAL	
	WORLD, McGraw-Hill, Irwin	
2.	Bovee, Courtland L & John V. Thill. Business Communication	2010
	Today. New Delhi, Pearson Education	
3.	McMurrey, David A. & Joanne Buckley. <i>Handbook for Technical Writing</i> , New Delhi, Cengage Learning.	2009
4.	Jones, Daniel. <i>The Pronunciation of English</i> , New Delhi, Universal Book Stall.	2010
5.	Allan & Barbara Pease. <i>The Definitive Book of Body Language</i> , New York, Bantam	2004

NAME OF DEPTT./CENTRE:	Department of Humanities and Social Sciences		
1. Subject Code: HSN-002	Course Title: Ethics and Self-awareness		
2. Contact Hours: L: 01	T: 01	P: 0	
3. Examination Duration (Hrs.):	Theory 2	Practical 0	
4.Relative Weight: CWS:25	PRS:0 MTE:25	ETE:50 PRE:0	

- 5. Credit 02 6. Semester: Autumn 7. Subject Area: HSSC
- 8. Pre-requisite: NIL
- 9. Objective: To introduce the concepts pertaining to ethical and moral reasoning and action and to develop self awareness.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	Introduction : Definition of Ethics; Approaches to Ethics: Psychological, Philosophical, Social.	1
2	Psycho-social t heories of m oral d evelopment : View of Kohlberg; Morality and Ideology, Culture and Morality, Morality in everyday context.	3
3	Ethical C oncerns : Work Ethics and Work Values, Business Ethics, Human values in organizations.	3
4	Self-Awareness : Self Concept: Johari Window, Self and Culture, Self Knowledge, Self-Esteem; Perceived Self-control, Self-serving bias, Self-presentation, Self-growth: Transactional Analysis and Life Scripts.	4
5.	Self D evelopment : Character strengths and virtues, Emotional intelligence, Social intelligence, Positive cognitive states and processes (Self-efficacy, Empathy, Gratitude, Compassion, and Forgiveness).	3
	Total	14

S.No.	Name of Authors / Books / Publishers	Year of Publication
1.	Hall, Calvin S., Lindzey, Dardner., & Cambell, John	1998
	B., "Theories of Personality", Hamilton Printing Company.	
2.	Car Alan, "Positive Psychology: The Science of Happiness and Human Strengths", Brunner-Routledge.	2004
3.	Leary M.R., "The Curse of Self: Self-awareness, Egotism and the Quality of Human Life", Oxford University Press.	2004
4.	Louis P. P., "The Moral Life: An Introductory Reader in Ethics and Literature", Oxford University Press.	2007
5.	Corey, G., Schneider Corey, M., & Callanan, P., "Issues and Ethics in the Helping Professions", Brooks/Cole.	2011
6.	Snyder, C.R., Lopez, Shane, J., & Pedrotti, J.T., "Positive Psychology" Sage, 2 nd edition.	2011

NAME OF DEPTT./CENTRE:		Departm	ent of	Mathem	atics	
1.	Subject Code: MAN-102	Course	Title:	Linear	r Algebra	
2.	Contact Hours: L: 3	T:1		P: 0		
3.	Examination Duration (Hrs.):	Theory: 3		Prac	tical : 0	
4.	Relative Weightage: CWS: 25	PRS: 0	MTE	: 25	ETE: 50	PRE: 0
5.	Credits: 4 6. Semester: S	Spring	7. S	Subject A	Area: DCC	

8. Pre-requisite: Nil

- 9. Objective: To introduce the basic concepts of vector spaces and linear transformations.
- 10. Details of Course:

S.	Particulars	Contact
No.		Hours
1	Vector S paces: Vector space, subspace, sum of subspaces,	10
	linear combination, linear dependence and independence, basis	
	and dimension, examples of infinite dimensional spaces,	
	ordered bases and coordinates	
2	Linear T ransformation: Basic definitions, rank-nullity	8
	theorem, matrix representation, algebra of linear	
	transformations, change of basis, linear functional, Dual Spaces	
3	Canonical F orms: Eigen-values of linear operators, Eigen-	12
	space, minimal polynomial, diagonalisation, invariant	
	subspaces, Jordan canonical representation, Norm of a matrix,	
	computation of a matrix exponential	
4	Inner Product Space: Definition of inner product between two	12
	vectors, orthogonal and orthonormal vectors, normed space,	
	Gram-Schmidt process for orthogonalisation, projection	
	operator, quadratic forms, positive definite forms, Symmetric,	
	Hermitian, orthogonal, unitary and Normal	
	transformations/matrices.	
	TOTAL	42

11. Books Recommended:

S.No	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Hoffman, K. and Kunze, R., "Linear Algebra", 2 nd edition, Pearson Education (Asia) Pvt. Ltd/ Prentice Hall of India	2004
2.	Leon, S.J., "Linear Algebra with Applications", 8th Edition, Pearson	2009
3.	Peter, J. Olever and Shakiban, C., "Applied Linear Algebra", 1 st Edition, Prentice Hall	2005
4.	Strang, G., "Linear Algebra and its Applications", 3 rd edition, Thomson Learning Asia Pvt Ltd	2003
5.	Sudan L., " Applied Linear Algebra ", Prentice Hall	2001

NAME OF DEPTT./CENT	RE:	Department	of Physics		
1. Subject Code: PHN-110	0	Course Titl	e: Introductio	on to Electron	nics
2. Contact Hours: L: 3		T: 1	P: 0		
3. Examination Duration (Hrs.):		Theory: 3	Practical : 0		
4. Relative Weightage: CV	WS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits: 4	6. Sen	nester: Spring	g 7. S	Subject Area:	DCC

- 8. Pre-requisite: None
- 9. Objective: To impart knowledge of basic concepts of electronics.
- 10. Details of Course:

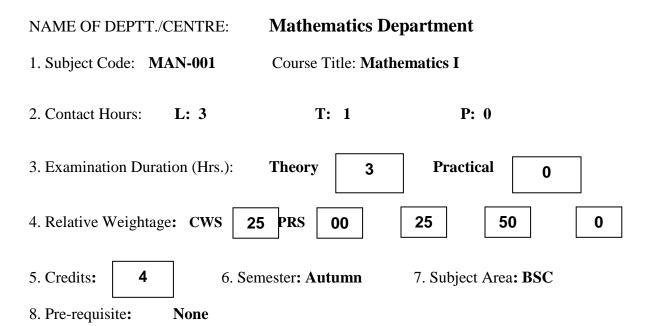
S. No.	Contents	Contact Hours
1	Semiconductor D iode: Energy band structure of Insulators,	8
	Semiconductors and Metals, Element and Compound semiconductors,	
	Intrinsic semiconductors, Extrinsic semiconductors, electrons and	
	holes, conductivity and mobility, effect of temperature and doping on	
	mobility, carrier concentration and their temperature dependence,	
	Fermi level in a semiconductor having impurities, p-n Junction	
	fabrication (Simple Idea). Qualitative theory of the p-n junction,	
	Barrier formation in p-n Junction Diode, current flow mechanism in	
	Forward and Reverse Biased Diode, Volt-Ampere characteristics,	
	Static and Dynamic Resistance of Diode, Zener Diode.	
2	Bipolar Ju nction t ransistors: n-p-n and p-n-p transistors,	5
	Characteristics of CB, CE and CC configurations. Current gains α , β	
	and γ and relations between them, Active, Cutoff, and Saturation	
	regions.	10
3	Amplifiers & Os cillators : Analysis of a single-stage CE amplifier	10
	using DC Load Line, Coupled Amplifiers : RC-Coupled Amplifier and	
	its Frequency Response of Voltage Gain, Operational Amplifiers:	
	Inverting and noninverting Amplifiers. Feedback in Amplifiers: Effects of Positive and Negative Feedback on	
	Input Impedance, Output Impedance and Gain, Stability, Distortion	
	and Noise, Sinusoidal Oscillators : Barkhauson's Criterion for self-	
	sustained oscillations, RC Phase Shift Oscillator, Determination of	
	frequency, Non-Sinusoidal Oscillators – Multivibrators.	
4	Field Effect Transistors : Junction Field Effect Transistors, Pinch-Off	5
•	Voltage, Volt-Ampere Characteristics of JFET, Insulated -Gate FET	5
	(MOSFET), Enhancement MOSFET, Depletion MOSFET, circuit	

	symbols.	
5	Digital Circuits: Difference Between Analog and Digital Circuits, Binary Numbers, Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND AND NOR Gates. Exclusive OR and Exclusive NOR Gates, Basic concepts of flipflops.	8
6	Integrated C ircuits: Basic Monolithic Integrated Circuits, Wafer, Chip, Scale of integration :SSI, MSI, LSI and VLSI (Basic Idea Only), Fabrication of Components on Monolithic ICs., Moore's law, Introduction to Nanoelectronics.	6
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	By Ben G. Streetman & Sanjay Banerjee, "Solid State Electronic Devices", Prentice Hall, 6 th Ed.	2006
2.	Robert Boylestad, Louis, "Electronic Devices and Circuit Theory", Pearson Education, 8 th Ed.	2004
3.	A.P.Malvino , "Electronic Principles", MacGraw Hill Publication, 7 th Ed.	2006
4.	A P Malvino and D P Leach, "Digital Principles and Applications", MacGraw Hill Publication	1998
5.	Thomas L. Floyd and David L. Buchla "Electronics Fundamentals: Circuits, Devices and Applications", 8 th Ed.	2010
6.	Allen Mottershead, "Electronic Circuits and Devices", PHI	1997
7.	Dube D C "Electronics: Circuits and Analysis" Narosa Publication, 2 nd Edition	2010

NAME OF DEPTT./CENTRE:		Departme	ent of Physic	2S		
1.	Subject Code: PHN-001	L	Course 7	Title: Mec	nanics	
2.	Contact Hours: L: 3		T: 0	P:	2	
3.	Examination Duration (H	Hrs.): Theo	ry: 3	Practica	d: 0	
4.	Relative Weightage:	CWS: 15	PRS: 25	MTE: 20	ETE: 40	PRE: 0
5.	Credits: 4	6. Semest	er: Autum	n	7. Subject	Area: BSC

8. Pre-requisite: None


9. Objective: To familiarize students with the basic principles of mechanics

S.No.	Contents	Contact
		Hours
1	STATICS OF PARTICLES.	8
	Vectorial representation of forces and moments- Vector Operation-Concepts of	
	Particles and Rigid bodies – Composition of concurrent forces in plane free body	
	Diagram – Equilibrium of Rigid bodies in Two and three dimensions-Moment of a	
	force about a point and about an axis-Couple moment-Reduction of a force system to	
	a force and a couple	
2	PROPERTIES OF SURFACES, MOMENTS AND PRODUCTS OF INERTIA	6
	Definition Moment of Inertia for areas-Parallel axis theorem -Perpendicular	
	axis theorem-Moment of inertia for composite area-product of inertia form an	
	area-mass moment of inertia	
4	FRICTION	4
	Laws of coulomb friction- Coefficient of Friction-Dry Friction-sliding	
	Friction-Ladder friction-Belt friction – Rolling Resistance.	
5	KINEMATICS OF PARTICLES	8
	Principle of virtual work for a particle and rigid body-condition for	
	equilibrium for a conservative system, stability-particle dynamics in	
	rectangular coordinate, cylindrical coordinate and in terms of path variables-	
	General motion of system of particles-	
6	WORK ENERGY METHODS, IMPULSE AND MOMENTUM	8
	Work Energy Method-Conservation of Energy-Impulse and Momentum	
	Relation-Impulsive Force-Impact force-Conservation of momentum –	
	Moment of Momentum Equation.	
7	RIGID BODY MOTION;	8
	Translation and rotation of rigid bodies- Derivative of a vector fixed in	
	moving reference-General relationship between time derivative of a vector for	
	different references-Moment of momentum equation-kinetic energy of rigid	
	body-work and energy relations-Euler's equation of motion-Three	
	dimensional motion about a fixed point	
	TOTAL	42

List of experiments:

- 1. Study of magnetic field of a pair of coils in Helmholtz arrangement
- 2. Determination of e/m
- 3. Determination of first excitation potential of a gas by Frank-Hertz experiment
- 4. Determination of Stefan's constant
- 5. Determination of Planck's constant by radiation
- 6. To study and verify Malus' law
- 7. Study of Polarization of light using quarter wave plate
- 8. Determination of Brewster's angle at glass-air interface
- 9. Determination of with of a slit by single-slit diffraction pattern
- 10. Four probe method of finding resistivity of semiconductor
- 11. Quinck's Method for determining mass susceptibility
- 12. Wavelength of Na light by Newton's ring method

S.No.	Title/Authors/Publishers	Year of Publication
1.	Shames I.H. and Rao G.K., "Engineering Mechanics-Statics and	2006
	Dynamics", 4 Edition, Pearson Education	
2.	Beer F.P and Johnson E.R., "Vector Mechanics for Engineers- Statics and	2010
	Dynamics",9 Edition, Tata McGraw-Hill Publishing Company	
3.	Pytel A. and Kiusalaas J., "Engineering Mechanics: Statics" 3rd Edition,	2010
	Cengage Learing	
4.	Pytel A. and Kiusalaas J., "Engineering Mechanics: Dynamics"3rd Edition	2010
	Cengage Learing	
5.	Hibberler R.C and Gupta A., Engineering Mechanics,", 12th Edition,	2012
	Pearson Education	
6.	Meriam J.L. and Kraige L.G., "Engineering Mechanics: Statics", 6 th	2012
	Edition, John Willey and Son,s	
7.	Meriam J.L., and Kraige L.G., "Engineering Mechanics: Dynamics", 6 th	2012
	Edition, John Willey and Son's	

9. Objective: To provide essential knowledge of basic tools of Differential Calculus, Integral Calculus, Vector Calculus and Matrix Algebra for degree students.

10. Details of C	Course:
------------------	---------

S. No.	Contents	Contact
		Hours
1.	Matrix Algebra: Elementary operations and their use in getting the Rank, Inverse	
	of a matrix and solution of linear simultaneous equations. Orthogonal, Symmetric,	
	Skew-symmetric, Hermitian, Skew-Hermitian, Normal & Unitary matrices and	
	their elementary properties. Eigen-values and Eigenvectors of a matrix, Cayley-	
	Hamilton theorem, Diagonalization of a matrix.	
2.	Differential Calculus: Limit, Continuity and differentiability of functions of two	12
	variables, Euler's theorem for homogeneous equations, Tangent plane and normal.	
	Change of variables, chain rule, Jacobians, Taylor's Theorem for two variables,	
	Error approximations. Extrema of functions of two or more variables,	
	Lagrange's method of undetermined multipliers	
3.	Integral Calculus:	12
	Review of curve tracing and quadric surfaces, Double and Triple integrals,	
	Change of order of integration. Change of variables. Gamma and Beta functions.	
	Dirichlet's integral. Applications of Multiple integrals such as surface area,	
	volumes, centre of gravity and moment of inertia	
4.	Vector Calculus: Differentiation of vectors, gradient, divergence, curl and the	
	physical meaning. Identities involving gradient, divergence and curl. Line and	
	surface integrals. Green's, Gauss and Stroke's theorem and their applications.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	E. Kreyszig, Advanced Engineering Mathematics, 9th edition, John	2011
	Wiley and Sons, Inc., U.K.	
2.	R.K. Jain and S.R.K. Iyenger, Advanced Engineering Mathematics,	2005
	2nd Edition, Narosa Publishing House.	
3.	M.D. Weir, J. Hass, F.R. Giordano, Thomas' Calculus, 11th Edition,	2008
	Pearson Education.	