Department of Electrical Engineering.

1.	MAN-001	Mathematics-1	BSC	4
2.	PHN-003	Electromagnetic Field Theory	BSC	4
3.	CEN-105	Introduction to Environmental Studies	GSC	3
4.	HS-001A	Communication Skills (Basic)	HSSC	2
5.	HS-001B	Communication Skills (Advance)	HSSC	2
6.	HSN-002	Ethics and General Awareness	HSSC	2
7.	EEN-101	Introduction to Electrical Engineering	DCC	2
8.	EEN-103	Programming in C++	ESC	4
9.	MAN-002	Mathematical Methods	BSC	4
10.	PHN-004	Modern Physics	BSC	4
11.	MIN-106	Engineering Thermodynamics	DCC/ESC	4
12.	EEN-102	Network Theory	DCC	4
13.	EEN-104	Electrical Measurements and Measuring Instruments	DCC	4
14.	EEN-106	Analog Electronics	DCC	4
15.	EEN-201	Electrical Machines-I	DCC	5
16.	EEN-203	Digital Electronics and Circuits	DCC	4
17.	EEN-205	Design of Electronic Circuits	DCC	4
18.	EEN-211	Control Systems	DCC	4
19.	EEN-291	Engineering Analysis and Design	DCC	3
20.	MTN-105 *	Electrical and Electronic Materials	ESC	4
21.	EEN-202	Electrical Machines-II	DCC	5
22.	EEN-204	Microprocessors and Peripheral Devices	DCC	5
23.	EEN-206	Power Transmission & Distribution	DCC	4
24.	EEN-208	Applied Instrumentation	DCC	4
25.	EEN-301	Power System Analysis and Control	DCC	4
26.	EEN-303	EN-303 Power Electronics		4

27	EEN-305	Advanced Control Systems		5
28	EEN-300*	Industry Oriented Problem	DCC	3
29	EEN-302	Electric Drives	DCC	4
30	EEN-304	Protection and Switchgear	DCC	4
31	EEN-351	Artificial Neural Networks	PEC	4
32	EEN-352	Digital Image Processing	PEC	4
33	EEN-353	Digital Design with VHDL	PEC	4
34	EEN-354	Digital Control Systems	PEC	4
35	EEN-355	Digital Signal Processing	PEC	4
36	EEN-356	Signals and System	PEC	4
37	EEN-357	Advanced Microprocessors and Interfacing	PEC	4
38	EEN-358	Data Structures	PEC	4
39	EEN-359	Single Chip Microcontroller and Its Applications	PEC	4
40	EEN-360	Embedded Systems	PEC	4
41	EEN-365	Digital Signal Processors	PEC	4
42	EEN-361	Optimization Techniques	PEC	4
43	EEN-363	Fuzzy Logic System	PEC	4
44	EEN-364	Utilization and Traction	PEC	4
45	EEN-540	Advanced Power Electronics	PEC	4
46	EEN-541	Analysis of Electrical Machines	PEC	4
47	EEN-580	Advanced Linear Control Systems	PEC	4
48	EEN-542	Advanced Electric Drives	PEC	4
49	EEN-543	FACTS Devices	PEC	4
50	EEN-522	Biomedical Instrumentation	PEC	4
51	EEN-523	Intelligent Sensors and Instrumentation	PEC	4
52	EEN-541	Analysis of Electrical Machines	PEC	4
53	EEN-561	Power System Operation and Control	PEC	4
54	EEN-563	EHV AC and DC Transmission	PEC	4
55	EEN-564	HVDC Transmission Systems	PEC	4
56	EEN-582	Advanced Systems Engineering	PEC	4

NAME OF DEPTT./CE	Department of Electrical Engineering				
1. Subject Code: EEN	-202	Course Title:	Electrical 1	Machines-II	
2. Contact Hours: L	.: 3	T: 1		P: 2	
3. Examination Duration	Theory:3	Practical:3			
4. Relative Weight:	CWS: 15	PRS:25	MTE: 20	ETE:40	PRE:00
5. Credits: 5 6. Semester		ter: Spring 7. Subject Area: DC		et Area: DCC	

8. Pre-requisite: NIL

9. Objective:

The objective of the course is to impart knowledge of the constructional features and principle of operation of induction and synchronous machines. The course also deals with the methods of starting and speed control of induction motors.

S. No.	Contents	Contact Hours
1.	Classification and constructional features of wound rotor and	2
	squirrel cage induction machines.	
2.	Qualitative description of working of poly-phase induction machine	7
	from rotating field view point; Coupled circuit model of an idealized	
	three-phase machine, concept of leakage reactance and its	
	importance on machine performance and design; Equivalent circuit,	
	phasor diagram, circle diagram; Generator action, methods of	
	excitation, characteristics.	
3.	Methods of starting induction motors; Principles of speed control (i)	6
	stator voltage control (ii) slip speed control (iii) rotor resistance	
	control (iv) V/f control; Effect of voltage injection in secondary of	
	slip-ring induction motor, action of commutator as a frequency	
	converter.	
4.	Double-cage and deep-bar squirrel cage rotor induction motor;	4
	Space and time harmonics and their effect on motor performance.	
5.	Single-phase induction motor working, double revolving field	3
	theory, equivalent circuit, torque-speed characteristic, performance.	

S. No.	Contents	Contact Hours
6.	Classification and constructional features of salient pole and	2
	cylindrical rotor three-phase synchronous machine.	
7.	Generated emf, winding coefficients, harmonics in generated emf, tooth ripples and armature reaction; Coupled circuit model of an idealized salient pole synchronous machine, two-reaction theory, operation under balanced steady state conditions; Power-angle equations of salient pole and cylindrical rotor synchronous machines.	7
8.	Voltage regulation of salient pole and cylindrical rotor machine, effect of saturation on voltage regulation.	4
9.	Steady state operating characteristic of synchronous motor; O and	3
	V-curves and phasor diagram, hunting.	
10.	Parallel operation of synchronous machines, synchronization and	4

load division, synchronous machine on infinite bus, stability and hunting in synchronous machine.	
Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Fitzgerald A. E., Kingsley C. and Kusko A., "Electric Machinery", 6 th Ed., McGraw-Hill International Book Company.	2008
2.	Say M. G., "The Performance and Design of Alternating Current Machines", CBS Publishers and Distributors.	2005
3.	Nagrath I. J. and Kothari D. P., "Electrical Machines", 3 rd Ed., Tata McGraw-Hill Publishing Company Limited.	2004
4.	Langsdorf A. S., "Theory of AC machines", 2 nd Ed., Tata McGraw- Hill Publishing Company Limited.	2008
5.	Kimbark E.W., "Power System Stability, Vol. III: Synchronous Machines", Wiley India.	2008
6.	Chapman S. J., "Electric Machinery Fundamentals", 4 th Ed., McGraw-Hill International Book Company.	2005

Department of Electrical Engineering

1. Subject Code: EI	EN-203	Course Title:	Digital Ele	ectronics and	l Circuits
2. Contact Hours:	L: 3	T: 1		P: 2/2	
3. Examination Durat	Theory:3	Practical:2			
4. Relative Weight: CWS:20		PRS:20	MTE:20	ETE:40	PRE:00
5. Credits :4 6	. Semester: Au	tumn	7. Subject Ai	rea: DCC	

8. Pre-requisite: EE-106 or EC-102

NAME OF DEPTT./CENTRE:

9. Objective:

To familiarize the students with the fundamentals of combinational and sequential logic circuits, and their design with HDL.

S. No.	Contents	Contact Hours
1.	Review of Number System: Representation of binary, hexadecimal,	2
	octal and BCD numbers, conversion from one system to another	
	system, signed number representation, addition and subtraction of	
	signed numbers.	
2.	Boolean Algebra: Theorems and postulates; Logic gates, positive	3
	and negative logic gates and their truth tables.	•
3.	Digital Integrated Circuits: DTL, TTL, ECL, CMOS; Universal	3
	gates using TTL logic, open collector devices, TTL parameters;	
4	NAND and NOR gates using CMOS.	3
4.	Boolean Function: Canonical forms of representing Boolean function, Karnaugh map, simplification of 3, 4 and 5 variables	3
	function, Karnaugh map, simplification of 5, 4 and 5 variables function using Karnaugh map and McCluskey method.	
5.	Combinational Logic Circuits: Design procedure & analysis of	5
5.	combinational logic circuits, binary adder, binary subtractor, binary	5
	comparator, BCD adder, multiplexers, realisation of Boolean	
	function using multiplexers and decoders.	
6.	Combinational Logic Design using HDL: Introduction, program	7
	structure, logic system, variables and constants, vectors and	
	operators, structural data flow, behavioural design elements,	
	functions, simulation, test benches; Design of logic circuits.	
7.	Sequential Logic Circuits: Analysis of basic memory element,	6
	Mealy and Moore state transition diagram; Development of R-S flip	
	flop, level triggered and edge triggered flip flops, α - β -0-1 behaviour	
	of flip-flop, J-K, D and T flip-flops; Principle of operation of	
-	Schmitt trigger, monostable and astable multivibrator.	
8.	Counters : Synchronous and asynchronous counters, design of	5
	counters, state transition diagram, shift register, ring counter and	
0	twisted ring counter and their design.	2
9.	A/D and D/A Converters: Binary weighted and R-2R ladder type	3
	DAC, DAC parameters; Flash type, counter ramp type, tracking, single slop and dual slope type ADC, Successive Approximation	
	ADC.	
	ADC.	

10.	Sequential Logic Design with HDL: Design of flip-flops and	5
	counters, state machines design, state machine test benches	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Malvino A. P. and Leach D. P., "Digital Principles and	2008
	Applications", 6 th Ed., Tata McGraw-Hill Publishing Company Ltd.	
2.	Mano M. Morris and Ciletti M. D., "Digital Design", 4 th Ed.,	2008
	Pearson Education.	
3.	Tocci R. J., "Digital Systems – Principles and Applications", 9 th Ed.,	2008
	Pearson Education.	
4.	Cook N. P., "A First Course in Digital Electronics", Prentice Hall	1999
	International Edition.	
5.	Wakerly J. F., "Digital Design – Principles and Practices", 4th Ed.,	2008
	Pearson Education.	
6.	Michael Ciletti, "Advanced Digital Design with the Verilog HDL",	2010
	2 nd Eition, Prentice Hall	

NAME OF DEPTT./CENTRE: **Department of Electrical Engineering**

1. Subject Code:	EEN-204	Course Title:	Microprocessors and Peripheral De		Peripheral Devices
2. Contact Hours:	L: 3	T: 1		P: 2	
3. Examination Du	ration (Hrs.):	Theory:3	Practical:2		
4. Relative Weight	: CWS:15	PRS :25	MTE:20	ETE:40	PRE:00
5. Credits :5	6. Semester: Spr	ring 7.	Subject Area	a: DCC	

8. Pre-requisite: Nil

9. Objective:

To provide in-depth knowledge of the architecture, instruction set and programming of typical 8-bi microprocessor and programmable support chips used in microprocessor-based systems.

S. No.	Contents	Contact Hours
1.	Introduction of Microcomputer System: CPU, I/O devices, clock,	3
	memory, bussed architecture, tri-state logic, address bus, data bus	
	and control bus.	
2.	Semiconductor Memories: MROM, ROM, EPROM, EEPROM,	3
	DRAM, internal structure and decoding, memory read and write	
	timing diagrams.	
3.	Intel 8085A microprocessor: Pin description and internal	8
	architecture; Timing and control unit, op-code fetch machine cycle,	
	memory read/write machine cycles, I/O read/write machine cycles,	
4	interrupt acknowledge machine cycle, state-transition diagram.	7
4.	Instruction Set: Addressing modes; Data transfer, arithmetic, logical, branch, stack and machine control groups of instruction set,	1
	macro RTL and micro RTL flow chart of few typical instructions;	
	Unspecified flags and instructions.	
5.	Assembly Language Programming: Assembler directives, simple	5
5.	examples; Subroutines, parameter passing to subroutines.	5
6.	Interfacing: Interfacing of memory chips, address allocation	5
υ.	technique and decoding; Interfacing of I/O devices, LEDs and toggle-	5
	switches as examples, memory mapped and isolated I/O structure;	
	Input/Output techniques: CPU initiated unconditional and conditional	
	I/O transfer, device initiated interrupt I/O transfer.	
7.	Interrupts: Interrupt structure of 8085A microprocessor, processing	3
	of vectored and non-vectored interrupts, latency time and response	
	time.	
8.	Programmable Peripheral Interface: Intel 8255, pin configuration,	4
	internal structure of a port bit, modes of operation, bit SET/RESET	
	feature, programming; ADC and DAC chips and their interfacing.	
9.	Programmable Interval Timer: Intel 8253, pin configuration,	4
	internal block diagram of counter, modes of operation, counter read	
	methods, programming, READ-BACK command of Intel 8254.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Hall D. V., "Microprocessor and Interfacing –Programming and	2008
	Hardware", 2 nd Ed., Tata McGraw-Hill Publishing Company Limited.	
2.	Gaonkar R. S., "Microprocessor Architecture, Programming and Applications", 5 th Ed., Penram International.	2007
3.	Stewart J, "Microprocessor Systems- Hardware, Software and Programming", Prentice Hall International Edition.	1990
4.	Short K. L., "Microprocessors and Programmed Logic", 2 nd Ed., Pearson Education.	2008
5.	Intel Manual on 8-bit Processors	
6.	Intel Manual on Peripheral Devices	

Department of Electrical Engineering

		•		0	0
1. Subject Code: EEN-205		Course Title:	Design	of Electronic (Circuits
2. Contact Hours:	L: 3	T: 1 P: 2/2		P: 2/2	
3. Examination Durat	tion (Hrs.):	Theory:3 Practical:0			
4. Relative Weight:	CWS:20	PRS:20	MTE:20	ETE:40	PRE:00
5. Credits:4	6. Sen	nester: Autum	n 7	. Subject Area	: DCC

8. Pre-requisite: **EE-102**

NAME OF DEPTT./CENTRE:

9. Objective:

To introduce the fundamentals of modeling, analysis and response of control systems in continuous and discrete data systems.

S. No.	Contents	Contact Hours
1.	Introduction: Concepts of system, open loop and closed loop systems, model classification; Mathematical modeling and	4
	representation of physical systems, analogous systems.	
2.	Transfer Function Analysis: Transfer functions for different types	4
	of systems, block diagrams; Signal flow graphs and Mason's gain	
	formula.	
3.	Control System Components: Potentiometers, synchros,	6
	principles and applications of dc and ac servomotors, analysis and	
	transfer function, servo amplifiers, modulators and demodulators,	
	magnetic amplifiers; Position and speed control systems.	
4.	Time Domain Analysis: Time domain performance criterion,	8
	transient response of first order, second order and higher order	
	systems; Steady state errors: static and dynamic error constants, system types, steady state errors for unity and non unity feedback	
	systems, performance analysis for P, PI and PID controllers.	
5.	Stability Analysis: Concept of stability by Routh stability	5
5.	criterion, root-loci and root contours, sensitivity analysis,	5
6.	Frequency Response Analysis: Polar and inverse polar plots,	8
	logarithmic plots, Bode plots, Nyquist stability criterion, gain and	Ū
	phase margins, relative stability, frequency response specifications,	
	correlation with time domain M and N circles, Nichol's chart,	
	closed loop frequency response from open loop response.	
7.	Compensation Techniques: Compensation - lag, lead and lag-	7
	lead networks, design of compensation networks using time	
	response and frequency response of the system; Feedback	
	compensation using P, PI, PID controllers, ON-OFF control.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/
		Reprint
1.	Nagrath I. J. and Gopal M., "Control System Engineering", 5 th Ed.,	2008
	New Age International Private Limited Publishers.	
2.	Kuo B. C., "Automatic Control Systems", 8 th Ed., Wiley India.	2008
3.	Ogata K., "Modern Control Engineering", 4th Ed., Pearson	2008
	Education.	
4.	Dorf R. C. and Bishop R. H., "Modern Control Systems", 8th Ed.,	2008
	Pearson Education.	
5.	Norman S. N., "Control Systems Engineering", 4 th Ed., Wiley India.	2008

NAME OF DEPTT./CE	Departmen	t of Electri	ical Engine	eering	
1. Subject Code: EEN	-206	Course Title:	Power Tra	nsmission &	Distribution
 Contact Hours: I Examination Duratio 	2 : 3 n (Hrs.):	T: 1 Theory:3	I	P: 0 Practical:0	
4. Relative Weight:	CWS:25	PRS:00	MTE:25	ETE:50	PRE:00
5. Credits: 4	6. Sen	nester: Spring	7. S	ubject Area:	DCC

8. Pre-requisite: EE-102

9. Objective:

To introduce the design aspects of power system distribution and transmission systems, and to familiarize students with the practical operation of power systems.

S. No.	Contents	Contact Hours
1.	Transmission and Distribution Systems: Introduction, electrical	5
	supply system, comparison of AC and DC systems, overhead versus	
	underground systems, choice of working voltages for transmission	
	and distribution, transmission and distribution system architecture.	
2.	Overhead Transmission Lines: Mechanical design, line support,	6
	types of conductors; Overhead line insulators, types of insulators-	
	pin, suspension and strain insulators, insulator materials, insulator	
	string; Calculation of voltage distribution and string efficiency,	
	methods of equalizing voltages, use of guard rings.	
3.	Corona: Theory of corona formation, factors affecting corona,	3
	calculation of potential gradient, disruptive critical voltage and	
	visual critical voltage, corona power loss, minimizing corona, merits	
	and demerits of corona.	
4.	Line Parameters: Line resistance, inductance and capacitance	6
	calculations, effect of earth on capacitance of overhead transmission	
	lines, short and medium transmission lines, line performance and	
	compensation.	
5.	Underground Cables: Elements of a power cable, properties of the	4
	insulation and sheath materials, classification of power cables:	
	belted, screened and pressure cables, dielectric stress in cable	
	insulation, grading of cables: capacitance grading and inter-sheath	
	grading, measuring capacitances and charging current in a cable.	
6.	Tariff: Cost analysis of power plants, types of tariffs- flat rate,	4
	block rate, two-part and three-part, time of day and real time pricing,	
	fixed and running charges, comparison of tariffs and computation of	
	monthly/annual bill; Economics of power factor improvement.	
7.	HVDC: Advantages and limitations of HVDC transmission over	4
	HVAC transmission, elementary ideas about converter and inverter	
	operation, classification of HVDC links: mono-polar, bipolar and	
	homopolar, economic comparison of HVDC and ac systems.	
8.	Surge Performance and Protection: Switching surges, origin and	6

	mechanism of lightening strokes, direct and induced strokes, protection from surges- lightning arrestors (rod gap, horn gap, multi- gap and expulsion type) and surge diverters, evaluation of surge impedance, energy and power of a surge.	
9.	Introduction to Traveling Waves: Introduction and mechanism of traveling waves, wave equation, characteristic impedance of a line, incident and reflected waves, transmission and refraction of waves, velocity of traveling waves, behavior of traveling waves for different terminations: inductor, capacitor, open-end, short-end and over the junction of dissimilar lines, attenuation of traveling waves.	4
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Weedy B.M. and Cory B.J., "Electric Power Systems", 4th Ed.,	2008
	Wiley India.	
2.	Grainger J. J. and Stevenson W.D., "Elements of Power System	2008
	Analysis", Tata McGraw-Hill Publishing Company Limited.	
3.	Gonen T., "Electric Power Transmission System Engineering:	1990
	Analysis and Design", John Wiley and Sons.	
4.	Nagrath I. J. and Kothari D. P., "Modern Power System Analysis",	2008
	3 rd Ed., Tata McGraw-Hill Publishing Company Limited.	
5.	Roy S., "Electrical Power System- Concepts, Theory and Practices",	2007
	Prentice Hall of India Private Limited.	

NAME OF DEPTT./CH	ENTRE:	Department of Electrical Engineering			neering
1. Subject Code: EEN	1-208	Course Title:	Applied I	nstrumenta	tion
2. Contact Hours:	L: 3	T: 1		P: 2/2	
3. Examination Duratio	n (Hrs.):	Theory:3]	Practical:0	
4. Relative Weight:	CWS:20	PRS:20	MTE:20	ETE:40	PRE:00
5. Credits:4	6. Sem	nester: Spring	7. Sı	ubject Area:	DCC

8. Pre-requisite: EE-104

9. Objective:

To impart knowledge of the principles, working and characteristics of transducers and the associated signal conditioning circuits for industrial applications.

S. No.	Contents	Contact Hours
1.	Introduction: Basics of transducer, sensor and actuator; Active and	5
	passive transducers, generating and parametric transducers; Analog,	
	digital and pulse outputs of sensors; Static characteristics of	
	transducer and transducer system; Dynamic characteristics of n th , 0 th ,	
	first and second order transducers.	
2.	Measurement of Displacement and Strain: Resistive, inductive	6
	and capacitive transducers for displacement; Wire, metal film and	
	semiconductor strain gauges; Wheatstone-bridge circuit with one,	
	two and four active elements, temperature compensation.	
3.	Measurement of Speed and Torque: Electro-magnetic and photo-	3
	electric tachometers; Torque shaft, strain-gauge, electromagnetic	
	and radio type torque meters.	
4.	Measurement of Force and Pressure: Column, ring and	3
	cantilever-beam type load cells; Elastic elements for pressure	
	sensing; Using displacement sensors and strain gauges with elastic	
	elements.	
5.	Measurement of Temperature: Resistance temperature detector,	2
	NTC and PTC thermistors, Seebeck effect, thermocouple and	
	thermopile.	

S. No.	Contents	Contact Hours
6.	Analog Electronic Instrumentation: Tuned and sampling voltmeters; AC and DC current probes; Wattmeter and energy meter; Wave analyzer, harmonic distortion meter, harmonic analyzer, spectrum analyzer.	8
7.	Digital Electronic Instrumentation: Digital counter-timer and frequency meter, time standards, digital voltmeter and multimeter, accuracy and resolution considerations, comparison with analog electronic instruments.	8
8.	Noise and Interference in Instrumentation: Sources and effects of noise and interference; SNR and its improvement; Introduction to	2

	noise suppression methods; Grounding and shielding.	
9.	Display Devices and Recorders: CRO, frequency and phase measurement with CRO, direct reading frequency and phase meters.LCD and LED displays, X-Y plotter, strip-chart recorder.	5
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Rangan C. S., Sarma G. R. and Mani V. S. V., "Instrumentation	2008
	Devices and Systems", 2 nd Ed., Tata McGraw-Hill Publishing	
	Company Limited.	
2.	Doebelin E. O. and Manik D. N., "Measurement Systems", 5 th Ed.,	2008
	Tata McGraw-Hill Publishing Company Limited.	
3.	Johnson C. D., "Process Control Instrumentation Technology", 8 th	2008
	Ed., Prentice Hall of India Private Limited.	
4.	Cooper W. D. and Helfrick A. D, "Modern Electronic	2008
	Instrumentation and Measurement Techniques", Pearson Education.	
5.	Oliver B. M. and Cage J. M., "Electronic Measurement and	1983
	Instrumentation", McGraw-Hill International Book Company.	
6.	Anand M. M. S., "Electronic Instruments and Instrumentation	2008
	Technology", Pearson Education.	

Department of Electrical Engineering NAME OF DEPTT./CENTRE:

1. Subject Code: EEN-211 Course Title: Control Systems 2. Contact Hours: L: 3 T: 1 **P:** 0 3. Examination Duration (Hrs.): Theory:3 **Practical:0** 4. Relative Weight: **CWS:25 PRS:00 MTE:25 ETE:50 PRE:00** 5. Credits: 4 6. Semester: Autumn 7. Subject Area: DCC

8. Pre-requisite: EE-102

9. Objective:

To introduce the fundamentals of modeling, analysis and response of control systems in continuous and discrete data systems.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Concepts of system, open loop and closed loop	4
	systems, model classification; Mathematical modeling and	
	representation of physical systems, analogous systems.	
2.	Transfer Function Analysis: Transfer functions for different types	4
	of systems, block diagrams; Signal flow graphs and Mason's gain	
	formula.	
3.	Control System Components: Potentiometers, synchros,	6
	principles and applications of dc and ac servomotors, analysis and	
	transfer function, servo amplifiers, modulators and demodulators,	
	magnetic amplifiers; Position and speed control systems.	0
4.	Time Domain Analysis: Time domain performance criterion,	8
	transient response of first order, second order and higher order	
	systems; Steady state errors: static and dynamic error constants,	
	system types, steady state errors for unity and non unity feedback	
=	systems, performance analysis for P, PI and PID controllers.	5
5.	Stability Analysis: Concept of stability by Routh stability	5
(criterion, root-loci and root contours, sensitivity analysis,	0
6.	Frequency Response Analysis: Polar and inverse polar plots,	8
	logarithmic plots, Bode plots, Nyquist stability criterion, gain and	
	phase margins, relative stability, frequency response specifications, correlation with time domain M and N circles, Nichol's chart,	
	closed loop frequency response from open loop response.	
S. No.	Contents	Contact Hours
7.	Compensation Techniques: Compensation - lag, lead and lag-	7
/•	lead networks, design of compensation networks using time	'
	response and frequency response of the system; Feedback	
	compensation using P, PI, PID controllers, ON-OFF control.	
	Total	42

	S. No.	Name of Authors /Books / Publishers	Year of
--	--------	-------------------------------------	---------

		Publication/ Reprint
1.	Nagrath I. J. and Gopal M., "Control System Engineering", 5 th Ed., New Age International.	2011
2.	Kuo B. C., "Automatic Control Systems", 8 th Ed., Wiley India.	2009
3.	Ogata K., "Modern Control Engineering", 5 th Ed., Pearson Education.	2009
4.	Dorf R. C. and Bishop R. H., "Modern Control Systems", 8 th Ed., Pearson Education.	2008
5.	Norman S. N., "Control Systems Engineering", 4 th Ed., Wiley India.	2008

NAME OF DEPTT./CENTRE:		Departmen	t of Electri	cal Engineer	ing
1. Subject Code: EEN	Course Title:	Engineerin	g Analysis and	Design	
2. Contact Hours: L: 2		T: 0		P: 2	
3. Examination Duration (Hrs.):		Theory :2	Р	ractical: 0	
4. Relative Weight:	CWS: 15	PRS:25	MTE:20	ETE:40	PRE:00
5. Credits: 3 6. Semester		: Autumn	7. Su	bject Area : DC	С

8. Pre-requisite: EE-102 and EE-106

9. Objective:

To introduce fundamentals of design and simulation using software packages.

S. No.	Contents	Contact Hours
1.	Model of Physical Systems: Introduction to physical systems:	3
	Mass-spring-damper system, accelerometer, rotational mechanical	
	system, gear trains, liquid level system; Circuit models: RL, RC,	
	LC, RLC series and parallel circuits with sinusoidal and non-	
	sinusoidal excitations, diode rectifier.	
2.	Solution of Differential Equations: Systems of linear equations, homogeneous and non-homogeneous linear equations, Polynomial equations, least squares fit; ordinary differential equations: Euler's method, Runge-Kutta method, Newton-Raphson method, Predictor-Corrector methods; Numerical integration: Forward and backward integration rules, Trapezoidal rule, Simpson's rule, Errors of integration.	9
3.	Simulation Techniques: Continuous state simulation: circuit level simulators, Discrete-event simulation: Fixed time step, variable time step; Response analysis of circuits: DC analysis, AC Analysis, Transient analysis.	6
4.	Programming in MATLAB : Programming a function, repetitive and conditional control structures, Iterative solution of equations, polynomial interpolation; Plotting and analysis: two-dimensional and three-dimensional plots, Histograms, Polar plots, Function evaluation; Handling external files: saving and loading data.	4

S. No.	Contents	Contact Hours
5.	PSPICE Circuit Simulator : Introduction, circuit descriptions, Input files, nodes, circuit elements, element values, sources, output variables; Analysis: DC sweep, Transient and AC analysis. PSPICE models.	3
6.	Design Case Studies : DC Motor speed control, State space model, heater systems with temperature control.	3
	Total	28

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Adrian Biran, Moshe Breiner, "MATLAB 5 for Engineers", second	1999
	edition, Addison Wesley.	
2.	Muhammad H. Rashid, Hasan M. Rashid, "SPICE for Power	2009
	Electronics and Electric Power", Second edition, Taylor & Francis.	
3.	William J. Palm III, "Introduction to MATLAB for Engineers",	2010
	Third edition, McGraw Hill.	

Department of Electrical Engineering

	•		0	0
1. Subject Code: EEN-3	01 Course	Title: Power Sy	Power System Analysis and Co	
2. Contact Hours: L:	3 7	: 1	P: 2/2	
3. Examination Duration (Hrs.): Theory:	3	Practical:0	
4. Relative Weight:	CWS:20 PRS:2	0 MTE:20	ETE:40	PRE:00
5. Credits:4	6. Semester: Autu	mn 7.	Subject Area	a: DCC

8. Pre-requisite: EE-206

NAME OF DEPTT./CENTRE:

9. Objective:

To provide in-depth knowledge of power system analysis under normal conditions and on fault, and the concepts of power system control and stability.

S. No.	Contents	Contact Hours
1.	System Representation: Single line representation, review of per	2
	unit calculations.	
2.	Formation of Network Matrices: Formation of admittance matrix	6
	with and without mutual impedances, Z_{bus} building algorithm with	
	and without mutual impedances.	
3.	Load Flow Analysis: Formation of static load flow equations,	10
	solution of load flow problem by Gauss-Seidel, Newton-Raphson	
	(polar and rectangular) and fast decoupled techniques.	
4.	Short Circuit Analysis: Review of symmetrical components,	10
	sequence networks, fault calculations for balanced and unbalanced	
	short circuit faults using Z_{BUS} , analysis of open conductor fault.	
5.	Power System Stability: Swing equation, power angle equation,	8
	synchronizing power coefficient, basic concepts of steady state,	
	dynamic and transient stability, equal area criterion, solution of the	
	swing equation, multi-machine transient stability studies with	
	classical machine representation.	
6.	Power System Control: Elementary idea of load-frequency control,	6
	automatic generation control, reactive power and voltage control.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Saadat H., "Power System Analysis" Tata McGraw-Hill Publishing	2008
	Company Limited.	
2.	Pai M. A., "Computer Techniques in Power System Analysis", 2 nd	2008
	Ed., Tata McGraw-Hill Publishing Company Limited.	
3.	Miller T. J. E., "Reactive Power Control in Electric Systems", John	1982
	Wiley and Sons.	
4.	Grainger J. J. and Stevenson W. D., "Power System Analysis",	2008
	McGraw-Hill International Book Company.	
5.	Glover J. D. and Sarma M. S., "Power System Analysis and	2008
	Design", 4 th Ed., Cengage Learning.	
6.	Kothari D. P. and Nagrath I. J., "Modern Power System Analysis",	2008
	3 rd Ed., Tata McGraw-Hill Publishing Company Limited.	

Department of Electrical Engineering

		_		_	_
1. Subject Code: EEN	1-302	Course Title:	Electric Dri	ves	
2. Contact Hours:	L: 3	T: 1		P: 2/2	
3. Examination Duration (Hrs.):		Theory:3 Practical:0		ractical:0	
4. Relative Weight:	CWS: 20	PRS:20	MTE: 20	ETE:40	PRE:00
5. Credits:4	6. Semester:	Spring	7. Subjec	t Area : DCC	2

8. Pre-requisite: EE-201, EE-202 and EE-303

9. Objective:

To introduce the fundamentals of electric drives, operation and analysis of solid state control of ac/dc drives and estimation of drive rating for different duty cycle operations.

10. Details of Course:

NAME OF DEPTT./CENTRE:

S. No.	Contents	Contact Hours
1.	Introduction: Definition of electric drive, type of drives; Speed-	5
	torque characteristic of driven unit/loads, motors, joint speed-torque	
	characteristic; Classification and components of load torque; Review	
	of power converters used in drives, multi-quadrant operation of	
	electric drive, example of hoist operation in four quadrant.	
2.	Estimation of Drive Motor Rating: Selection of motor power	6
	capacity for continuous duty at constant load and variable loads;	
	Selection of motor capacity for short time and intermittent periodic	
	duty, permissible frequency of starting of squirrel cage motor for	
	different duty cycles; Load equalization.	
3.	DC Drives: Single-phase half controlled and fully controlled	8
	converter fed dc motor drives, operation of dc drives with	
	continuous armature current, voltage and current waveforms;	
	Concept of energy utilization and effect of free-wheeling diode;	
	Operation of drive under discontinuous current, expression for	
	speed-torque characteristic.	

S. No.	Contents	Contact Hours
4.	Chopper fed DC Drives : Principle of operation and control techniques, chopper circuit configurations used in dc drives: Type	4
	A, B, C, D and E; Motoring operation of chopper fed separately	
	excited dc motor, steady state analysis of drive with time-ratio control.	
5.	Closed Loop Control of DC Drives: Drives with current limit	5
	control, single-quadrant closed loop drive with inner current control loop, advantage of inner current control loop in drives.	
6.	AC Drives: Variable voltage, rotor resistance and slip power recovery control of induction motors, torque-speed characteristics under different control schemes; Variable frequency control of induction motor, analysis of induction machine under constant V/f operation, constant flux operation and controlled current operation.	6
7.	Inverter fed AC Drives: Voltage source inverter fed induction	8

 drives, closed loop slip speed controlled CSI fed drive. Total	42
induction motor drive; Current source inverter, advantage of CSI fed	
motor drive in open loop, frequency and voltage control in PWM VSI; Operation of closed loop slip-speed controlled VSI fed	

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Dubey G. K., "Fundamentals of Electric Drives", 2 nd Ed., Narosa Publishing House.	2007
2.	Pillai S. K., "A First Course in Electric Drives", 2 nd Ed., New Age International Private Limited.	2008
3.	Sen P. C., "Thyristor DC Drives", John Wiley and Sons.	1991
4.	Dubey G. K., "Power Semiconductor Controlled Drives", Prentice Hall International Edition.	1989
5.	Murphy J. M. D. and Turnbull F. G., "Power Electronics Control of AC Motors", Peragmon Press.	1990
6.	Bose B. K., "Power Electronics and Variable Frequency Drives", IEEE Press, Standard Publisher Distributors.	2001

NAME OF DEPTT./CEN	CENTRE: Department of Electrical Engineerin			neering	
1. Subject Code: EEN-303		Course Title: Power Electronics			
2. Contact Hours: La	: 3	T: 1		P: 2/2	
3. Examination Duration (Hrs.):		Theory:3		Practical:2	2
4. Relative Weight:	CWS:20	PRS:20	MTE:20	ETE:40	PRE:00
5. Credits:4	6. Sen	nester: Autum	n 7.	Subject Are	a: DCC

8. Pre-requisite: EE-106 and EE-203

9. Objective:

The course aims at familiarizing the students with the operating characteristics of semiconductor devices, triggering circuits and their applications for power control. The course also deals with the detailed analysis and operation of power controllers.

S. No.	Contents	Contact Hours
1.	Solid State Power Devices: Principle of operation of SCR, dynamic	7
	characteristic of SCR during turn ON and turn OFF, parameters of	
	SCR, dv/dt and di/dt protection, snubber circuit, commutation	
	circuits; Heat sink design.	
2.	Modern Power Devices: Principle of operation of MOSFET, IGBT,	2
	GTO, MCT, SIT, SITH, IGCT, their operating characteristics.	
3.	Single-phase Converter : Half wave converter, 2-pulse midpoint converter, half controlled and fully controlled bridge converters, input current and output voltage waveforms, effect of load and source impedance, expressions for input power factor, displacement factor, harmonic factor and output voltage, effect of free-wheeling diode, triggering circuits.	6
4.	Dual Converter : Control principle, circulating current and circulating current free modes of operation of single-phase dual converter.	2

S. No.	Contents	Contact Hours
5.	Three-phase Converter: Half wave, full wave, half controlled and	6
	fully controlled bridge converters, effect of load and source	
	impedance, expressions for input power factor, displacement factor,	
	harmonic factor and output voltage,	
6.	A.C. Regulator: Principle of operation of single-phase ac regulator,	2
	effect of load inductance, firing pulse requirement.	
7.	AC-AC Converters: Principle of operation of cycloconverter,	3
	waveforms, control technique; Introduction of matrix converter.	
8.	DC-DC Converters: Principle of operation of single quadrant	5
	chopper, continuous and discontinuous modes of operation; Voltage	
	and current commutation, design of commutating components;	
	Introduction to SMPS.	
9.	Inverters: Voltage source and current source inverters, Principle of	9
	operation of single-phase half bridge and full bridge voltage source	

inverters, voltage and current waveforms; Three-phase bridge inverter, 120^{0} and 180^{0} modes of operation, voltage and current waveforms with star and delta connected RL load; Voltage and frequency control of inverters; PWM techniques-single pulse, multiple pulse, selective harmonic elimination, sinusoidal PWM.	
Total	42

S. No.	Name of Authors /Books / Publishers	Year of
		Publication/
		Reprint
1.	Dubey G. K., Doradla S. R., Joshi A. and Sinha R. M. K.,	2008
	"Thyristorised Power Controllers", New Age International Private	
	Limited.	
2.	Mohan N., Undeland T. M. and Robbins W. P., "Power Electronics-	2008
	Converters, Applications and Design", 3 rd Ed., Wiley India.	
3.	Rashid M. H., "Power Electronics Circuits Devices and	2008
	Applications", 3 rd Ed., Pearson Education.	
4.	Lander C. W., "Power Electronics", 3 rd Ed., McGraw-Hill	2007
	International Book Company.	
5.	Ramshaw R.S., "Power Electronics Semiconductor Switches",	1993
	Chapman & Hall.	

Department of Electrical Engineering

		-		0	0
1. Subject Code: EEN-	Course Title:	Protection and Switchgear			
2. Contact Hours: L: 3		T: 0	P: 2		
3. Examination Duration (Hrs.):		Theory:3	Practical:2		
4. Relative Weight: CWS:15		PRS:25	MTE:20 ETE:40 P		PRE:00
5. Credits: 4	6. Semester: Spring		7. S	ubject Area:	DCC

8. Pre-requisite: EE-206

NAME OF DEPTT./CENTRE:

9. Objective:

To introduce the concept and necessity of protection in generation and transmission, and applications of switchgears including internal operation of different types of circuit breakers.

S. No.	Contents	Contact Hours
1.	Various types of electromechanical relays, construction and principle of operation and characteristic, applications and	8
	limitations; Over and under current, directional, differential, distance	
	and other types of relay; Concept of static relays; Protection system and properties; Introduction to numerical relays.	
2.	Protection of transmission lines using overcurrent, differential, directional-overcurrent and distance relays, back-up protection, carrier relaying; Busbar protection.	6
3.	Protection of transformers against internal faults such as short circuit and turn-to-turn fault using differential and overcurrent relays, protection for other abnormal conditions.	6
4.	Protection of generators against short circuit and turn-to-turn fault, stator ground fault, field ground fault, loss of excitation, loss of synchronism using different types of relays.	6
5.	Switchgear, arc and interruption theory, application in different conditions, ratings and selection, principle of operation of air break, oil filled, air blast, vacuum and SF_6 circuit breakers, elementary idea of testing methods.	12

S. No.	Contents	Contact Hours
6.	Necessity of grounding of system neutral and substation equipments, methods of grounding.	4
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Van A. R. and Warrington C., "Protective Relays - Theory and	1982
	Practice", Vol. I and II, 3 rd Ed., Chapman and Hall.	
2.	Mason C. R., "The Art and Science of Protective Relaying", Wiley	1987
	Eastern Limited.	
3.	Ray S., "Electrical Power Systems: Concepts, Theory and Practice",	2008
	Prentice Hall of India Private Limited.	
4.	Ravindranath B. and Chander M., "Power System Protection and	2008
	Switchgear", New Age International Private Limited.	
5.	Paithankar Y. G. and Bhide S. R., "Fundamentals of Power System	2007
	Protection", Prentice Hall of India Private Limited.	

NAME OF DEPTT./CENTRE:		Department of Electrical Engineering			
1. Subject Code: EEN-305		Course Title: Advanced Control Syste		Systems	
2. Contact Hours: L: 3		T: 1		P: 2	
3. Examination Duration (Hrs.):		Theory :3		Practical :3	
4. Relative Weight: CWS:15		PRS:25	MTE:20	ETE:40	PRE:00
5. Credits :5 6. Sen		mester: Autu	ımn	7. Subject Are	ea: DCC

8. Pre-requisite: EE-205

9. Objective:

To familiarize students with classical and modern control systems including non-linear systems.

S. No.	Contents	Contact Hours
1.	State Variable Approach: Derivation of state model of linear time	8
	invariant (LTI) continuous systems, transfer function from ordinary	
	differential equations, canonical variable diagonalization, system analysis by transfer function and state space methods for continuous	
	systems convolution integral; State transition matrices and solution	
	of state equations for continuous and discrete time systems.	
2.	Discrete Data Systems: Introduction to discrete time systems,	10
	sample and hold circuits, pulse transfer function, representation by	
	difference equations and its solution using z-transform and inverse-	
	z transforms, analysis of LTI systems, unit circle concepts; Stability	
	criterion.	
3.	Controllability and Observability: Concept of controllability and	8
	observability, definitions, state and output controllability and	
	observability tests for continuous and discrete systems,	
	controllability and observability of time varying systems.	
4.	Model Control: Introduction, effect of state feedback on	8
	controllability and observability, design via state feedback full	
	order observer, reduced order observers design of state observers	
	and controllers.	

S. No.	Contents	Contact Hours
5.	Non Linear Systems: Types of non linearity, limit cycles, jump resonance, linearization techniques; Perturbation methods: phase plane and describing function analysis; Stability concepts, Lyapunov functions for linear and non linear systems.	8
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/
		Reprint
1.	Nagrath I. J. and Gopal M., "Control System Engineering", 5 th Ed.,	2008
	New Age International Private Ltd. Publishers.	
2.	Kuo B. C., "Automatic Control Systems", 8th Ed., Wiley India.	2008
3.	Ogata K., "Modern Control Engineering", 4 th Ed., Pearson Education.	2008
4.	Dorf R. C. and Bishop R. H., "Modern Control Systems" Pearson	2008
	Education.	
5.	Norman S. N., "Control Systems Engineering", 4 th Ed., Wiley India.	2008

NAME OF DEPTT./CENTRE:	Department of E	lectrical Engineering	
1. Subject Code: EEN-101		oduction to Electrical neering	
2. Contact Hours: L: 2	T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 0	Practical 0	
4. Relative Weight: CWS 0	PRS 0	0 100	0
5. Credits: 2 6. Sem	ester: Autumn	7. Subject Area: DCC	

8. Pre-requisite: NIL

9. Objective:

To introduce the fundamentals of Electrical Engineering including energy resources, generation, transmission, distribution and utilization of electrical energy.

S. No.	Contents	Contact Hours
1.	Energy Resources: Conventional and non-conventional energy	3
	resources; Availability of resources; Principle of energy conversion	
	and its utilization; National and International energy trends; Global	
	warming and greenhouse effects.	
2.	Generation: Generation of electrical power, synchronous generator;	4
	Conventional power generation - Hydro, Thermal, Nuclear and Gas	
	Power; Renewable energy generation; Generated voltage waveform,	
	voltage and frequency level; Governor and Excitation System.	
3.	Transmission: Purpose of transmitting power, AC transmission	4
	voltage levels; Power transformer; Transmission lines, single line	
	diagram of power transmission network; Protective Equipments	
	used in the network; Types of faults; Transmission substation;	
	HVDC Transmission.	
4.	Distribution: Distribution network and substation; single line	4
	diagram of distribution network; Distribution transformer;	
	Overhead lines and underground cables; Protective equipment,	
	grounding and earthing.	

5.	Utilization: Types of load- Heating, motor, traction, lighting and fans; Load characteristics; Consumer loads; Power electronic equipment.	5
6.	Metering: Active and reactive power, apparent power, voltage, current and power measurement; Energy meters.	3
7.	Electrical Wiring Concepts: Residential wiring diagram, symbols of switches, fuse, rheostat, SPDT, DPDT, contacts, contactors, MCB.	3
8.	Power Quality and Control : Nature of non linear loads; Problems due to non-sinusoidal current; Use of electronics, microprocessor and digital signal processing in control.	2
	Total	28

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Beaty H.W., Fink D.G., "Standard Handbook for Electrical Engineers", McGraw Hill 15 th Edition.	2007
2.	Singh, S.N., "Electric Power Generation, Transmission and Distribution", Prentice Hall of India, 2 nd Edition.	2010
3.	Das Kamalesh, "Electrical Power Systems for Industrial Plants", JAICO Publishing House.	2011
4.	Jelley N., Andrews J., "Energy Sciences – Principles, Technologies, and Impacts", Oxford University Press.	2011
5.	Mullin Ray C., "Electrical Wiring Residential", Delmar Publishers Inc., 11 th Edition.	1993

NAME OF DEPTT./C	De	partment of	f Electrical E	ngineering	
1. Subject Code: EEN-102		Co	urse Title:	Network The	ory
2. Contact Hours:	L: 3	T:	1	P: 0	
3. Examination Durat	ion (Hrs.):	Theory: 3		Practical :	0
4. Relative Weight:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits: 4	6. Sei	mester: Spri	ng	7. Subject Are	a: DCC

8. Pre-requisite: NIL

9. Objective: To introduce the fundamentals of network analysis using matrices, two-port and multi-port networks, and network synthesis.

S. No.	Contents	Contact Hours
1.	Network Theorems: AC & DC circuits; Thevenin's, Norton's, superposition and maximum power transfer theorems; Compensation, reciprocity and Tellegen's theorems.	6
2.	Network Topology: Concept of network graphs, tree, link, cut set, network matrices, node incidence matrix, loop incidence matrix, cut set incidence matrix, network analysis using network incidence matrices.	6
3.	Transient Network Analysis: Response of RL, RC and RLC networks using Laplace Transforms for unit step, impulse and ramp inputs.	6
4.	Network Functions: Driving point impedances; Transfer functions of networks.	2
5.	Two Port Networks and their Characterization: Open circuit, short circuit, hybrid and transmission parameters; Series, parallel and tandem connections of two-port networks, multi-port networks, multi-terminal networks; Indefinite admittance matrix and its properties.	6
5.	Three-Phase A.C. Circuit Analysis: Analysis of balanced and unbalanced three-phase networks; Symmetrical components and their application in analysis of unbalanced networks; Analysis of A.C. circuits with non-sinusoidal inputs	8
6.	Network Synthesis: Poles and zeros of network functions, positive real functions and their properties, tests for positive real functions, Hurwitz polynomials; Driving-point synthesis of LC, RC and RL networks, Foster forms and Cauer forms.	6
7.	Introduction to Computer Aided Network Analysis: Analysis of linear and non-linear networks, concept of companion network model; Computer aided transient network analysis.	2
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Desoer C. A. and Kuh E. S., "Basic Circuit Theory", McGraw Hill	1984
	International Book Company.	
2.	DeCarlo R. A. and Lin Pen-Min, "Linear Circuit Analysis", 2 nd Ed.,	2001
	Oxford University Press.	
3.	Hayt W. H., Kemmerly J. E. and Durbin S. M., "Engineering Circuit	2008
	Analysis", 6 th Ed., Tata McGraw-Hill Publishing Company Ltd.	
4.	Director S. W., "Circuit Theory: A Computational Approach", 2 nd	1993
	Ed., John Wiley and Sons Inc.	
5.	Valkenberg V., "Network Analysis", 3 rd Ed., Prentice Hall	2007
	International Edition.	
6.	Kuo F. F., "Network Analysis and Synthesis", 2 nd Ed., Wiley India.	2008

NAME OF DEPTT./CENTRE:	Department of El	ectrical Engineering	
1. Subject Code: EEN-103	Course Title: Progr	amming in C++	
2. Contact Hours: L: 3	T: 0	P: 2	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weight: CWS 15	PRS 15	30 40	0
5. Credits: 4 6. Sem	nester: Autumn	7. Subject Area: ESC	

8. Pre-requisite: NIL

9. Objective:

To familiarize the students with the fundamentals of programming in C++ and the concepts of object oriented programming (OOPS).

S. No.	Contents	Contact Hours
1.	Basic Computer Fundamentals: Introduction to computer systems	3
	- CPU organization, ALU, registers, memory and input-output	
	devices; Number system: Binary and Hexadecimal, addition and	
	subtraction.	
2.	Basic Programming in C++ : Concepts of algorithm & flow charts;	8
	Input/output, constants, variables, expressions and operators;	
	Naming conventions and styles; Conditions and selection	
	statements; Looping and control structures (while, for, do-while,	
	break and continue); File I/O, header files, string processing; Pre-	
	processor directives such as #include, #define, #ifdef, #ifndef;	
	Compiling and linking.	
3.	Programming through Functional Decomposition: Functions	10
	(void and value returning), parameters, scope and lifetime of	
	variables, passing by value, passing by reference, passing arguments	
	by constant reference; Design of functions and their interfaces	
	(concept of functional decomposition), recursive functions; Function	
	overloading and default arguments; Library functions; Matters of	

	style, naming conventions, comments.	
S. No.	Contents	Contact Hours
4.	Aggregate Data-types: Arrays and pointers; Structures; Dynamic	4
	data and pointers, dynamic arrays.	
5.	Object Oriented Programming Concepts : Data hiding, abstract data types, classes and access control; Class implementation-default constructor, constructors, copy constructor, destructor, operator overloading, friend functions; Use of pointers in linked arrays.	10
6.	Object Oriented Design: Inheritance and composition; Dynamic binding and virtual functions; Polymorphism; Dynamic data in classes.	7
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Dietel H.M. & Dietel P.J., "C ++ How to Program", Prentice Hall Publications, 8 th Edition.	2011
2.	Nell Date, Chip Weems, Mark Headington, "Programming and Problem Solving with C++", CBS Publishers and Distribution.	2000
3.	Cohoon J.P. & Davidson, J.W., "C++ Program Design", McGraw Hill, 3 rd Edition.	2002
4.	David Gries, "The Science of Programming", Springer.	1987
5.	Dromey, "How to Solve it by Computer", Prentice Hall of India, 8 th Edition.	1996

NAME OF DEPTT./CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-104	Course Title:	Electrical Measurements and Measuring Instruments		ts and Measuring
2. Contact Hours: L: 3	T: 0		P: 2	
3. Examination Duration (Hrs.):	Theory: 3	P	ractical : 2	
4. Relative Weight: CWS : 15	PRS: 15	MTE: 15	ETE: 40	PRE: 15
5. Credits: 4 6. Se	emester : Spring	7. Su	bject Area :	DCC

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge of principles of measurement of electrical quantities, construction and operating principles of electrical instruments, their static and dynamic characteristics, and errors in measurement.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: SI units, static and dynamic characteristics of	3
	electrical instruments.	
2.	Galvanometers: Galvanometer equation in dc and ac	4
	measurements; D'Arsonval, vibration and ballistic type	
	galvanometers.	
3.	Ammeters, Voltmeters and Wattmeters: Review of PMMC and	6
	moving iron instruments; Electro-dynamic and electrostatic meters;	
	Induction wattmeters, errors and their compensation, multi-element	
- 1	wattmeter.	3
4.	Energy Meters: Induction energy meter, calibration devices, errors and their compensation, polyphase energy meter, testing; IS codes.	3
5.	Special Meters: Maximum demand indicator, power factor and	4
5.	frequency meters.	7
6.	Potentiometer: Review of dc potentiometer; Polar and coordinate	4
	ac potentiometers.	-
7.	Resistance Measurement: Measurement of low, medium and high	4
	resistances, measurement of volume and surface resistivity.	
8.	A.C. Bridges : General principles, sensitivity analysis; Hay, Owen	7
	and Heavyside Campbell bridges for inductance; De Sauty and	
	Wein bridges for capacitance; T and P type high-frequency	
	bridges; High-voltage Schering bridge and grounding.	
9.	Instrument Transformers: Construction, phasor diagrams, error	4
	analysis and compensation, testing and application of measuring CT	
	and VT; IS codes.	

10.	Magnetic Measurements: Determination of hysteresis loop and	3
	permeability, measurement of iron-loss.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Golding E. W. and Widdis F. C., "Electrical Measurements and Measuring Instruments", 5 th Ed., A.H. Wheeler and Company.	1994
2.	Harris F. K., "Electrical Measurement", Wiley Eastern Private Limited.	1974
3.	Stout M. B., "Basic Electrical Measurements", Prentice Hall of India Private Limited.	1984
4.	Doebelin E. O., "Measurement Systems: Application and Design", 5 th Edition, Tata McGraw Hill.	2004
5.	Tumanski S., "Principles of Electrical Measurement", CRC Press, Taylor and Francis.	2006
6.	Morris A. S., " Measurements and Instrumentation Principle", 3 rd Edition, Butterworth-Heinemann.	2001

NAME OF DEPTT./CI	Department of Electrical Engineering				
1. Subject Code: EEN-106		Course Title: Analog Electronics			
2. Contact Hours:	L: 3	Т:	1	P: 2/2	
3. Examination Duration (Hrs.):		Theory: 3 Practical: 2		2	
4. Relative Weight: CWS: 15		PRS: 15	MTE: 15	ETE: 40	PRE: 15
5. Credits: 4 6. Seme		nester : Sprin	g 7.	Subject Are	a : DCC

8. Pre-requisite: Nil

- 9. Objective: The course aims at familiarizing the students with the concepts of electronic devices, their operating characteristics and circuits for their engineering applications.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Diode: Review of semiconductors, p-n junction, forward and reverse	5
	biased junction, equivalent circuits; Applications - rectifier, clipper,	
	clamper, voltage doubler, transfer characteristics; Zener diode;	
	Power supply, filter, zener regulator; Special purpose diodes.	
2.	Bipolar Junction transistors: npn and pnp transistors, input and	7
	output characteristics - cut-off, saturation and active regions; CE,	
	CE and CC configurations, small signal model, BJT as amplifier;	
	Biasing circuits; Stability analysis, DC and AC equivalent circuits.	
3.	Small-signal Analysis: h-parameter model of BJT, analysis of BJT	4
	amplifier circuits, cascaded amplifiers, frequency response of RC-	
	coupled amplifier.	
4.	Power Amplifiers: DC and AC load lines; Class A operation; Class	3
	B operation, push-pull circuit; Biasing circuits, Class C amplifier;	
	Current source	
5.	Field Effect Transistor: Operating characteristic, transductance,	5
	JFET as amplifier, biasing circuits; Applications.	
6.	Operational Amplifier: Differential amplifier, level shifter, output	11
	stage and parameters of OPAMP; Applications of OPAMP:	
	inverting and non inverting amplifier, active filters- low pass, high	
	pass, band pass, active diode, active full wave rectifier, clipper,	
	clamper, waveform generator circuits - square, triangular and sine	
	wave generator.	
7.	Oscillators: Barkhausen criterion, damped oscillation in LC	4
	circuits; Harmonic oscillators- RC-phase shift oscillator, transistor	

	phase shift oscillator, Wein's bridge oscillator; Tuned oscillator- Colpitts oscillator, Hartley oscillator; Crystal oscillator; ;	
8.	Voltage Regulators: Zener voltage regulator, emitter follower regulator, series voltage regulator, IC regulator	3
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Boylestad R. and Nashelsky L., "Electronic Devices and Circuit	2009
	Theory", 10 th Ed., Prentice Hall of India Private Limited.	
2.	Gayakward R. A., "OP-AMPs and Linear Integrated Circuit	2009
	Technology", 4 th Ed., Penguin Books Ltd.	
3.	Millman J., and Grabel A., "Microelectronics", McGraw Hill Higher	1988
	Publication, 2 nd Edition.	
4.	Schilling D. and Belove C., "Electronic Circuits- Discrete and	2002
	Integrated", McGraw Hill, 3 rd Edition.	
5.	Malvino A. and Bates D., "Electronic Principles", Tata McGraw	2006
	Hill Publishing Company, 7 th Edition.	
6.	Sergio Franco, "Design with Operational Amplifiers and Analog	2001
	Integrated Circuits", McGraw Hill, 3 rd Edition.	

Department of Electrical Engineering NAME OF DEPTT./CENTRE: 1. Subject Code: EEN-201 Course Title: Electrical Machines-I P: 2 2. Contact Hours: L: 3 T: 1 3. Examination Duration (Hrs.): **Theory:3 Practical:3** 4. Relative Weight: **CWS:15 PRS:25 MTE:20 ETE:40** PRE:0 5. Credits:5 6. Semester: Autumn 7. Subject Area: DCC

8. Pre-requisite: **EE-102 or EE-112**

9. Objective:

The course aims at giving the fundamentals of energy conversion in electromechanical systems, construction and operation of dc machines in motoring and generating modes. The course also deals with the magnetizing characteristics and operation of three-phase transformers.

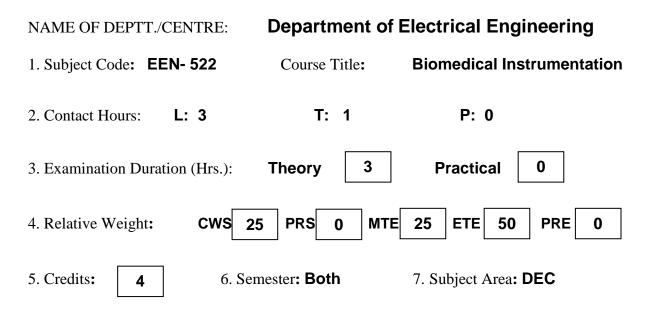
S. No.	Contents	Contact Hours
1.	Principle of Electromechanical Energy Conversion: Energy	4
	stored in electric and magnetic fields, energy conversion in single	
	and multi-excited systems and torque production, reluctance torque;	
	Reluctance and hysteresis motors.	
2.	General Description of Electrical Machines: Constructional	6
	details of dc and ac machines, description of magnetic and electric	
	circuits in cylindrical rotor and salient pole machines, mmf	
	distribution of current carrying single and multiple coils; Armature	
	winding as a current sheet, associated mmf and flux density waves;	
	Harmonic analysis of induced voltage; Torque as a function of flux	
	and mmf.	
3.	DC Machines: Simplex lap and wave windings, emf and torque	5
	equations, interaction of the fields produced by field and armature	
	circuits.	
4.	Commutation: Causes of bad commutation, methods of improving	4
	commutation, effect of brush shifts; Compensating winding;	
	Interpole winding.	
S. No.	Contents	Contact Hours
5.	DC Generators: Methods of excitation, shunt, series and	4
	compound generators, characteristics, testing.	
6.	DC Motors: Methods of excitation, characteristics, starting and	6
	speed control methods; Losses and their estimation, efficiency.	

7.	Single-phase Transformers : Principle of operation, equivalent circuit, voltage regulation and efficiency; Parallel operation.	4
8.	Three-phase Transformers : Various connections and their comparative features, harmonics in emf and magnetizing current, effect of connections and construction on harmonics; Parallel operation of three-phase transformers, sharing of load, 3-phase to 2-phase conversion, 3-phase to 6-phase conversion.	6
9.	Autotransformers: Principle of operation and comparison with two winding transformer	3
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Fitzgerald A. E., Kingsley C. and Kusko A., "Electric Machinery", 6 th Ed., McGraw-Hill International Book Company.	2008
2.	Say M. G., "The Performance and Design of Alternating Current Machines", CBS Publishers and Distributors.	2005
3.	Say M. G. and Taylor E. O., "Direct Current Machines", 3 rd Ed., ELBS and Pitman.	1986
4.	Nagrath I. J. and Kothari D. P., "Electrical Machines", 3 rd Ed., Tata McGraw-Hill Publishing Company Limited.	2008
5.	Clayton A. E. and Hancock N., "The Performance and Design of DC Machines", CBS Publishers and Distributors.	2003
6.	Langsdorf A. S., "Theory of AC Machines", 2 nd Ed., Tata McGraw- Hill Publishing Company Limited.	2008

NAME OF DEPTT./CENTRE	: Departm	Department of Mechanical & Industrial Engineering			
1. Subject Code: MIN-106	Course T	itle: Engineering Thern	nodynamics		
2. Contact Hours: L: 3	T: 1	P: 2/2			
3. Examination Duration (Hrs.): Theor	y: 3 Practic	al: 0		
4. Relative Weightage: CWS	: 15 PRS: 15	MTE: 30 ETE: 40	PRE: 0		
5. Credits: 4	6. Semester: Both	7. Subject Area:	DCC/ESC		
8. Pre-requisite: Nil					

9. Objective: To familiarize the students with basic concepts of macroscopic thermodynamics.


S. No.	Contents	Contact Hours
1.	Introduction: Introduction to thermodynamic system, surrounding,	3
	state, process, properties, equilibrium, heat and work, Zeroth Law of	
	Thermodynamics	
2.	Properties of Pure Simple Compressible Substance: PvT surface,	6
	Pv, Tv, TP diagrams. Equation of state for ideal and real gases.	
	Virial equation of state, van der Waal equation, use of steam tables	
	and Mollier diagram	
3.	First Law of Thermodynamics: First law application to non-flow	7
	processes such as isochoric, isobaric, isothermal, adiabatic and	
	polytropic processes. Steady flow energy equation, flow work.	
	Application to various practical systems viz. nozzles, diffuser,	
	turbines, heat exchangers etc. Application of energy equation to	
	transient flow problems.	
4.	Second Law of Thermodynamics: Second law, reversible and	6
	irreversible processes, Clausius and Kelvin Planck statements,	
	Carnot cycle, corollaries of second law: thermodynamic temperature	
	scale, Clausius inequality, entropy as a property, principle of	
	increase of entropy. Calculation of entropy change.	
5.	Entropy and Exergy: Entropy and its generation, entropy balance	5
	for closed system and for control volume, basic concepts of exergy	
	and irreversibility, exergy for closed system and control volume,	
	exegetic efficiency.	

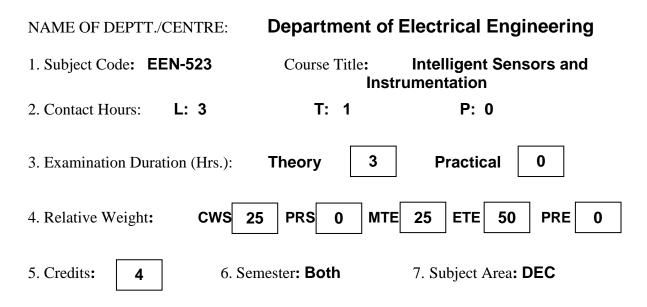
6.	Gas-Vapour Mixtures and Air-conditioning: Properties of gas- vapour mixtures, adiabatic-saturation and wet-bulb temperatures, psychrometric chart, human comfort and air conditioning, various air conditioning processes.	4
7.	Gas and Vapour Power Cycles: Otto, Diesel, Dual, Stirling, Joule- Brayton cycle. Thermal efficiency and mean effective pressure, Rankine cycle.	5
8.	Refrigeration Cycles: reverse Carnot cycle, vapour compression refrigeration cycle.	4
	TOTAL	42

List of Experiments:

- 1. Study of P-V-T surface of H₂O and CO₂.
- 2. Determine P-T relationship for steam and verify Clausius Clapeyron equation.
- 3. Determine the calorific value of coal using Bomb calorimeter.
- 4. Analysing exhaust gases using Orsat apparatus.
- 5. Determine Relative Humidity and Specific Humidity of air using Sling Psychrometer and Psychrometric Chart.
- 6. Determine COP of a vapour compression refrigeration unit.
- 7. Analysing different processes on an air conditioning unit.

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Borgnakke, C. and Sonntag, R.E., "Fundamentals of	2011
	Thermodynamics," Wiley India	
2.	Cengel, Y.A. and Boles, M.A., "Thermodynamics an Engineering	2008
	Approach", Tata McGraw-Hill	
3.	Moran, M.J. and Shapiro, H.M., "Fundamentals of Engineering	2010
	Thermodynamics", 4 th Ed., John Wiley	
4.	Russel, L.D., Adebiyi, G. A.," Engineering Thermodynamics", Oxford	2007
	University Press	
5.	Arora, C.P., "Thermodynamics", Tata-McGraw Hill	2001
6.	Nag, P.K., "Engineering Thermodynamics", Tata-McGraw Hill	2005

8. Pre-requisite: EE-308 and EE-309 or equivalent


9. Objective:

To familiarize students with various types of biomedical instrumentation systems being used in clinical laboratory, in medical imaging, in biotelemetry, in prosthetic, orthotic, assisting and therapeutic devices.

S. No.	Contents	Contact Hours
1.	Human Body Subsystems: Brief description of neuronal, muscular,	4
	cardiovascular and respiratory systems, their electrical, mechanical and chemical activities.	
2.	Transducers and Electrodes: Principles and classification of transducers for Biomedical applications; Electrode theory, different types of electrodes.	4
3.	Cardiovascular System Measurements: Measurement of blood flow, blood flow, cardiac output, cardiac rate, heart sounds; Electrocardiograph; Phonocardiograph; Plethysmograph; Echo- cardiograph.	4
4.	Respiratory System Measurements: Measurement of gas volume, flow rate, carbon-dioxide and oxygen concentration in exhaled air.	4
5.	Instrumentation for Clinical Laboratory: Measurement of pH value of blood, ESR measurement, haemoglobin measurement, O_2 and CO_2 concentration in blood, GSR measurement, polarographic measurements.	4

S. No.	Contents	Contact Hours
6.	Measurement of Electrical Activity in Neuromuscular System	4
	and Brain: Neuron potential, muscle potential, electromyograph,	
	brain potentials, electroencephalograph.	
7.	Medical Imaging: Diagnostic X-rays, CAT, MRI, thermography,	4
	ultrasonography, medical use of Isotopes, endoscopy.	
8.	Patient Care, Monitoring and Safety Measures	2
9.	Computer Applications and Bio-Telemetry: Real time computer	3
	applications, data acquisition and processing.	
10.	Prosthetics and Orthotics: Introduction to artificial kidney,	4
	artificial heart, heart lung machine, limb prosthetics and orthotics	
	Elements of audio and visual aids.	
11.	Assisting and Therapeutic Devices: Introduction to cardiac	3
	pacemakers, defibrillators, ventilators, muscle stimulators,	
	diathermy.	
12.	Lasers: Application of lasers to biomedical sciences.	2
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Geddes L. A. and Baker L. E., "Principles of Applied Biomedical Instrumentation" John Wiley and Song	1989
	Biomedical Instrumentation", John Wiley and Sons.	
2.	Khandpur R. S., "Handbook on Biomedical Instrumentation", 2 nd Ed., Tata McGraw-Hill Publishing Company Limited.	2008
3.	Cromwell L., Weibell F. J. and Pfeifer E. A., "Biomedical	2003
	Instrumentation and Measurements", Prentice Hall of India	
	Private Limited.	
4.	Aston R., "Principles of Biomedical Instrumentation and Measurements", Macmillian.	1991
	,	1000
5.	Antoui H., Chilbert M. A., and Sweeny J. D., "Applied	1998
	Bioelectricity", Springer-Verlag.	
6.	Hill D. W. and Dolan A. M., "Intensive Care Instrumentation",	1982
	Academic Press.	

8. Pre-requisite: EE-308 and EE-309 or equivalent

9. Objective of course:

To familiarize students with the state of art of smart, intelligent and network sensors, and instrumentation systems and their design.

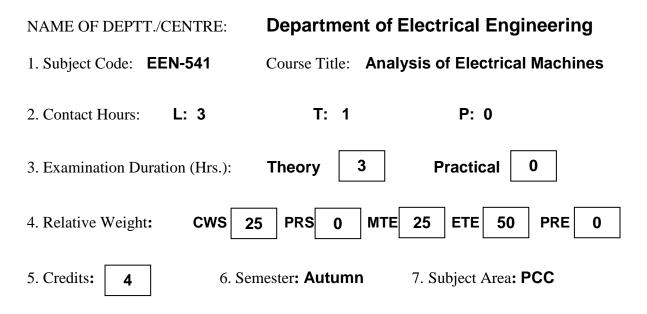
S. No.	Contents	Contact Hours
1.	Review: Sensor, actuator and transducer; Classification of sensors	4
	on the basis of energy source and type of output signals; Signal	
	conditioning; Meaning and types of smart sensors.	
2.	Smart Sensor Technologies: Thick-film, thin-film and monolithic	5
	IC technologies and their use in making smart sensors; Bulk and	
	surface micromachining technologies, wafer bonding, LIGA	
	process, plasma etching, and their use in making smart sensors;	
	Examples.	
3.	MEMS Sensors: Concept and methods of making MEMS devices,	2
	sensors and actuators; Examples.	
4.	Intelligent and Network Sensors: Concept and architecture of	2
	intelligent sensors; Concept and architecture of network sensors;	
	Examples.	
5.	Sensor Networking: 7-Layer OSI model of communication system,	12
	device-level networks, introduction to protocols and technologies for	
	wired and wireless LANs; Ethernet, RS-485 and Foundation	
	Fieldbus protocols; Wi-Fi; Zigbee and Bluetooth protocols; Concept	
	of adhoc networks; Smart Transducer Interface Standard IEEE 1451.	

S. No.	Contents	Contact Hours
6.	Intelligent Instrumentation: Introduction meaning and advantages;	12
	Microprocessor application techniques; I/O techniques; Interfacing	
	of I/O devices; Examples.	
7.	Future Trends: Neurosensors; Biosensors; Nano-technology; Soft-	5
	computing techniques in instrumentation.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Fraden J., "Handbook of Modern Sensors: Physics, Design and Applications", AIP press.	2003
2.	Frank R., "Understanding Smart Sensors", Artech House publishers.	2000
3.	Yamasaki H., "Intelligent Sensors", Elsevier Eastern Limited.	1996
4.	Ramon P. A. and Webster J. G., "Sensors and Signal Conditioning" 2^{nd} Ed., John Wiley and Sons.	2001
5.	Feng Z. and Leonidas G., "Wireless Sensor Networks", Elsevier Eastern Limited.	2007
6.	Barney G., "Intelligent Instrumentation", Prentice-Hall International Editions.	1988

NAME OF DEPTT./CENTRE:	Department of El	ectrical Engineering	
1. Subject Code: EEN-540	Course Title: Adva	nced Power Electronics	
2. Contact Hours: L: 3	T: 1	P: 2/2	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weight: CWS 20	PRS 20	20 40	0
5. Credits: 4 6. Sen	nester: Autumn	7. Subject Area: MSC	

8. Pre-requisite: EE-206 or equivalent

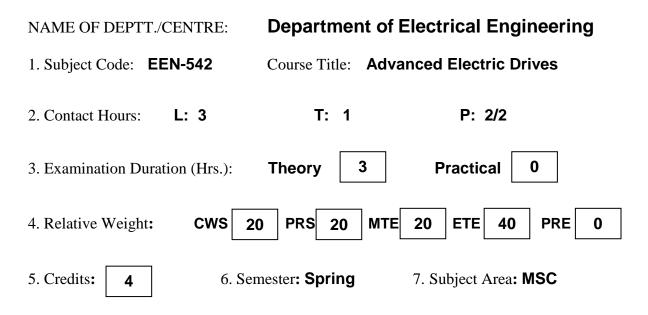

9. Objective:

To impart knowledge of modern semiconductor devices and their applications in power electronic controllers for rectification, inversion and frequency conversion with improved performance.

S.No.	Contents	Contact Hours
1.	Review of SCR, driving circuits and protection; Modern	3
	semiconductor devices: MOSFET, GTO, IGBT, GTO, SIT, SITH,	
	MCT, their operating characteristics; Heat sink design.	
2.	Three-phase converters, effect of load and source impedances; Dual	5
	converter, twelve-step converter, multi-pulse converters.	
3.	PWM converter, power factor improvement techniques.	5
4.	Voltage and current commutated choppers, dc-dc converters: buck	4
	converter, boost converter, Cuk converter.	
5.	Three-phase ac regulators, operation with resistive load.	3
6.	Single-phase and three-phase Cyclo-converters; Matrix converters.	2
7.	Review of line commutated and forced commutated inverters, three-	2
	phase voltage source inverters, voltage and frequency control.	
8.	Harmonic reduction techniques, PWM inverters, Space Vector	6
	Modulation.	
9.	Multi-level inverters, advantages, configurations: Diode clamped,	3
	flying capacitor and cascade multi-level inverters, applications.	

S.No.	Contents	Contact Hours
10.	Current source inverters, commutation circuits, transient voltage	3
	suppressing techniques	
11.	DC link resonant converters, operation and control.	3
12.	MATLAB simulation of power electronic converters.	3
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of
		Publication /
		Reprint
1.	Dubey G. K., Doradla S. R., Joshi A. and Sinha R. M. K.,	2008
	"Thyristorised Power Controllers", New Age International Private	
	Limited.	
2.	Mohan N., Underland T.M. and Robbins W.P., "Power Electronics –	2008
	Converters, Applications and Design", 3 rd Ed., Wiley India.	
3.	Bose B.K., "Power Electronics and Variable Frequency Drives -	2001
	Technology and Applications", IEEE Press, Standard Publisher	
	Distributors	
4.	Lander C. W., "Power Electronics", 3 rd Ed., McGraw-Hill	2007
	International Book Company.	
5.	Rashid M., "Power Electronics- Circuits, Devices and Applications",	2008
	3 rd Ed., Pearson Education.	


8. Pre-requisite: Electrical Machines

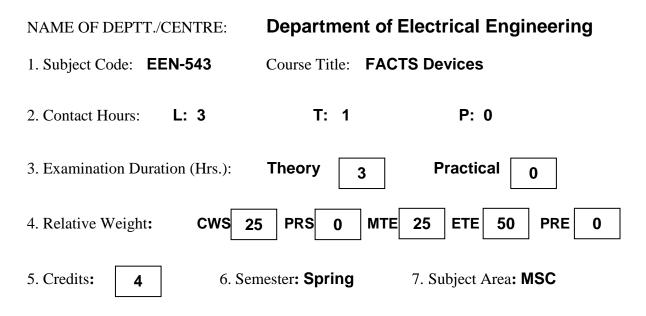
9. Objective:

The objective of the course is to present a general theory of rotating electrical machines applicable to all normal types of machines and to all condition of operation. Students will be taught development of mathematical model of the 3-phase balanced induction machine and synchronous machine in arbitrary reference frame and in field oriented reference frame for transient and steady-state performance of ac machines.

S.No.	Contents	Contact Hours
1.	Generalized transformations, Physical model, Different reference	10
	frame, Primitive machine, dynamic variable, Formulation of	
	dynamic equations of a generalized machine in arbitrary reference	
	frame	
2.	Analysis of induction machines, Space vector, induction motor	12
	modeling in arbitrary reference frame and in field oriented frame,	
	Performance analysis	
3.	Analysis of synchronous machine, Modeling, Operational	8
	impedances, Time constants, torque expression, Asynchronous	
	damping,	
4.	Steady state and transient performance, Phasor diagram and power	6
	angle characteristics,	
5.	Symmetrical and asymmetrical short circuit analysis, Measurement	6
	of reactances and time constants	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Concordia, Charles, "Synchronous Machines- Theory and	1989
	Performance", Wiley, New York.	
2.	Kimbark E.W., Power System Stability: Synchronous Machines",	1976
	Vol.3, Cover Publication, New York.	
3.	Adkins B., Harley R.G., "The Generalized Theory of Alternating	1979
	Current Machines", Chapman & Hall, London.	
4.	Leonard W., "Control of Electrical Drives", 3 rd Edition. Springer	2002
	Press, New York.	
5.	Murphy J.M.D., Turnbull F.G., "Power Electronics Control of AC	1988
	Motors", Pergamon Press, New York.	

8. Pre-requisite: **EE-541 or equivalent**


9. Objective:

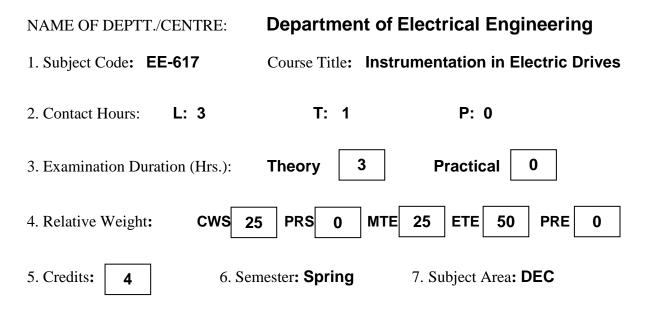
To provide state-of-the-art speed control techniques used in modern ac drives, fed from LCI/VSI/CSI, for superior high-performance requirements.

S.No.	Contents	Contact Hours
1.	Review : Power electronic converters for ac drive control, voltage	3
	source and current source inverters.	
2.	LCI-IM Drive: Drive configuration, commutation at different	5
	speeds, mathematical modeling, control structure, resonance	
	problem and performance.	
3.	FOC-IM Drive: Drive configuration, mathematical modeling,	7
	direct and indirect FOC, influence of parameters, VSI and CSI fed	
	schemes, adaptive drive control.	
4.	Brushless DC Drive: Self control, CSI with load commutation,	5
	low speed commutation, inverter control strategies and	
	performance.	
5.	Permanent Magnet SM Drive: Principle of operation, converter	6
	configuration, synchronization, trapezoidal and sinusoidal drive	
	control structures and performance.	
6.	Switched Reluctance Motor Drive: Principle of operation,	5
	converter circuits, sensors, speed control and performance.	
7.	Resonant-Link Converter fed Drive: Principle of soft switching	5
	in inverters and converters utilizing resonant circuits, modulation	
	strategies and application in IM drives.	

S.No.	Contents	Contact Hours
8.	Advanced Control Techniques: Application of modern and	6
	evolutionary techniques in drives such as fuzzy and ANN control.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Dubey G. K., "Power Semiconductor Controlled Drives",	1989
_	Prentice-Hall International Editions.	1000
2.	Murphy J. M. D. and Turnbull F. G., "Power Electronics Control of AC Motors", Peragmon Press.	1990
3.	Bose B. K., "Power Electronics and Variable Frequency Drives",	2001
	IEEE Press, Standard Publisher Distributors.	
4.	Krishnan R., "Electric Motor Drives - Modeling, Analysis and	2007
	Control", Prentice Hall of India Private Limited.	
5.	Bose B. K., "Modern Power Electronics and AC Drives", Pearson	2008
	Education.	
6.	Leonard W., "Control of Electric Drives", Springer Press.	2007

8. Pre-requisite: EE-206 and EE-301 or equivalent


9. Objective:

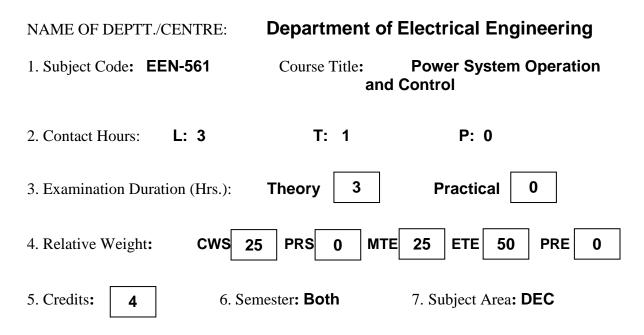
To familiarize students with FACTS devices, their control techniques and applications in enhancement of system dynamic and transient stability.

S.No.	Contents	Contact Hours
1.	FACTS: Concept, power flow and stability, basic theory of line	4
	compensation	
2.	Power Electronic Controllers: Review of PWM voltage source	4
	inverters used in FACTS, classifications of FACTS controllers.	
3.	Static Shunt Compensators: SVC and STATCOM - TCR, TSC,	6
	system stability.	
4.	Static Series Compensators: GCSC, TSSC, TCSC and SSSC,	6
	control techniques.	
5.	Static Voltage and Phase Angle Regulators: Power flow control,	4
	TCVR and TCPAR.	
6.	Unified Power Flow Controller (UPFC): Concept of power flow	4
	control, operation and control of UPFC, Interline Power Flow	
	Controller.	
7.	Stability Analysis: Modeling of FACTS devices, optimization of	8
	FACTS, transient and dynamic stability enhancement	
8.	Applications: Principle of control of FACTS in HVDC links, co-	3
	ordination of FACTS devices with HVDC links.	

S.No.	Contents	Contact Hours
9.	Other Topics: Advanced FACTS devices, case studies and other	3
	applications of FACTS controllers.	
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Miller T. J. E., "Reactive Power Control in Electric Systems,"	1982
	Wiley-Interscience.	
2.	Song Y. H. and Johns A. T., "Flexible AC Transmission Systems	2000
	(FACTS)", IEE Press.	
3.	Hingorani N. G. and Gyugyi L., "Understanding FACTS", IEEE	2001
	Press, Standard Publishers Distributors.	
4.	Ghosh A. and Ledwich G., "Power Quality Enhancement Using	2002
	Custom Power Devices," Kluwer Academic Publishers.	
5.	Mathur R. M. and Varma R. K., "Thyristor – Based FACTS	2002
	Controllers for Electrical Transmission Systems," John Wiley and	
	Sons.	
6.	Padiyar K. R., "FACTS Controller in Power Transmission and	2008
	Distribution", New Age International Private Limited.	

8. Pre-requisite: **EE-304 or equivalent**


9. Objective:

To impart knowledge of instrumentation related to electric drive parameters and their signal conditioning circuits using linear/analog and digital integrated circuits.

S. No.	Contents	Contact Hours
1.	Transducers and sensors, definitions, classification of errors,.	3
2.	Review of characteristics and parameters of transducers:	5
	tachometers, shaft-encoders, torque sensors, Hall-effect sensors, and magnetic pick-ups.	
3.	Devices for instrumentation, design characteristics and typical applications of instrumentation, operational trans-conductance, isolation amplifiers, analog multipliers and dividers, function generators, timers, analog multiplexers.	8
4.	Sample and hold, optical and magnetic isolators; Frequency to voltage converters, temperature to current converters.	4
5.	Review of A/D and D/A converters, specifications, multiplexed ADC, multiplying ADC; Data acquisition system.	4
6.	Instrumentation and signal processing.	3
7.	Basic concept of PLL system, definitions of lock-in-range, capture- range, loop gain, design aspects of phase detector, loop filter, PLL based motor speed control.	6

S. No.	Contents	Contact Hours
8.	Drive related signals and their instrumentation and conditioning.	3
9.	Data acquisition system, basic structure, data acquisition of voltage,	6
	currents, speed, temperature, torque and flux.	
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Cerni, R. H. and Foster L. E., "Instrumentation for Engineering	1966
	Measurement", John Wiley and Sons.	
2.	Coughlin R. F. and Driscoll F. F., "Operational Amplifier and	2008
	Linear Integrated Circuits", Prentice Hall of India Private	
	Limited.	
3.	Norton N., "Handbook of Transducers", Prentice Hall	2004
	International Edition.	
4.	Hamilton T. D. S., "Handbook of Linear Integrated Electronics",	1977
	McGraw-Hill International Book Company.	

8. Pre-requisite: **EE-301 or equivalent**

9. Objective:

To introduce the engineering and economic aspects of planning, operation, controlling power generation and transmission systems in electric utilities.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	General characteristics of modern power systems, evolution,	8
	structure, power system control, operating states of a power system	
	and control strategies, economic load dispatch, function and	
	applications, price based unit commitment problem.	
2.	Concept of reactive power, control of active power and reactive	8
	power - active power and frequency control, reactive power flow	
	analysis, real power balance and its effect on system frequency;	
	Static VAR systems, types of SVC, fundamental frequency	
	performance of SVC, application of SVC.	
3.	Automatic generation control (AGC), generation control loops, load	10
	frequency control, AGC, tie-line bias control, AGC in isolated and	
	interconnected power systems, AGC with economic dispatch.	
4.	Elements of an excitation system, types of excitation systems, dc, ac,	8
	static and recent developments and future trends, dynamic	
	performance measures, large signal, small signal, control and	
	protective functions, ac and dc regulators, design of robust	
	controllers in power systems.	

S. No.	Contents	Contact Hours
5.	Division of power system into control areas, load-frequency control of single area and two area system - optimum control criterion, two area and multi-areas power system with and without integral control, SCADA systems, supervisory control, supervisory master stations, remote terminal units, communication links, SCADA systems applications in power networks.	8
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint	
1.	Elgerd O. I., "Electric Energy Systems Theory – An Introduction", 2 nd Ed., Tata McGraw-Hill Publishing Company Limited.	2008	
2.	Nagrath I. J. and Kothari D. P., "Power System Engineering", 2 nd Ed., Tata Mc-Graw Hill Publishing Company.	2008	
3.	Grainger J. J. and Stevenson W. D., "Power System Analysis", Tata McGraw-Hill Publishing Company Limited.	2008	
4.	Wood A. J. and Wollenberg B. F., "Power Generation, Operation and Control", Second Edition, Willey – Inter Science Publications.	2008	
5.	Kundur P. and Balu N. J., "Power System Stability and Control", EPRI Series, McGraw-Hill International Book Company.	1998	
6.	Saadat H., "Power System Analysis", 1 st International Edition, Tata McGraw-Hill Publishing Company Limited.	2008	

NAME OF DEPTT./CENTRE:	Department of E	lectrical Engineering
1. Subject Code: EEN-563	Course Title: Trans	EHV AC and DC mission
2. Contact Hours: L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 3	Practical 0
4. Relative Weight: CWS 29	5 PRS 0 MTE	25 ETE 50 PRE 0
5. Credits: 4 6. Ser	nester: Spring	7. Subject Area: DEC

8. Pre-requisite: **EE-301 or equivalent**

9. Objective:

To expose students to the advanced concepts in EHVAC and HVDC transmission systems, their analysis and control.

S. No.	Contents	Contact Hours			
1.	EHVAC Transmission System: Sequence impedance calculation,	12			
	calculation of transmission line parameters and sequence				
	impedances for lines with ground returns, lines with bundle				
	conductors and ground returns, sequence networks for various three				
	phase transformer connections.				
2.	Corona: Basic phenomenon and calculation of voltage gradient of	6			
	conductors, power loss, audible noise and radio interference due to				
	corona, electrostatic field of EHV lines.				
3.	EHV Transmission Line: Introduction, concepts of design.	3			
4.	4. Reactive Power Compensation: Basic concepts of reactive power				
	compensation, principles of series and shunt compensation;				
	Improvement of system performance due to reactive power				
	compensation.				
5.	HVDC Transmission System: Brief history of HVDC transmission	16			
	system, comparison with EHVAC transmission, analysis of				
	converter circuits for HVDC transmission, HVDC control system:				
	CIA, CC and CEA control, analysis of faults in HVDC converters,				
	basic concepts of multi-terminal HVDC system.				
	Total	42			

S.No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Begamudre R. D., "Extra High Voltage AC Transmission Engineering", 3 rd Ed., New Age International Private Limited.	2008
2.	Hingorani N. G. and Gyugyi L., "Understanding FACTS", IEEE Press, Standard Publishers Distributors.	2001
3.	Miller T. J. E., "Reactive Power Control in Electric Systems", John Wiley and Sons.	1982
4.	Sood V. K. "HVDC and FACTS Controller", Springer.	2004
5.	Arrilaga J., "High Voltage Direct Current Transmission", 2 nd Ed., IET Publications.	1998
6.	Padiyar K. R., "HVDC Power Transmission System", New Age International Private Limited.	2008

NAME OF DEPTT./CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-564	Course Title: HVD	C Transmission Systems		
2. Contact Hours: L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Practical 0		
4. Relative Weight: CWS 25	PRS 0 MTE	25 ETE 50 PRE 0		
5. Credits: 4 6. Sem	ester: Spring	7. Subject Area: MSC		

8. Pre-requisite: EE-206 and EE-301 or equivalent

9. Objective:

To provide an in-depth understanding of different aspects of high voltage direct current power transmission system.

S. No.	Contents	Contact Hours
1.	Converter Operation (Normal And Abnormal): 6-pulse and 12-	12
	pulse rectifiers and inverters; Equivalent circuits of rectifier and	
	inverter, relations between ac and dc quantities.	
2.	Converter Charts: Charts with dc voltage and current as	2
	rectangular coordinates, charts with active and reactive powers as	
	rectangular coordinates and their relation.	
3.	Harmonics and Filters: Characteristic and non-characteristic	4
	harmonics, input harmonics, output harmonics, problems due to	
	harmonics, ac and dc filters.	
4.	HVDC Control Systems: Constant current control, constant	8
	excitation angle control, VDCOL, constant ignition angle control,	
	Individual phase control and equidistant pulse control; Valve	
	blocking and by-passing; Starting, stopping and power flow	
	reversal.	
5.	Mis-operation of Converters: Arcback, short circuit on a rectifier,	6
	commutation failure, by-pass valves.	
6.	Faults in HVDC System and their Protection: DC line faults,	3
	clearing line faults, converter faults, ac system faults, rectifier side	
	and inverter side faults; DC circuit breakers, overvoltage protection.	

S. No.	Contents	Contact Hours
7.	Measurements: Measurement of voltage and current for fault	2
	detection.	
8.	Parallel Operation of AC-DC Systems: Influence of ac system	3
	strength on ac-dc interaction, effective short-circuit ratio (ESCR),	
	problems with low ESCR systems.	
9.	DC Transmission Systems: Monopolar, bipolar and homopolar	2
	lines, back-to-back HVDC systems, advantages of dc transmission.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Kimbark E. W., "Power System Stability: Vol. I: Direct Current Transmission", Wiley India.	1971
2.	Ulmann E., "Power Transmission by Direct Current", Springer- Verlag.	1975
3.	Padiyar K. R., "HVDC Power Transmission System", New Age International Private Limited.	2008
4.	Kundur P., "Power System Stability and Control", Tata McGraw- Hill Publishing Company Limited.	2008

NAME OF DEPTT./CENTRE:	Department of E	Department of Electrical Engineering			
1. Subject Code: EEN-580	Course Title: Advar	Course Title: Advanced Linear Control Systems			
2. Contact Hours: L: 3	T: 1	P: 2/2			
3. Examination Duration (Hrs.):	Theory 3	Practical 0			
4. Relative Weight: CWS	20 PRS 20	20 40	0		
5. Credits: 4 6. 5	Semester: Autumn	7. Subject Area: I	PCC		

8. Pre-requisite: Knowledge of Linear Control System

9. Objective:

To introduce advanced control methods, including linear and nonlinear systems. Also to introduce advanced state space methods.

S. No.	Contents	Contact Hours
1.	Introduction: Modeling of dynamical system in continuous time	6
	state space and discrete time state space model, Solution of continuous time state equation using: Similarity Transformation,	
	Cayley Hamilton approach and Inverse Laplace approach, Solution	
	of discrete time state equation.	
2.	Controllability and Observability:	8
	General concept of Controllability and Observability, Controllability	
	test for continuous time and discrete time system, Observability test	
	for continuous time and discrete time system, Stabilizability and Detectability definition and tests, loss of Controllability and	
	Observability due to sampling, Controllable and Observable	
	canonical forms	
3.	Nonlinear Control System:	10
	Nonlinear Models, Equilibrium points, Linearization of Nonlinear models,	
	Separable Nonlinearities, Describing function analysis, Describing function of common nonlinearities, stability analysis by describing	
	function method, Phase plane analysis of nonlinear systems, Bang-Bang	
	control system, feedback linearization	
4.	Stability Analysis:	8
	Stability concept, stability definition in the sense of Lyapunov,	
	stability of continuous time Linear systems, stability of discrete time	
	Linear systems, stability of nonlinear systems, Lyapunov stability	

	theorem, Lyapunov instability theorem, direct method of Lyapunov for continuous time and discrete time systems, Lyapunov function for nonlinear systems	
5.	Controller/Observer Design: Pole placement technique, Ackerman's approach and Linear quadratic regulator for continuous time and discrete time systems, sliding mode control, H-infinity control, full order and reduced order observer design.	10
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Hostetter G. H., Savant, and Stefani, Design of Feedback Control	2001
	Systems, Oxford University Press	
2.	Kailath Thomas, Linear Systems, Prentice Hall	1996
3.	Khalil, H., Nonlinear Systems, 3nd Ed., Macmillan,	2002
4.	Slotine, J.J., and Li. W.P., Applied Nonlinear Control, Prentice-	1991
	Hall,	
5.	Vidyasagar M., Nonlinear Systems Analysis, Prentice Hall, 2nd	1992
	Edition	

NAME OF DEPTT./ CENTRE: Department of Elec				rical E	ngineering		
1.	Subject Code: EEN-582		Course Title	e: Advanced	System	s Engineering	
2.	Contact Hours:	L:	3	T: 1		P: 0	
3.	Examination Duration(Hrs	.):	Theory	3		Practical	0
4.	Related Weight:	CW	S 25 PI	RS 0 MTE	25	ETE 50	PRE 0
5.	Credits: 04	5. 5	Semester:	Autumn	7.	Subject Area:	PCC
8.	Pre-requisite: NIL						

9. Objective: The course aims at providing a background for system engineering concepts, modeling methodologies and various analysis techniques. It is a foundation course and would enable the student to have the required tools to pursue advanced courses in this area.

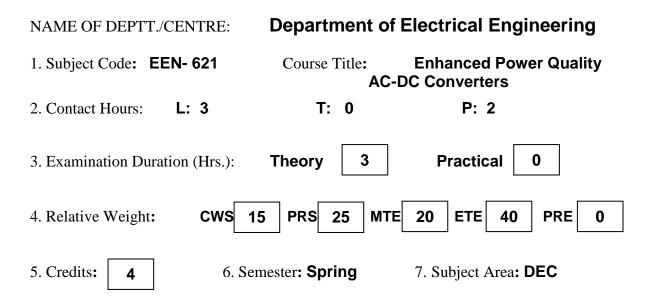
S. No.	Contents	Contact Hours
1.	Systems models and their classifications, principles used in modeling	
	of systems of objectives of constructing models.	4
2.	Reduced Order Models, Reduced Order Modeling Problem in time domain and frequency domain, necessity for model reduction,	
	application of reduced order models algebraic reduction methods,	14
	different reduction methods in time domain and frequency domain,	14
	stable reduction methods, models of discrete systems.	
3.	System simulation, advantages and disadvantage steps in simulation	
	study.	4
4.	Probability concepts, sample space, probability distributions, random	
	signals, characterization of random variables, statistical averages of	
	random variables, discrete and continuous random variables, density	10
	and distribution functions, properties of cumulative distribution and	
	probability density function, joint distribution functions.	
5.	Stochastic process, classification of random process, response of	
	linear systems to random inputs, auto correlation and cross	6
	correlation function, power spectral density.	
6.	Basic principles of system reliability and failures, component	
	reliability and hazard model. Bath tub curve, Series and parallel	4
	systems, reliability of complex system.	
11. Sug	gested Books:	
C- NL		

Sr. No.	Name of Books/Authors/Publishers	Year of Publication
1.	Geoffrey Gordon, "System Simulation", PHI	1978

2.	Jamshidi M., "Large Scale Systems Modeling and Control	1983
	", Series Volume- 9, North Holland NY	
3.	Mahmud M. S., Singh M. G., "Large Scale Systems Modelling",	1981
	Volume -3, Pergamum Press	
4.	Peebles Z. P. Jr., "Probability, Random Variables and Random Signal Principles", 4 th Edition, Tata McGraw Hill	2002
5.	Papoulis A., "Probability and Statistics", PHI	1990

NAME OF DEPTT./CENTRE:	Department of E	ectrical Engineering
1. Subject Code: EEN-620	Course Title: Cont	Process Instrumentation and col
2. Contact Hours: L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 3	Practical 0
4. Relative Weight: CWS	25 PRS 0	25 50 0
5. Credits: 4 6. Se	mester: Both	7. Subject Area: DEC

8. Pre-requisite: EE-306 and EE-309 or equivalent


9. Objective:

To introduce the basic concepts of system response, characteristics of transducers and design of analog and digital controllers, programmable logic controllers and computer control of processes.

S. No.	Contents	Contact Hours
1.	Review of Concepts of System Response: Response of first order	2
	systems including transfer function and transient response to	
	different forcing functions; Response of first order systems in series	
	including non-interacting and interacting systems.	
2.	Sensors and Transducers: Basic concepts and working principles	10
	of sensors and transducers for measuring process variables like	
	pressure, temperature, level and flow; electromechanical, capacitive,	
	inductive, resistive and photoelectric type proximity sensors.	
3.	Controller Principles: Process characteristics; Control system	4
	parameters; Discontinuous controller modes; Continuous controller	
	modes; Composite control modes.	
4.	Analog Controllers: General features; Electronic controllers;	4
	Pneumatic controllers; Design considerations.	
5.	Digital Controllers: Digital simulation of control systems;	6
	Simulation software; Computer software for process control;	
	Microprocessor based controller.	

S. No.	Contents	Contact Hours
6.	Control Loop Characteristics: Control system configuration;	4
	Multivariable control system; Control system quality and stability;	
	Process loop tunning.	
7.	Control Equipment and Final Control Elements: Details of controllers including measurement unit, comparator, actuator and final control elements; Pneumatic, hydraulic and electric actuators; Control valve characteristics; Pneumatic to electric and electric to pneumatic converters, hydraulic and pneumatic power supply system.	5
8.	Programmable Logic Controllers: Relay controllers and ladder diagrams; Relay sequences; PLC operation and programming.	3
9.	Distributed and Supervisory Controls: Introduction and relevance of distributed control; Hardware components of distributed control; Introduction and necessity of supervisory control; Master control station and remote terminal units.	4
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/
	and the second	Reprint
1.	Coughanowr D. R., "Process Systems Analysis and Control", 2 nd	2008
	Ed., McGraw-Hill International Book Company.	
2.	Johnson C. D., "Process Control Instrumentation Technology", 8 th	2008
	Ed., Prentice Hall of India Private Limited.	
3.	Harriott Peter, "Process Control", Tata McGraw-Hill Publishing	2008
	Company Limited.	
4.	Chemsmond C. J., "Basic Control System Technology", Viva Books	2004
	Private Ltd.	
5.	Chemsmond C. J., Wilson and Lepla, "Advanced Control System	2004
	Technology", Viva Books Private Ltd.	

8. Pre-requisite: **EE-206 or equivalent**

9. Objective:

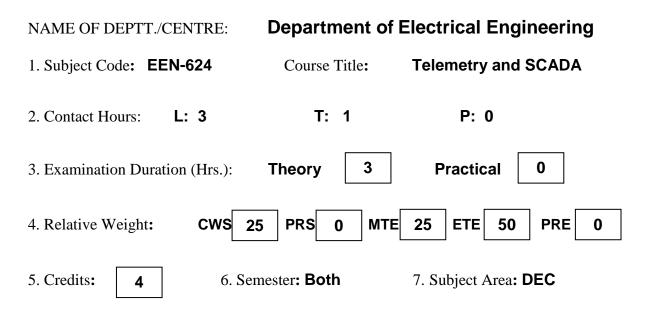
To provide knowledge of the harmonics generated by different phase controlled converters and the methods of improving the input performance of various converters.

S. No.	Contents	Contact Hours
1.	Review of 2-pulse and 6-pulse converters and their performance	3
	with inductive and capacitive loads.	
2.	Harmonic analysis of phase controlled converters, IEEE standards.	3
3.	Conventional methods of power factor improvement techniques, controlled free-wheeling operation, asymmetrical triggering, sequence control of phase controlled converters, extinction angle control; PWM converters: Single-pulse and multiple pulse modulation techniques.	5
4.	Multi-pulse converters using delta/ zigzag/ Fork /Polygon transformers, analysis and harmonic calculations	4
5.	Configurations of passive filters and their design.	3
6.	Shunt, series and hybrid active filters, topologies and their control strategies.	6
7.	High quality single-phase and three-phase converters, control techniques, Buck, Boost control, Power, flow control, hysteresis and carrier wave control, space vector control.	10
8.	Multi-level converters, topologies and control techniques.	6
9.	Snubber circuits and their design.	2
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Rashid M. H., "Power Electronics Circuits Devices and Applications", 3 rd Ed., Pearson Education.	2008
2.	Dubey G.K., Doradla S.R., Joshi A. and Sinha R.M.K., "Thyristorised Power Controllers", New Age International Private Limited.	2008
3.	Lander Cyril W., "Power Electronics", Prentice Hall of India Private Limited.	2004
4.	Mohan N., Undeland T.M. and Robbins W.P., "Power Electronics-Converters, Applications and Design", 3 rd Ed., Wiley India.	2008
5.	Paice D. A., "Power Electronic Converter Harmonics – Multipulse Methods for Clean Power", IEEE press.	1995
6.	Kazmierkpwski M. P., Krishnan R. and Blaabjerg F., "Control in Power Electronics – Selected Problems", Academic Press.	2002

NAME OF DEPTT./CENTRE:	Department of E	Electrical Engineering
1. Subject Code: EEN-622	Course Title: Instru	Power System Imentation
2. Contact Hours: L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 3	Practical 0
4. Relative Weight: CWS 2	5 PRS 0 MTE	25 ETE 50 PRE 0
5. Credits: 4 6. Ser	mester: Both	7. Subject Area: DEC

8. Pre-requisite: EE-301 and EE-308 or equivalent


9. Objective:

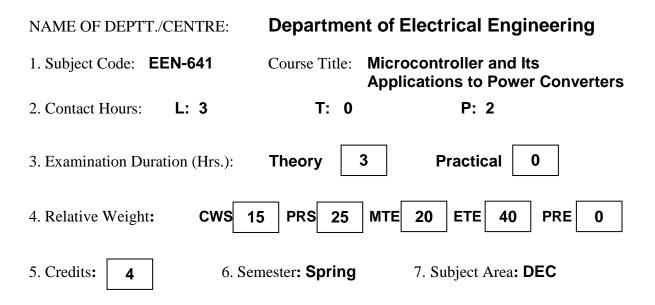
To provide in-depth knowledge of fast and reliable instrumentation of electrical quantities for power system network and relays for protection of power systems.

S. No.	Contents	Contact Hours
1.	Measurement of Electrical Quantities: Measurement of voltage,	7
	current, phase angle, frequency, active power and reactive power in	
	power plants; Energy meters and multipart tariff meters	
2.	Voltage and Current Transformers: Voltage transformers for measurement and protection, errors, transient performance; capacitive voltage transformers and their transient behavior;	8
	Current transformers for measurement and protection, composite	
	errors, transient response.	
3.	Hydro Electric Power-Plant Instrumentation: Measurement of	8
	flow, level, pressure, temperature, hydraulic head and mechanical	
	vibrations; Temperature scanners; Alarm annunciators.	
4.	Thermal Power-Plant Instrumentation: Measurement of gas	7
	flow; Gas and feed-water analysis; Flame monitoring; Steam	
	turbine instrumentation.	
5.	Nuclear Power-Plant Instrumentation: Reactor safety, neutron	7
	flux measurement; Reactor power level and coolant measurements.	

S. No.	Contents	Contact Hours
6.	Proactive Relays: Organization of protective relay; Single input,	5
	two-input and multi-input relays; Electromagnetic, electronic and	
	digital relays.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	"Modern Power Station Practice, Volume F: Control and	1990
	Instrumentation", British Electricity International, Peragmon Press.	
2.	Elliott T. C., "Standard Hand Book of Power Plant Engineering",	1989
	McGraw-Hill International Book Company.	
3.	Van A. R. and Warrington C., "Protective Relays- Their Theory and	1968
	Practice", Vol. 1, Chapman and Hall Ltd.	
4.	Rao T. S. M., "Power System Protection - Static Relays with	2008
	Microprocessor Applications", 2 nd Ed., Tata McGraw-Hill	
	Publishing Company Limited.	

8. Pre-requisite: EE-308 and EE-309 or equivalent

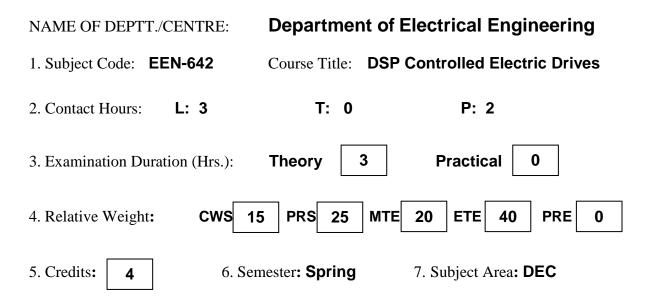

9. Objective:

To provide knowledge of signal transmission techniques, telemetry, remote control and SCADA.

S. No.	Contents	Contact Hours
1.	Introduction: Meaning and importance of telemetry, remote	3
	control, remote signaling and SCADA; Messages and signals;	
	Signal formation; Conversion and transmission.	
2.	Signal Transmission Techniques: Analog and digital modulation, Amplitude modulation, AM transmitter and receiver; Frequency modulation, FM transmitter and receiver; Phase modulation; Pulse modulation techniques; Digital transmission techniques, error detecting and correcting codes.	15
3.	Signal Transmission Media: Wires and cables, Power-line carrier communication, terrestrial and satellite radio links, optical fiber communication, Multiplexing – TDM, FDM and WDM.	5
4.	Telemetry: Telemetry error; dc, pulse, and digital telemetry methods and systems; multichannel telemetry schemes.	6
5.	Remote Control and Remote Signaling: Principle of independent messages and combinatorial principle; Multi-wire, FDM and TDM schemes.	5

S. No.	Contents	Contact Hours
6.	Supervisory Control and Data Acquisition: Layout, functions	8
	and operation of SCADA system; Remote terminal unit details;	
	Control centre details; Communication between control centres;	
	Communication between control centre and remote terminal units.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Karp H. R. (Editor), "Basics of Data Communication", McGraw- Hill International Book Company.	1976
2.	Tomasi W., "Electronic Communication Systems: Fundamentals", 5 th Ed., Pearson Education.	2008
3.	Gruenberg E. L., "Handbook of Telemetry and Remote Control", McGraw-Hill International Book Company.	1967
4.	Ginzburg S. A., Lekhtman I. Ya. and Malov V. S., "Fundamentals of Automation and Remote Control", Mir Publishers	1967
5.	Cegrell T., "Power System Control Technology", Prentice Hall International Edition.	1986


- 8. Pre-requisite: EE-206, EE-304 and EE-307 or equivalent
- 9. Objective:

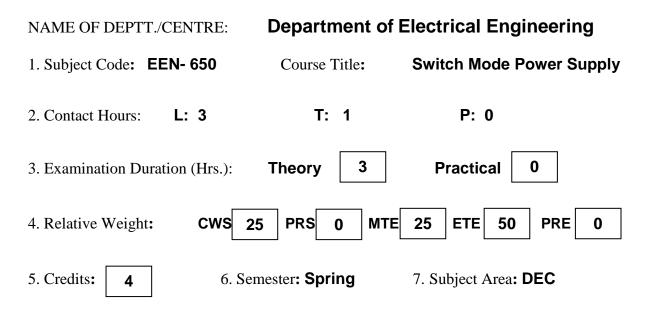
To provide knowledge of architecture, interfacing and programming of microcontroller and its applications on generation of firing signals for power electronic converters.

S. No.	Contents	Contact Hours
1.	Introduction: Review of 8-bit microprocessor and peripheral	3
	devices; Review of power electronic converters; Overview of	
	microcomputer control of power electronic systems.	
2.	Intel 8051/8052 Microcontroller: Introduction, architecture,	3
	functional diagram, pin description, CMOS and HMOS	
	microcontrollers and their difference, oscillator, CPU Timing, Intel	
	8031 and 8751.	
3.	Memory Organization: Accessing external program and data	4
	memory, internal data memory, special function registers, hardware	
	interfacing, timing diagrams, I/O expansion.	
4.	I/O Ports and Timer: Internal structure of ports P0, P1, P2 and P3,	4
	alternative functions of port P3; Timer and counter operation, TM0,	
	TM1 and TM2, modes of operation; Applications.	
5.	Programming: Addressing modes; Instruction set: Data transfer	5
	group, arithmetic group, logical group, control group and Boolean	
	processing capability; Programming and erasing EPROM.	
6.	Interrupts: Types, interrupt priority and interrupt enable registers,	2
	processing of interrupt, single-step operation.	

S. No.	Contents	Contact Hours
7.	Microprocessor Controlled Converters: Firing pulse generation	8
	of single-phase and three-phase converters, dual converter, PWM	
	converter; Control techniques.	
8.	Microprocessor Controlled Choppers: Firing pulse generation of	5
	single-quadrant and multi-quadrant choppers; Control techniques.	
9.	Microprocessor Controlled Inverters: Firing pulse generation of	8
	voltage source PWM inverters, three-timer and four-timer methods,	
	foreground and back ground calculation, current source inverters.	
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Dubey G. K., "Power Semiconductor Controlled Drives", Prentice- Hall International Editions.	2001
2.	Bose B. K., "Power Electronics and Variable Frequency Drives", IEEE Press, Standard Publisher Distributors.	2001
3.	Intel Manual on 8-bit Microcontroller	
4.	Ayala K. J.," The 8051 Microcontroller- Architecture, Programming and Applications", 3 rd Ed, Cengage Learning.	2008
5.	Hall D.V., "Microprocessor and Interfacing –Programming and Hardware", 2 nd Ed., Tata McGraw-Hill Publishing Company Limited.	2008
6.	Mazidi M.A. and Mazidi J.G., "The 8051 Microcontroller and Embedded Systems", 2 nd Ed., Pearson Education.	2008

8. Pre-requisite: Knowledge of power electronics and drives

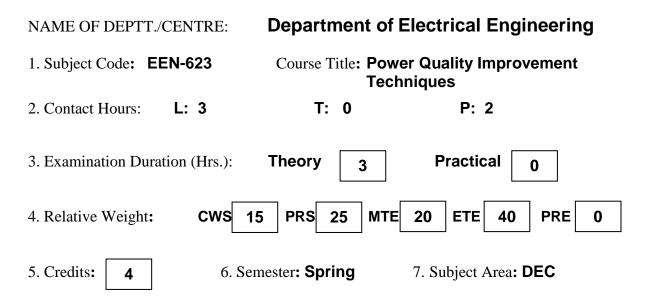

9. Objective:

To provide knowledge of microprocessor-based control system for electrical drives with an emphasis on generation of firing signals for power electronic converters, processing of speed and current error in closed loop control of drives.

S. No.	Contents	Contact Hours
1.	Introduction : Overview of DSP control of power electronic systems and electric drives.	2
2.	Firing Signal Generation : Review of generation of firing pulses for converters, choppers and inverters.	3
3.	DSP Processors: Review of microcontrollers and microprocessors; Architecture of DSPs, computational building blocks, bus architecture and memory, data addressing, address generation unit, DSP data path arithmetic, precision, overflow, multiplier, accumulator, rounding, programmability and program execution, speed issues, features for external interfacing; Programming of DSP, C language and assembly language; DSP computational errors.	7
4.	Feed Back Signal Processing : Measurement of electrical and mechanical variables- current, speed and position of motor, signal conditioning.	4
5.	Closed Loop Drive: Control philosophy, closed loop dc drive fed from dual converter and chopper, VSI, CSI and PWM inverter fed drives.	8
6.	Modeling: Mathematical modeling, simulation of drives, design of current and speed controllers in continuous and discrete data system, stability studies.	8

	7.	Modern Control Theory Applications: Fuzzy control and ANN control of drives	10
İ		Total	42

S.No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Dubey G. K., "Power Semiconductor Controlled Drives", Prentice-	2001
	Hall International Editions.	
2.	Bose B. K., "Power Electronics and Variable Frequency Drives",	2001
	IEEE Press, Standard Publisher Distributors.	
3.	Bose B. K., "Microcomputer Control of Power Electronics and Drives", IEEE Press.	1999
4.	Toliyat H. A. and Campbell S., "DSP Based Electromechanical Motion Control", CRC Press.	2004
5.	Kenjo T., "Power Electronics for the Microprocessor Age", Oxford University Press.	1994


8. Pre-requisite: **EE-206 or equivalent**

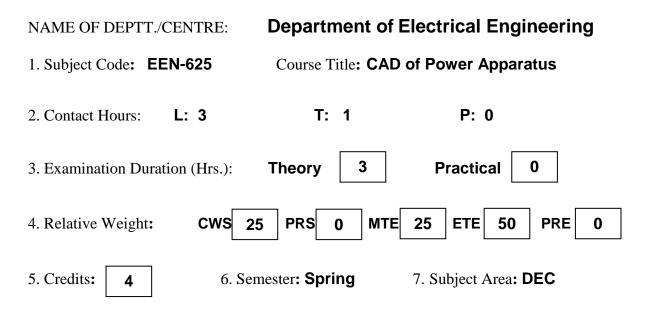
9. Objective:

To familiarize students with the concepts, control techniques, protection and design of different configurations of SMPS.

S. No.	Contents	Contact Hours
1.	Introduction: Overview of linear voltage regulators, shunt and	2
	series regulators.	
2.	Switching Concepts: Ideal switch, practical switch, switching	4
	functions.	
3.	Switching Circuits: Introduction of switching circuits, harmonic	3
	concepts, power computations.	
4.	Non-Isolated Switch-Mode DC-DC Converters: Buck, Boost,	6
	Buck-Boost converters.	
5.	Isolated Switch-Mode DC-DC Converters: Introduction and types	8
	of switch mode dc-dc converters.	
6.	Soft Switched DC-DC Converters: Series and Parallel resonant	10
	circuits, ZCS and ZVS switching topologies.	
7.	Simulation of Switching Converters.	4
8.	Switching Converter Design: Choke and transformer design; driver	5
	circuits, snubber circuits; EMI suppression, Input rectifiers with	
	unity input power factor; Reliability, few case Studies.	
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Rashid M. H., "Power Electronics Circuits Devices and Applications", 3 rd Ed., Pearson Education.	2008
2.	Mohan N., Undeland T.M. and Robbins W.P., "Power Electronics-Converters, Applications and Design", 3 rd Ed., Wiley India.	2008
3.	Whittington H.W., Aflynn B.W. and Macpherson D.E., "Switch Mode Power Supplies – Design and Construction", John Wiley and Songs.	1997
4.	Hart Daniel W., "Introduction to Power Electronics", Prentice Hall International Edition.	1996
5.	Ang Simon S., "Power Switching Converter", Marcel Dekker Inc.	1995
6.	Luo Fang Lin and Ye Hong, "Advanced DC/DC Converters", CRC Press.	2003

8. Pre-requisite: EE-206 and EE-301 or equivalent

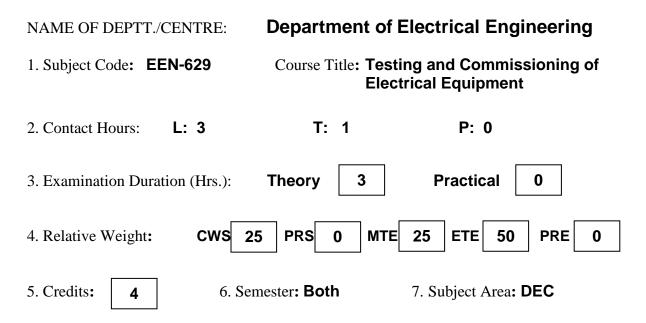

9. Objective:

To familiarize students with the reasons of load generated harmonics present in the supply and the methods for their suppression.

S. No.	Contents	Contact Hours
1.	Concept of Power Quality: Frequency variations, voltage	2
	variations- sag and swell, waveform distortion -dc offset,	
	harmonics, inter-harmonics, notching and noise.	
2.	Fundamentals of Harmonics: Representation of harmonics,	3
	waveform, harmonic power, measures of harmonic distortion;	
	Current and voltage limits of harmonic distortions: IEEE, IEC, EN,	
	NORSOK	
3.	Causes of Harmonics: 2-pulse, 6-pulse and 12-pulse converter	7
	configurations, input current waveforms and their harmonic	
	spectrum; Input supply harmonics of AC regulator, integral cycle	
	control, cycloconverter, transformer, rotating machines, ARC	
	furnace, TV and battery charger.	
4.	Effect of Harmonics: Parallel and series resonance, effect of	3
	harmonics on static power plant – transmission lines, transformers,	
	capacitor banks, rotating machines, harmonic interference with	
	ripple control systems, power system protection, consumer	
	equipments and communication systems, power measurement.	

S. No.	Contents	Contact Hours
5.	Elimination/ Suppression of Harmonics: High power factor	4
	converter, multi-pulse converters using transformer connections	
	(delta, polygon)	
6.	Passive Filters: Types of passive filters, single tuned and high pass	4
	filters, filter design criteria, double tuned filters, damped filters and	
	their design.	
7.	Active Power Filters: Compensation principle, classification of	2
	active filters by objective, system configuration, power circuit and	
	control strategy.	
8.	PWM Inverter: Voltage sourced active filter, current sourced	2
	active filter, constant frequency control, constant tolerance band	
	control, variable tolerance band control.	
9.	Shunt Active Filter: Single-phase active filter, principle of	8
	operation, expression for compensating current, concept of constant	
	capacitor voltage control; Three-phase active filter: Operation,	
	analysis and modelling; Instantaneous reactive power theory	
10.	Three-phase Series Active Filter: Principle of operation, analysis	3
	and modelling.	
11.	Other Techniques: Unified power quality conditioner, voltage	4
	source and current source configurations, principle of operation for	
	sag, swell and flicker control.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Derek A. P., "Power Electronic Converter Harmonics", IEEE Press.	1989
2.	Arrillaga J., Smith B. C., Watson N. R. and Wood A. R., "Power System Harmonic Analysis", 2 nd Ed., Wiley India.	2008
3.	Arthur R. B., "Power System Analysis", 2 nd Ed., Pearson Education.	2008
4.	Arrillaga J., Braedlley D. A. and Bodger P. S., "Power System Harmonics", John Wiley and Sons.	1985
5.	Dugan R. C., McGranaghan M. F. and Beaty H. W., Electrical Power System Quality", McGraw-Hill International Book Company.	1996
6.	Sankaran C., "Power Quality", CRC Press.	2001


8. Pre-requisite: **EE-202 and EE-303 or equivalent**

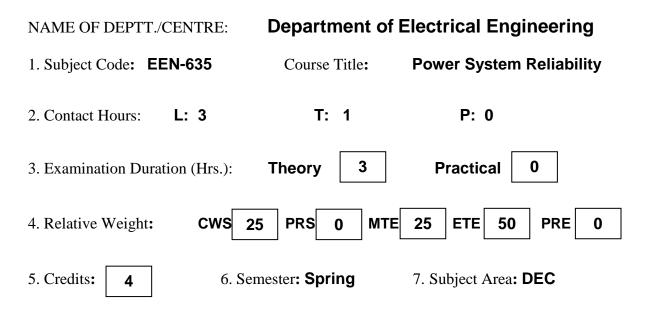
9. Objective:

To familiarize students with the design procedure and performance evaluation of rotating machines and transformers with sinusoidal and non-sinusoidal supply system.

S. No.	Contents	Contact Hours
1.	Review of design of transformers and rotating machines.	5
2.	Calculation of reactance parameters, losses, temperature rise and	3
	performance.	
3.	Application of Finite Element Method (FEM) in thermal and field	5
	analysis of electrical machines.	
4.	Design consideration for rotating machines fed from non-sinusoidal	5
	supply.	
5.	Computer aided design, philosophy and economics, selection of	12
	input data and design variables, flow chart for design of transformer	
	and rotating machine.	
6.	Review of optimization techniques, objectives and constraint	4
	functions, constrained and unconstrained minimization.	
7.	Flow chart development for design optimization of power apparatus,	8
	converter fed drives and energy efficient machines.	
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Say M. G., "The Performance and Design of AC Machines",	2002
	CBS Publishers and Distributors.	
2.	Veinott C. G., "Computer Aided Design of Electrical	1987
	Machinery", MIT Press.	
3.	Sen S. K., "Principle of Electrical Machine Design with	2001
	Computer Programs", Oxford and IBH Company Pvt. Ltd.	
4.	Ramamoorthy M., "Computer Aided Design of Electrical	2002
	Equipment", East West Press.	

8. Pre-requisite: EE-202 and EE-303 or equivalent


9. Objective:

To provide the installation, commissioning, testing and maintenance procedures of large rating transformers, induction machines and synchronous machines.

S. No.	Contents	Contact Hours
	Transformers	
1.	Terminal marking, construction of transformers, cooling arrangement.	4
2.	Routine tests, measurement of winding resistance, impedance, voltage ratio, insulation resistance.	4
3.	Type tests, impulse voltage test, measurement of losses, temperature-rise test.	5
4.	Installation and commissioning of transformers, foundation, codes of practice, earthing, pre-commissioning test, testing of oil strength.	4
	Induction Machines	
5.	Rating and name plate data, installation and foundation, types of coupling, pre and post commissioning checks.	4
6.	Routine tests and type tests, resistance measurement, no load and blocked rotor test, load test, temperature rise test, high voltage test.	5
7.	Shaft alignment, drying of windings, mechanical tests, air gap symmetry, insulation test, speed and load test, codes of practice, maintenance schedule.	5

S. No.	Contents	Contact Hours
	Synchronous Machines	
8.	Installation, commissioning and performance tests, methods of cooling.	5
9.	Excitation test, waveform and telephone interference, over-speed test, generator and motor operation, sudden short circuit test, bearing currents.	6
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/
1	Eitzeeneld A. E. Kingsley, C. and Kuske A. "Electric Machinery"	Reprint
1.	Fitzgerald A. E., Kingsley C. and Kusko A., "Electric Machinery", 6 th Ed., McGraw-Hill International Book Company.	2008
	,	2005
2.	Say M. G., "The Performance and Design of Alternating Current	2005
	Machines", CBS Publishers and Distributors.	
3.	Langsdorf A. S., "Theory of AC machines", 2 nd Ed., Tata McGraw-	2008
	Hill Publishing Company Limited.	
4.	Transformers: BHEL, Bhopal (Book), Tata McGraw-Hill	2008
	Publishing Company Limited.	
5.	BIS Code on Transformers IS-10561	1983
	BIS Code on Transformers IS-10028	1985
	BIS Code on Transformers IS-3151	1982
6.	BIS Code on Motors IS-900	1992
	BIS Code on Motors IS-4722	1992
	BIS Code on Motors IS-4029	1967
	BIS Code on Motors IS-325	1978
	BIS Code on Motors IS-7306	1974
	BIS Code on Motors IS-7132	1973

8. Pre-requisite: **EE-301 or equivalent**

9. Objective:

To introduce the concepts of reliability modeling of generation, transmission and distribution systems and their applications in assessing the system adequacy in terms of relevant reliability indices.

S. No.	Contents	Contact Hours
1.	Basic Probability Theory: Probability concepts, rules for	4
	combining probability, probability distributions, random variables,	
	density and distribution functions, mathematical expectations, variance and standard deviation.	
2.	Basic Reliability Evaluation: General reliability functions, probability distributions in reliability evaluation, network modeling and evaluation of series, parallel, series –parallel, network modeling and evaluation of complex systems, cut-set method, tie-set method, discrete Markov chains, continuous Markov process, frequency and duration technique concepts, application to multi-state problems,	6
3.	approximate system reliability evaluation. Generation System Reliability: Generation system models, capacity outage table, recursive algorithm, loss of load indices, inclusion of scheduled outages, load forecast uncertainty, loss of energy indices, expected energy generation, energy limited systems, Gram-Charlier series and its application to generation system reliability evaluation, generating capacity –frequency and duration method.	10
S. No.	Contents	Contact Hours
4.	Interconnected System: Probability array method in two inter-	6

	connected systems, effect of tie capacity, tie reliability and number of tie lines, equivalent assistance unit method for reliability evaluation of inter-connected system, elementary concepts for reliability evaluation of multi-connected systems.	
5.	Composite Generation and Transmission System Reliability:	6
	Radial configurations, conditional probability approach, network	
	configuration, state selection, system and load point indices.	
6.	Distribution System Reliability: Basic technique and application to radial systems, customer–oriented indices, load and energy indices, effect of lateral distributor protection, effect of disconnects, effect of protection failures, effect of load transfer, meshed and parallel networks, approximate methods, failure modes and effects analysis, inclusion of scheduled maintenance, temporary and transfert failures inclusion of scheduled maintenance, temporary and	10
	transient failures, inclusion of weather effects. Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Billinton R. and Ronald N. A., "Reliability Evaluation of Power	1984
	Systems", Pitman Advanced Publishing Program.	
2.	Billinton R. and Ronald N. A., "Reliability Evaluation of	1983
	Engineering Systems Concepts and Techniques", Pitman Advanced	
	Publishing Program.	
3.	Endrenyi J., "Reliability Modeling in Electric Power Systems", John	1978
	Wiley and Sons.	

NAME OF DEPTT./CENTRE:	Department of Electrical Engineering		
1. Subject Code: EEN-641	Course Title:	Substation Automation	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.): Theory 3 Practical 0			
4. Relative Weight: CWS 2	5 PRS 0 MTE	25 ETE 50 PRE 0	
5. Credits: 4 6. Set	mester: Both	7. Subject Area: DEC	


8. Pre-requisite: **EE-301 or equivalent**

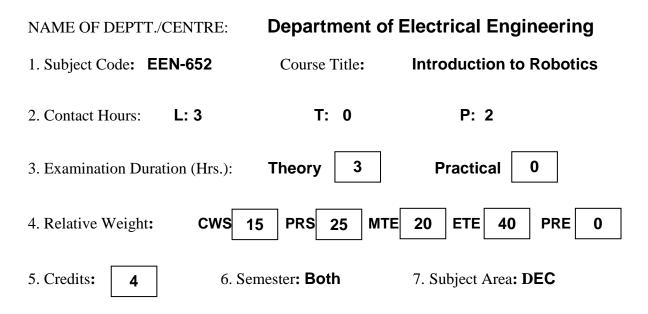
9. Objective:

To impart knowledge about substation automation, including components, integration, architecture alternatives and management of the substation data.

S. No.	Contents	Contact Hours
1.	Power System Automation: Basic theory, cost justification,	2
	risks/benefits- hard and soft.	
2.	Digital Communications: Elements of digital communication	10
	systems, encoding, modulation and demodulation, error handling,	
	communication media, digital multiplexing, ISO seven layer model,	
	Hierarchical/bus/star/ring configuration.	
3.	Enterprise Communication: LAN/WAN integration, hubs, routers,	4
	gateways, network, management and security.	
4.	Communication Protocols: DNP, MODBUS, PROFIBUS, IEC	6
	60870-5, Ethernet, TCP/IP.	
5.	Object Oriented Technology: Concepts, use of C++ and Java.	6
6.	Automation Architecture: SCADA system- hardware, software,	14
	data acquisition, control and features; RTU; PLC; IED; types of	
	architecture; equipment monitoring for reliability and safety, utility	
	integration of communication and control, and protection- examples,	
	wide-area measurement system, synchronized phasor measurements,	
	adaptive protection concepts, IEC standards.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/
		Reprint
1.	Grigsby L. L., "Electric Power Engineering Handbook", 2 nd Ed.,	2007
	CRC Press.	
2.	Stauss C., "Practical Electrical Network Automation and	2003
	Communication Systems", Elsevier Eastern Limited.	
3.	McDonald J. D., "Electric Power Substations Engineering", CRC	2003
	Press.	
4.	Brand K., Lohmann V. and Wimmer W., "Substation Automation	2003
	Handbook", Utility Automation Consulting Lohman.	

8. Pre-requisite: **EE-301 or equivalent**

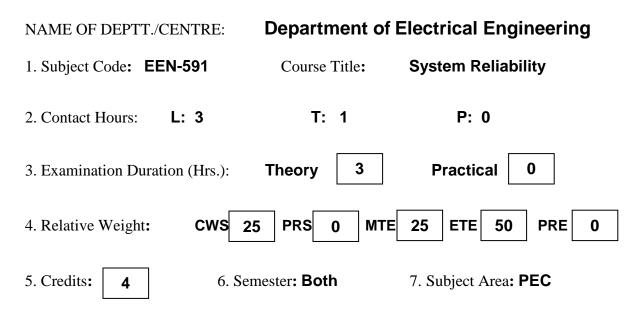

9. Objective:

To acquaint students with the new deregulation techniques of power system, planning, control, load forecasting, metering and risk assessment.

S. No.	Contents	Contact Hours
1.	Competitive market for generation, role of the existing power	8
	industry, electricity demand operation and reliability, renewable	
	generation technologies, energy policy and cost, distributed	
	generation, market regulation, connection and use of system	
	charges, traditional central utility model, independent system	
	operator (ISO), retail electric providers.	
2.	Wholesale electricity markets, characteristics, bidding, market	8
	clearing and pricing, ISO models, market power evaluation, demand	
	side management, distribution planning.	
3.	Role of the transmission provider, multilateral transaction model,	12
	power exchange and ISO - functions and responsibilities,	
	classification of ISO types, trading arrangements, power pool, pool	
	and bilateral contracts, multilateral trades.	
4.	Transmission pricing in open access system, rolled in pricing	8
	methods, marginal pricing methods, zonal pricing, embedded cost	
	recovery, open transmission system operation, and congestion	
	management in open access transmission systems in normal	
	operation.	

S. No.	Contents	Contact Hours
5.	Predicting electricity costs, electricity cost derivation, electricity	6
	pricing of inter provincial power market, transmission pricing.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Loi L. L., "Power System Restructuring and Deregulation – Trading, Performance and Information Technology", John Wiley and Sons.	2003
2.	Fred C. S., Michael C. C., Richard D. T. and Roger E. B., "Spot Pricing of Electricity", Kluwer Academic Publishers.	1988
3.	Marija I., Francisco G. and Lester F., "Power Systems Restructuring: Engineering and Economics", Kluwer Academic Publishers.	1998



8. Pre-requisite: **EE-306 or equivalent**

9. Objective:

To familiarize with the working of robot, its components, position and orientation analysis, robot kinematics, dynamics and control, sensing and vision.

S. No.	Contents	Contact Hours
1.	Evolution of robots and robotics, robot anatomy, links, joints,	3
	degrees of freedom, arm configuration, wrist configuration, end-	
	effector.	
2.	Mapping between rotated and translated frames, combined rotation	4
	and translation of vectors, fundamental rotation matrices.	
3.	Kinematic modeling of the manipulator, Denavit-Hartenberg	5
	notation, kinematic relationship between adjacent links, manipulator	
	transformation matrix	
4.	The inverse kinematics, solvability of inverse kinematic model,	4
	solution techniques.	
5.	Linear and angular velocity of a rigid body, velocity propagation	5
	along links, manipulator Jaccobian, static analysis.	
6.	Dynamic modeling, Lagrange-Euler formulation, Newton- Euler	5
	formulation.	
7.	Trajectory planning, joint space techniques, cartesian space	4
	formulation.	
8.	Control of manipulator, PID control scheme, computed torque	4
	control, force control of robotic manipulators.	

8. Pre-requisite: Nil

9. Objective:

To introduce the concepts of reliability modeling of systems and their applications in assessing the system adequacy in terms of relevant reliability indices.

S. No.	Contents	Contact Hours
1.	Review of Probability Theory: Probability concepts, rules for	3
	combining probability, probability distributions, random variables,	
	density and distribution functions, mathematical expectations,	
	variance and standard deviation.	
2.	Catastrophic failure models: Component reliability from test data,	5
	MTTF, time dependent hazard models, stress dependent hazard	
	models, treatment of field data	
3.	Basic Reliability Evaluation: General reliability functions, probability distributions in reliability evaluation, and evaluation of series, parallel, series –parallel, and complex systems, event space method, cut-set method, tie-set method, and other methods, discrete Markov chains, continuous Markov process, frequency and duration technique concepts, standby and k out of n:G systems, application to multi-state problems, approximate system reliability evaluation, fault tree technique	12
4.	Reliability enhancement: Component improvement, proper design and simplicity, creative design, conservative design and derating, redundancy and redundancy allocation	10

S. No.	Contents	Contact Hours
5.	Drift failures: Concept of drift failures, failure mechanism, change	5
	in device and unit performance with time and loading/stresses,	
	accelerated stress testing, creative design for drift failures.	
6.	System with repair: Availability, maintainability, MTBF, MTTR,	7
	UTR, k-out of n:G system with repair and installation, preventive	
	maintenance.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Shooman M.L., Probabilistic Reliability, an Engineering Approach,	1968
	McGraw Hill	
2.	Sinha S.K., Reliability and Life Testing, Wiley Eastern Limited	1986
3.	Gupta A.K., Reliability, Maintenance and Safety Engineering, University Science Press	2009
4.	Fuqua N.B., Reliability Engineering for Electronic Design, Marcel	1986
	Dekker Inc.	

NAME OF DEPTT	. /CENTRE:	Departm	ent of El	ectrical	Engin	eering	
1. Subject Code:	EEN-583	Course Titl	e: Stocha	astic Syster	ms		
2. Contact Hours:	L: 3	T:	1	Р	: 0		
3. Examination Du	ration (Hrs.):		Theory	3		Practical	0
4. Relative Weight:	CWS 2	25 PRS	0 M7	ГЕ 25]ETE [50 PRE	0
5. Credits: 4	6. Sem	ester: Autur	nn/Spring	7. Subject	t Area: l	PEC	

8. Pre-requisite: Basic knowledge of Feed Back Control & Probability Theory

9. Objective: To acquire the knowledge on stochastic signals and the response of feed-back processes for these type of signals and their design using performance indices.

10. Details of Course:

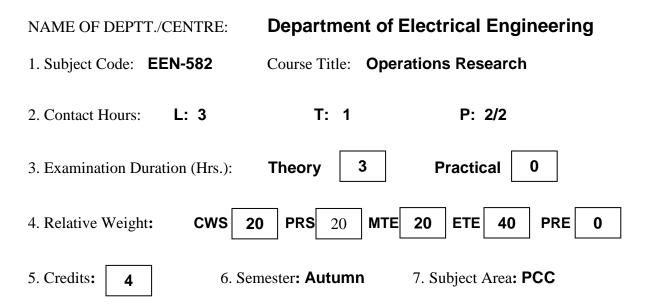
S. No.	Contents	Contact Hours
1.	Concepts of probability, random variables and stochastic signals. First & second order statistics of stochastic process. Ergodic hypothesis & correlation functions. Poisson distribution of event points.	10
2.	Random variables and their characteristics. CDF & PDF and their properties. Existence theorem. Gaussian RV, Poisson RV, Bernoulli distributed RV and uniformly distributed RV	6
3.	Response of a linear system to stochastic signal inputs; power density spectra and basic relationships.	6
4.	Analytical design of linear feed-back controls. Parseval's theorem & its generalization. M.S.E. estimation for different cases. Wiener Hopf integral equation and methods of solution.	10
5.	Gauss – Markov sequence and process models; optimal prediction, filtering and smoothing for continuous and discrete linear systems	10

S. No.	Name of Authors / Books / Publishers	Year of
		Publication /

		Reprint
1.	Deuschel Jean-Dominique et al : "Interacting Stochastic Systems", Springer: Berlin, New York	2005
2.	Kulkami Vidyadhar G. : "Modeling and Analysis of Stochastic Systems", Chapman and Hall/CRC	1995
3.	Medhi J. : "Stochastic Processes", Wiley Eastern Limited	1982/1984
4.	Meditch J.S. : "Stochastic Optimal Linear Estimation and Control ", McGraw- Hill, Inc	1969
5.	Papoulis A : "Probability, Random variables, and Stochastic Processes", Third edition, McGraw-Hill,	1991
6.	Pugachev V.S. et al : "Stochastic Systems: Theory and Applications",	
	RiverEdge,NJ: World Scientific	2001

NAME OF DEPTT./CENTRE:	Department of Electric	ical Engineering
1. Subject Code: EEN-584	Course Title: Optimal Syst	ems
2. Contact Hours: L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 3 Pr	actical 0
4. Relative Weight: CWS 25	FRS 0 MTE 25	ETE 50 PRE 0
5. Credits: 4 6. Sen	nester: Autumn/Spring	7. Subject Area: PEC

8. Pre-requisite: Knowledge of Linear Control System


9. Objective:

To familiarize with the concept of optimal control of continuous time and discrete time systems.

S. No.	Contents	Contact Hours
1.	Introduction: Definitions of Optimal Control, plant, Performance	4
	Index, constraints, formulation of optimal control problem, selection	
	of a performance index	
2.	Calculus of Variations and Optimal Control:	8
	Basic Concept, Optimum of a Function and a Functional, The Basic	
	Variational Problem, Fixed-End Time and Fixed-End State System, Euler-	
	Lagrange Equation, Different Cases for Euler-Lagrange Equation, The	
	Second Variation, Extrema of Functions with Conditions, Variational	
	Approach to Optimal Control Systems, Terminal Cost Problem	10
3.	Linear Quadratic Optimal Control Systems:	10
	Problem Formulation, Finite-Time Linear Quadratic Regulator, LQR	
	System for General Performance Index, Analytical Solution to the Matrix	
	Differential Riccati Equation, Infinite-Time LQR System, Stability Issues of Time-Invariant Regulator, Linear Quadratic Tracking System: Finite-	
	Time Case, LQT System: Infinite-Time Case, LQR with a Specified	
	Degree of Stability	
4.	Discrete-Time Optimal Control Systems:	4
	Variational Calculus for Discrete-Time, Discrete-Time Optimal	-
	Control Systems, Discrete-Time Linear State Regulator, Closed-Loop	
	Optimal Control: Matrix Difference Riccati Equation	
5.	Pontryagin Minimum Principle: Pontryagin Minimum Principle,	8
5.	Dynamic Programming, Principle of Optimality, Optimal Control	0
	Using Dynamic Programming, Optimal Control of Discrete-Time	
	Systems, Optimal Control of Continuous-Time Systems, The	
	Hamilton-Jacobi-Bellman Equation, LQR System Using H-J-B	

	Equation	
6.	Time-Optimal Control of LTI System:	8
	Problem Formulation and Statement, Solution of the TOC System,	
	Structure of Time-Optimal Control System, TOC of a Double	
	Integral System, Fuel-Optimal Control Systems, Energy-Optimal	
	Control Systems	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Kirk Donald E.,"Optimal Control Theory An Introduction", Dover Publication Inc, Mineola, New York.	2004
2.	Naidu Desineni Subbaram,"OPTIMAL CONTROL SYSTEMS", CRC PRESS, Boca Raton London New York Washington, D.C.	2002
3.	Sage A. P. and White C. C,"Optimum Systems Control", Prantice-Hall,Englewood Cliffs, N.J.	1977

8. Objective: To introduce the students with foundations of Operations Research methodology & tools. It will provide the students the practice of modeling and solving the problems on computer.

S. No.	Contents	Contact Hours
1.	Linear Programming, Simplex method, Dual simplex method, Sensitivity Analysis.	10
2.	Transportation & Assignment Problems.	5
3.	Integer Programming	5
4.	Probabilistic Decision Making	5
5.	Inventory Models	5
6.	Game Theory	5
7.	Queueing Theory	5
8.	Project Scheduling By CPM/PERT	5

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Taha H.A.," Operations Research", Eighth Ed., Macmillan	2009
	Publishing Co. PHI.	
2.	Ignizio James. P., " Linear Programming in single & multiple	1982
	objecting systems", PHI.	
3.	Bazaraa M.S., Jarvis J.J.," Programming & Network Flows", John	1977
	Willy & sons.	

NAME OF DEPTT./CENTRE:	Department of E	lectrical Engineering
1. Subject Code: EEN-590	Course Title: Modell Proce	•
2. Contact Hours: L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 3	Practical 0
4. Relative Weight: CWS 2	5 PRS 0 MTE	25 ETE 50 PRE 0
5. Credits: 4 6. Ser	nester: Autumn	7. Subject Area: PEC

8. Pre-requisite:

9. Objective:

To introduce the fundamentals of Mathematical Modelling of Process and study the Dynamics of chemical processes in Industry including the idea of advance controllers used in Industry.

S. No.	Contents	Contact Hours
1.	Development of a Mathematical Model: Linear State Space Models. Introduction to Laplace Transforms. Transfer Functions. Need of a mathematical model, State variables and State equations for a Chemical process.	8
2.	Process Dynamics of Fluid Flow and Heat transfer systems: Fundamentals of fluid flow. Conservation laws for mass, momentum and mechanical energy. Flow of fluids in conduits. Flow past immersed bodies. Fundamentals of heat transfer	8
3.	Mathematical Model of Different processes and Distillation column Dynamics: Continuous Stirred Tank Reactor, Mixing Process, Tabular Heat Exchanger, Distillation column Dynamics, Mathematical model and controller for Two-tank System	8
4.	Introduction to Process controllers: Need of process controller, different types of process controllers: Electric controller, Pneumatic controller, Hydraulic controller.	8
5.	Introduction to Computer Aided process Control: Different control actions: on-off or two-position control , Proportional control ,Integral control ,Derivative control . Analogue Control Systems, DDC (Direct Digital Control), Supervisory Computer Control (SCADA),Distributed Control System(DCS)	10

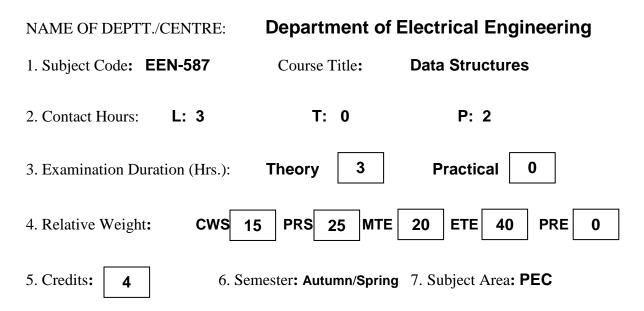
Total 42		
		42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1	Coughnowr,D.R.,and Koppel,I.B.,"Process Systems Analysis and Control",2 nd Ed.,Mcgraw-Hill,New York	1991
2	Johnson, Curtis D.," Process control instrumentation technology", Prentice- Hall of India Pvt. Ltd.	2006
3	Luyben W. L. "Process Modeling ,Simulation and Control for Chemical Engineers", McGraw-Hill Book Company,New York	1973
4	Seborg, D.E., Edgar, T.F. and Mellichamp, D.A., "Process Dynamics and Control", 2 nd Ed., John Wiley and Sons	2004
5	Singh, S.K," Computer-aided process control", Prentice-Hall of India	2003
6	Stephanopoulos.G.,"Chemical process control: An Introduction to theory and practice", Prantice-Hall,Englewood Cliffs, N.J.	1984

NAME OF DEPTT. /CENTRE:

Department of Electrical Engineering

1. Subject Cod	le: E	EN-585	Cours	e Title:	Advan	ICED COMPUTER (CONTROLLED SYSTEMS
2. Contact Hou	urs:	L: 3		T: 1		P: 0	
3. Examination	n Durat	ion (Hrs.): T	heory	[3	Practical	0
4. Relative We	eight:	cws	25 PRS	0	мте	25 ETE 50	PRE 0
5. Credits:	4	6	. Semester:	Autumr	n/Spring	7. Subject Area : P	EC


8. Pre-requisite: Basic knowledge of Microprocessors and PC Programming

9. Objective: To provide sound knowledge in designing and control of Computer Controlled Systems to get an insight to the practical useful tools and techniques for controlling multivariable processes using microcomputers and validation of the computer controlled system design through simulation studies.

S. No.	Contents	Contact Hours
1.	Overview of the execution environment of Pentium processor in PC, FPU and assembly level programming under protected mode operation.	8
2.	Review of Z-transforms, frequency spectrum and reconstruction theorem	4
3.	Pulse transfer functions, Data hold, state transition signal flow diagrams of pulse transfer functions, decomposition and computer simulation. Stability consideration; Routh-Hurwitz criterion and Jury's test	6
4.	Modified Z-transforms, applications and computer simulation of computer controlled processes with transportation lag	4
5.	Direct digital control (DDC) algorithms: digital controller design from analog controllers, PDI control action, method of differentials, bilinear transformation and mapping of poles and zeros.	6

6.	Digital controller design using plant models: Identification of plant model	
	through reaction curve, dead-beat algorithm, Dahlin's method, Kalman's approach and Smith predictor design	8
7.	Digital controller structures & PC implementation	6

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Astrom K.J. et al., "Computer Controlled System: Theory and Design", Prentice- Hall	1997
2.	Irvine Kip R., "Assembly Language for Intel-Based Computer", Fourth Edition, Pearson Education (LPE)	2004
3.	Ogata K., "Discrete Time Control Systems", Prentice-Hall	1987
4.	Philips C.L. et al., "Digital Control System, Analysis and Design", Second Edition, Prentice-Hall	1990
5.	Rosenwasser Efim et al., "Multivariable Computer-Controlled Systems: A Transfer Function Approach", London:Springer	2006
6.	Smith Cecil L., "Digital Computer Process Control", Intext Education: London	1972

8. Pre-requisite: Basic knowledge of programming

9. Objective:

10. Details of Course:

To familiarize students with the concept of abstract data type, hardware and software implementations of data structures, various existing data structures and their related operations with the help of different application problems.

S. No.	Contents	Contact Hours
1.	Introduction: Need of data structures, hardware and software	3
	implementations of data structures, various existing data structures	
	and their related operations, compile time memory allocation and	
	dynamic (run time) memory allocation, garbage collection.	
2.	Linked List: linked array and pointer representations their	7
	advantages and disadvantages, creation traversal, insertion and	
	deletion, sorting, concatenation, merging, searching, header node,	
	link list with grounded header node, circular link list, Josephus	
	doubly linked (two way) link, its advantages and disadvantages.	
3.	Stack: Array Representation, overflow and underflow, push and	2
	pop operations, recursion its advantages, converting a recursive	
	procedure to a non-recursive procedure.	
4.	Tower of Hanoi problem, Infix, prefix and postfix notations,	2
	evaluation a postfix expression using stack, implementing quick sort	
	algorithm using stack,	
5.	Queue: Simple queue, addition to a queue, removal from a queue,	3
	de-queue, input restricted and output restricted de-queue, addition	
	and removal w.r.t. de-queue.	

S. No.	Contents	Contact Hours
6.	Tree: Basic definitions, representation in computer memory,	10
	creating a binary tree, traversal algorithms threading in a binary tree,	
	heap tree, creation of heap tree, inserting a node in a heap tree,	
	deleting the root of heap tree, heap sort algorithm, link list	
	representation using binary tree, multi-way search tree,	
	representation in computer memory and its advantages.	
7.	Graph: Basic definitions, representation in computer memory,	7
	creation of a graph, traversal in a graph, depth first traversal and	
	breadth first traversal, sorting, inserting an arc in a graph, deleting	
	an arc from a graph, searching a node and an arc in a graph.	
8.	Searching Algorithms: Sequential search, binary search, efficiency	2
	of searching algorithms, improving the efficiency of sequential	
	search by move to front, move forward, indexed sequential search.	
9.	Table Data Structure: Hash function and hashing, selection of	4
	hash function, collision and collision resolving methodologies,	
	linear probing, quadratic probing, buckets, chaining, storing	
	(inserting) data in table, searching a data record in a table, deleting a	
	data record from a table, efficiency of search.	
10.	Sorting Algorithms: Bubble sort, quick sort, heap sort, insertion	2
	sort, selection sort, merge sort, efficiency of sorting algorithms.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Lipschutz S., "Data Structures Schaum's Outline Series", Tata	2008
	McGraw-Hill Publishing Company Limited.	
2.	Preiss B. R., "Data Structures and Algorithms with Object Oriented	2008
	Design Patterns in C++", Wiley India.	
3.	Rowe G. W., "Introduction to Data Structures and Algorithms With	2004
	C++", Prentice Hall of India Private Limited.	
4.	Sahni S., "Data Structures, Algorithms and Application in C++", 2 nd	2007
	Ed., University Press.	
5.	Tenenbaum A. M., Langsam Y., and Augenstein M. J., "Data	2008
	structures using C and C++", 2 nd Ed., Prentice Hall of India Private	
	Limited.	

NAME OF DEPTT./ CENTRE:			Depar	rtme	nt of El	ectri	ical Eı	ngineering	g		
1.	Subject Code: EEN-593		Course Titl	le: (Graph 7	Гheo	ory and	d Applica	tions		
2.	Contact Hours:	L:	3		T:	1		P:	0		
3.	Examination Duration(Hrs	s.):	Theor	y	3]	Practical		0	
4.	Related Weight:	CW	vs 25 P	PRS	0 M7	ſE	25	ЕТЕ	50	PRE	0
5.	Credits: 04	6.	Semester:	Au	tumn		7.	Subject	Area:	Р	EC

- 8. Pre-requisite: Basic Knowledge of State Space Analysis, Circuits ,Optimization & switching Theory
- **9.** Objective: To familiarize with the basic concepts of graph, tie sets, cut sets and matrix representation of graphs, its applications in the analysis of circuits, switching theory and operation research.

S.	Contents	Contact Hours
No.		
1.	Definition of graph, types of graphs, sub graph, Graphs and Examples, Connected graph, Undirected and Directed graph, Disjoint graphs, Planar Graphs, Dual Graphs, Complete graph, Isomorphic Graph, Incidence of a branch, Adjacency and Incidence Matrices, Walks, Trails, Paths, Cycles, Bipartite, Degree, Regular, Distance, Eulerian Graphs, Hamiltonian Graphs	12
2.	Fundamental circuits, Trees, Counting Trees, Twigs, Links, Cut sets and Tie sets	8
3.	Electrical network analysis by graph theory, State space analysis using graph theory	8
4.	Network flows, Cut and its capacity, Enumeration of graphs, Graphs in switching and Coding theory	6
5.	Graph theory in operations research, Traveling Salesmen problem, Shortest path problem, Minimal cost network problem, Network analysis including PERT and CPM	8

Sr. No.	Name of Books/Authors/Publishers	Year of Publication
1.	Balakrishnan V., "Theory and Problems of Graph Theory", Schaum's Outline	2004
	Series, McGraw-Hill	
2	Bazaraa M. S., Jarvis J. J., Sherali H. D.,"Linear Programming and	2008
	Network Flows", 2 nd Edition, Willey India Edition	
3.	Douglas B. West, "Introduction to Graph Theory", 2nd Edition, Prentice Hall	2000
4.	Narsingh Deo, "Graph Theory with applications in the engineering and computer science"	1974
5.	Taha H. A., "Operation Research: An Introduction", 8 edition, Pearson Education	2008

NAME OF DEPTT./CENTRE:	Department of El	lectrical Engineer	ing
1. Subject Code: EEN-594	Course Title: Adva	nced Microprocesso	r and Applications
2. Contact Hours: L: 3	T: 0	P: 2	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weight: CWS	15 PRS 25	20 40	0
5. Credits: 4 6. S	Semester: Both	7. Subject Area: PE	C

8. Pre-requisite: Basic course on Microprocessors.

9. Objective:

To expose the students to the architecture, instruction set and assembly language programming of typical 16-bit and higher order microprocessors. The course also provides interfacing details of I/O devices with the processor.

S. No.	Contents	Contact Hours
1.	Evolution of Microprocessors: 8-bit ,16-bit microprocessors, & Intel IA32 processors.	2
2.	Software Architecture of a 16-bit & 32 bit Microprocessor: concept of pipelining and memory segmentation, logical address, offset address and physical address; Bus Interface Unit (BIU); Execution Unit (EU), segment registers. Memory reference using descriptors in protected mode.	5
3.	Operation of 16-bit Microprocessor: Pin configuration of Intel 8086/8088; Minimum and maximum modes of operation; Address bus, data bus and control bus; Clock generator Intel 8284; Memory organization, memory address space; comparision with 32 bit processor.	5
4.	Interfacing: Interfacing concepts, interfacing memory; Input-output techniques, interfacing of I/O devices to the processor.	2
5.	Generalised instruction set of IA-32 microprocessor; 8086/8088instruction set as subset of IA-32, Addressing Modes Data related addressing modes- register, immediate, direct, register indirect, based relative, indexed relative and based indexed, branch related addressing modes- intrasegment direct and indirect, intersegment direct and indirect.Machine cycles, data transfer, arithmetic, bit manipulation, string, program execution transfer and processor control instructions.	10
6.	Assembler Directives: ASSUME, DB, DD, DQ, DT, DW, DUP, END, EQU, EVEN, ORG, OFFSET, PROC, ENDP, LABEL and PTR. Real variable directives, Assembly Language Programming Macro-assembler, segment definition and models.MODEL approach	5

S. No.		Contact Hours
	Contents	
7.	Interrupt Structure: Interrupt pointer, type numbers, processing of interrupt, internal and external interrupts, interrupt priorities, BIOS routines.	4
8.	Programmable Support Chips : Interfacing of programmable parallel interface Intel 8255, programmable interval timer Intel 8253, programmable interrupt controller Intel 8259 with 16-bit processor.	5
9.	Coprocessors and Multiprocessing, FPU of Pentium	4
	Total	42

:

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Brey B. B., "Intel 8086, 8088, 80186, 80187, 80286, 80386, 80486,	2006
	Pentium and Pentium Pro Processors, Architecture, Design and Application", Prentice Hall of India.	
2.	Hall D. V., "Microprocessor and Interfacing –Programming and Hardware", Tata McGraw-Hill.	2006
3.	James L Antonakos,"The Pentium Microprocessors, Pearson Education Asia.	2002
4.	Liu Yu-Cheng and Gibson G. A., "Microcomputer Systems; The 808618088 Family", 2 nd Ed., Prentice Hall of India	2007
5.	Mazidi M. A. and Mazidi J. G., "The 80x86 IBM PC and Compatible Computers (Vol. I and II), Assembly Language, Design and Interfacing", Prentice Hall International Edition.	2003
6.	Triebel W. A. and Singh A., "The 8088 and 8086 Microprocessors, Programming Interfacing, Software, Hardware and Applications", 4 th Ed., Prentice Hall of India	2007

NAME OF DEPTT/CENTRE: DEPARTMENT OF CIVIL ENGINEERING

1. Subject code: **CEN-105** Course Title: Introduction to Environmental Studies

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Examination Duration (Hrs): **Theory:** 3 **Practical:** 0

4. Relative Weightage: CWS: 15 PRS: 0 MTE: 35 ETE: 50 PRE: 00

- 5. Credits: **3** 6. Semester: **Autumn** 7. Subject Area: **GSC**
- 8. Pre-requisite: Nil

9. Objective: To introduce fundamentals of environmental pollution and its control.

S. No.	Contents	Contact Hours
1.	Overview: Environment and Natural Processes; Development (Resource Utilization & Waste Generation); Environmental issues; Concept of Sustainable Development; Issues affecting future development (population, urbanization, health, water scarcity, energy, climate change, toxic chemicals, finite resources etc.); Environmental units	6
2.	Air –Water interaction: (Liquid phase-gas phase equilibrium) Henry's Law Constant with units, Dimensionless Henry's Law Constant	3
3.	Water –Soil Interaction: Carbonate System (Alkalinity and buffering capacity); Major ions in water; Natural Organic Matter (NOMs); Water quality parameters; Physical processes (Mass Balance): Spatio-temporal variation in quality of river water, lake water, ground water; Water quality standards	9
4.	Wetlands, water treatment and wastewater treatment .	6
5.	Air resources: Atmosphere; Air pollutants; Emissions and control of air pollutants; Atmospheric meteorology and dispersion; Transport of air (global, regional, local); Air/ atmospheric stability; Plume shape; Gaussian modeling; Air quality standards	9
6.	Land pollution and solid waste management	3
7.	Ecosystem: Structure and function; Energy flow in ecosystem; Material flow in ecosystem; Biodiversity and ecosystem health; Bio-amplification and bio-magnification	3
8.	Hazardous Waste: Definition; Classification; Storage and management; Site remediation; Environmental Risk: assessment, and management	3
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Davis M. L. and Cornwell D. A., "Introduction to Environmental Engineering", McGraw Hill, New York 4/e	2008
2.	Masters G. M., Joseph K. and Nagendran R. "Introduction to Environmental Engineering and Science", Pearson Education, New Delhi. 2/e	2007
3.	Peavy H. S., Rowe D.R. and Tchobanoglous G., "Environmental Engineering", McGraw Hill, New York	1986
4.	Mines R. O. and Lackey L. W. "Introduction to Environmental Engineering", Prentice Hall, New Yark	2009
5.	Miheicic J. R. and Zimmerman J. B. "Environmental Engineering: Fundamentals, Sustainability, Design" John Wiley and Sons, Inc.	2010

NAME OF DEPTT./CENTRE:	Department of Huma Sciences	anities & Social
1. Subject Code: HS-001A	Course Title: Communie	cation Skills (Basic)
2. Contact Hours: L: 1	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory 2 P	Practical 0
4. Relative Weight: CWS 25	6 PRS 00 MTE 25	ETE 50 PRE 0
5. Credits: 2 6. Sen	nester: Autumn/Spring	7. Subject Area: HSS

8. Pre-requisite: NIL

9. Objective: The course intends to build the required communication skills of the students having limited communicative abilities, so that they may communicate effectively in real-life situations

10. Details of Courses

S. No.	Contents	Contact Hours
1.	Understanding the Basics of Communication Skills: Listening, Speaking, Reading & Writing, Scope and Importance	01
2.	Grammar & Composition: Time and Tense, Agreement, Active-Passive, Narration, Use of Determiners, Prepositions & Phrasal Verbs	05
3.	Vocabulary Building & Writing: Word-formation, Synonyms, Antonyms, Homonyms, One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words	02
4.	Introduction to Sounds (Vowels & Consonants) Organs of Speech, Place and Manner of Articulation, Stress & Intonation, Listening Comprehension (Practical Sessions in Language Laboratory)	02

5.	Speaking, Countering Stage-fright and Related Barriers to Communication.	02
6.	Reading and Comprehension: Two lessons to be identified by the department.	02
	Total	14

List of Practicals:

- **1.** Ice-breaking Exercises
- 2. Assignments on Time and Tense, Agreement, Active-Passive
- **3.** Laboratory Session on Narration, Use of Determiners, Prepositions & Phrasal Verbs, Revisionary Exercises & Quiz
- 4. Laboratory Session on Synonyms, Antonyms, Homonyms
- 5. Assignments and Practice Sheets on One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words
- **6.** Laboratory Session on Practice of sounds, Intonation and Stress, Listening Comprehension
- 7. Individual presentation, debates, Extempore & Turncoats
- 8. Exercises in Composition and Comprehension
- 11. Suggested Books:

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Murphy, Raymond. <i>Intermediate English Grammar</i> , New Delhi, Cambridge University Press.	2009
2.	Quirk, Randolph & Sidney Greenbaum. A University Grammar of English, New Delhi, Pearson.	2009
3.	McCarthy, Michael & Felicity O' Dell. <i>English Vocabulary in Use</i> , New Delhi, Cambridge University Press	2010
4.	Jones, Daniel. <i>The Pronunciation of English</i> , New Delhi, Universal Book Stall.	2010
5.	Birchfield, Susan M. Fowler's Modern English Usage, New Delhi, OUP.	2004
6.	Llyod, Susan M. Roget's Thesaurus of English Words and Phrases. New Delhi: Penguin.	2010

NAME OF DEPTT./CENTRE:	Department of Hu Sciences	manities & Social
1. Subject Code: HS-001B	Course Title: Commu (Advan	unication Skills ced)
2. Contact Hours: L: 1	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory 2	Practical 0
4. Relative Weight: CWS	25 PRS 00 MTE 2	5 ETE 50 PRE 0
5. Credits: 2 6. Se	mester: Autumn/Spring	7. Subject Area: HSS

8. Pre-requisite: NIL

9. Objective: The course intends to train the learners in using both verbal and non-verbal communication effectively.

S. No.	Contents	Contact Hours
1.	Advanced Communication Skills: Scope, Relevance, & Importance	01
2.	Soft Skills: Interpersonal Communication; Verbal & Non-verbal, Persuasion, Negotiation, Neuro-Linguistic Programming	03
3.	Communication and Media (Social and Popular), The Social and Political Context of Communication, Recent Developments and Current Debates in Media	04
4.	Cross-cultural and Global Issues in Communication: Race, Ethnicity, Gender & Diaspora	03
5.	Rhetoric and Public Communication, Audience Awareness, Emotionality	03
	Total	14

List of Experiments:

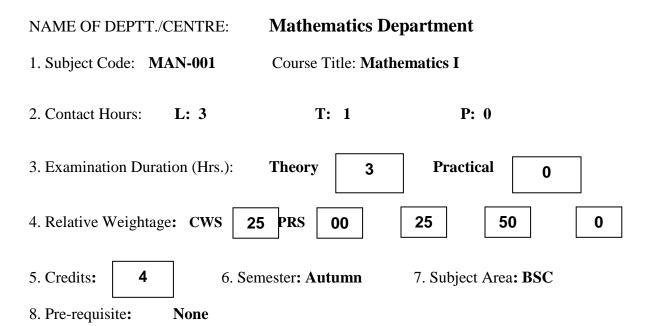
- 1. Discussion on the Process of Communication in Personal and Professional Life
- 2. Group Discussion, Case Studies and Role-Play
- **3.** Assignments on E-mail Etiquette, Social Networking, Blog Writing, Discussions on Current Issues
- 4. Non-Verbal Communication in Cross-Cultural Situations, Case Studies, Group Discussions and Readings on Topics Related to Race, Ethnicity, Gender and Diaspora
- **5.** Individual Presentations (Audience Awareness, Delivery and Content of Presentation)

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Rentz, Kathryn, Marie E. Flatley & Paula Lentz.	2012
	Lesikar's Business Communication CONNECTING IH A DIGITAL	
	WORLD, McGraw-Hill, Irwin	
2.	Bovee, Courtland L & John V. Thill. Business Communication	2010
	Today. New Delhi, Pearson Education	
3.	McMurrey, David A. & Joanne Buckley. <i>Handbook for Technical Writing</i> , New Delhi, Cengage Learning.	2009
4.	Jones, Daniel. <i>The Pronunciation of English</i> , New Delhi, Universal Book Stall.	2010
5.	Allan & Barbara Pease. <i>The Definitive Book of Body Language</i> , New York, Bantam	2004

NAME OF DEPTT./CENTRE:	Department of Hu	manities and Social Sciences
1. Subject Code: HSN-002	Course Title: Ethics and Self-awareness	
2. Contact Hours: L: 01	T: 01	P: 0
3. Examination Duration (Hrs.):	Theory 2	Practical 0
4.Relative Weight: CWS:25	PRS:0 MTE:25	ETE:50 PRE:0

- 5. Credit 02 6. Semester: Autumn 7. Subject Area: HSSC
- 8. Pre-requisite: NIL
- 9. Objective: To introduce the concepts pertaining to ethical and moral reasoning and action and to develop self awareness.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	Introduction : Definition of Ethics; Approaches to Ethics: Psychological, Philosophical, Social.	1
2	Psycho-social theories of moral development : View of Kohlberg; Morality and Ideology, Culture and Morality, Morality in everyday context.	3
3	Ethical Concerns : Work Ethics and Work Values, Business Ethics, Human values in organizations.	3
4	Self-Awareness : Self Concept: Johari Window, Self and Culture, Self Knowledge, Self-Esteem; Perceived Self-control, Self-serving bias, Self-presentation, Self-growth: Transactional Analysis and Life Scripts.	4
5.	Self Development : Character strengths and virtues, Emotional intelligence, Social intelligence, Positive cognitive states and processes (Self-efficacy, Empathy, Gratitude, Compassion, and Forgiveness).	3
	Total	14


S.No.	Name of Authors / Books / Publishers	Year of Publication
1.	Hall, Calvin S., Lindzey, Dardner., & Cambell, John	1998
	B., "Theories of Personality", Hamilton Printing Company.	
2.	Car Alan, "Positive Psychology: The Science of Happiness and Human Strengths", Brunner-Routledge.	2004
3.	Leary M.R., "The Curse of Self: Self-awareness, Egotism and the Quality of Human Life", Oxford University Press.	2004
4.	Louis P. P., "The Moral Life: An Introductory Reader in Ethics and Literature", Oxford University Press.	2007
5.	Corey, G., Schneider Corey, M., & Callanan, P., "Issues and Ethics in the Helping Professions", Brooks/Cole.	2011
6.	Snyder, C.R., Lopez, Shane, J., & Pedrotti, J.T., "Positive Psychology" Sage, 2 nd edition.	2011

NA	AME OF DEPTT./CEN	TRE:	Departn	nent of M	athematics	
1.	Subject Code: MAN-	002	Cours	e Title:	Mathematical M	ethods
2.	Contact Hours:	L: 3	T: 1		P: 0	
3.	Examination Duration	(Hrs.): Theo	ry:3	Practi	cal : 0	
4.	Relative Weightage:	CWS: 25	PRS: 0	MTE :	25 ETE : 50	PRE: 0
5.	Credits: 4	6. Se	emester: Sp	ring	7. Subject Ar	rea: BSC

- 8. Pre-requisite: Nil
- 9. Objective: To provide knowledge of essential mathematical tools applied in solving ordinary and partial differential equations, initial and boundary value problems.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Ordinary Differential Equations: Solution of linear differential equations	10
	with constant coefficients. Euler-Cauchy equations, Solution of second order	
	differential equations by changing dependent and independent variables.	
	Method of variation of parameters, Introduction to series solution method.	
2.	Partial Differential Equations: Formation of first and second order partial	6
	differential equations. Solution of first order partial differential equations:	
	Lagrange's equation, Four standard forms of non-linear first order equations.	
3.	Laplace Transform: Laplace and inverse Laplace transform of some	10
	standard functions, Shifting theorems, Laplace transform of derivatives and	
	integrals. Convolution theorem, Initial and final value theorem. Laplace	
	transform of periodic functions, error functions, Heaviside unit step function	
	and Dirac delta function. Applications of Laplace transform.	
4.	Z - Transform: Z – transform and inverse Z-transform of elementary	5
	functions, Shifting theorems, Convolution theorem, Initial and final value	
	theorem. Application of Z- transform to solve difference equations.	
5.	Fourier series: Trigonometric Fourier series and its convergence. Fourier	5
	series of even and odd functions. Fourier half-range series. Parseval's	
	identity. Complex form of Fourier series.	
6.	Fourier Transforms: Fourier integrals, Fourier sine and cosine integrals.	6
	Fourier transform, Fourier sine and cosine transforms and their elementary	
	properties. Convolution theorem. Application of Fourier transforms to BVP.	
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Kreyszig, E., "Advanced Engineering Mathematics", Johan Wiley & Sons	2011
2.	Jain, R. K. and Iyenger, S. R. K., "Advanced Engineering Mathematics", Narosa Publishing House	2009
3.	Amarnath, T., "An Elementary Course in Partial Differential Equations", Narosa Publishing House (II Edition)	2012
4.	Hildebrand F. B., "Methods of Applied Mathematics", Courier Dover Publications	1992
5.	Rao, K. S., "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd. (II Edition)	2010
6.	Sneddon, I. N., " Elements of Partial Differential Equations", McGraw-Hill Book Company	1988
7.	Simmons, G. F. and Krantz, S. G., Differential Equations: Theory, Technique and Practice", Tata McGraw-Hill Edition	2007

9. Objective: To provide essential knowledge of basic tools of Differential Calculus, Integral Calculus, Vector Calculus and Matrix Algebra for degree students.

10. Details of C	Course:
------------------	---------

S. No.	Contents	Contact
		Hours
1.	Matrix Algebra: Elementary operations and their use in getting the Rank, Inverse	8
	of a matrix and solution of linear simultaneous equations. Orthogonal, Symmetric,	
	Skew-symmetric, Hermitian, Skew-Hermitian, Normal & Unitary matrices and	
	their elementary properties. Eigen-values and Eigenvectors of a matrix, Cayley-	
	Hamilton theorem, Diagonalization of a matrix.	
2.	Differential Calculus: Limit, Continuity and differentiability of functions of two	12
	variables, Euler's theorem for homogeneous equations, Tangent plane and normal.	
	Change of variables, chain rule, Jacobians, Taylor's Theorem for two variables,	
	Error approximations. Extrema of functions of two or more variables,	
	Lagrange's method of undetermined multipliers	
3.	Integral Calculus:	12
	Review of curve tracing and quadric surfaces, Double and Triple integrals,	
	Change of order of integration. Change of variables. Gamma and Beta functions.	
	Dirichlet's integral. Applications of Multiple integrals such as surface area,	
	volumes, centre of gravity and moment of inertia	
4.	Vector Calculus: Differentiation of vectors, gradient, divergence, curl and their	10
	physical meaning. Identities involving gradient, divergence and curl. Line and	
	surface integrals. Green's, Gauss and Stroke's theorem and their applications.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	E. Kreyszig, Advanced Engineering Mathematics, 9th edition, John	2011
	Wiley and Sons, Inc., U.K.	
2.	R.K. Jain and S.R.K. Iyenger, Advanced Engineering Mathematics,	2005
	2nd Edition, Narosa Publishing House.	
3.	M.D. Weir, J. Hass, F.R. Giordano, Thomas' Calculus, 11th Edition,	2008
	Pearson Education.	

NAME OF DEPTT./CENTRE :	PHYSICS	
1. Subject Code: PHN-003	Course Title:	Electromagnetic Theory
2. Contact Hours: L: 3	T: 1 P	P: 0
3. Examination Duration (Hrs.):	Theory 0	3 Practical 0 0
4. Relative Weightage: CWS 25	5 PRS 00	25 50 00
5. Credits: 0 4 6. Sen	nester: Autumn 7	. Subject Area: BSC

8. Pre-requisite: None

9. Objective:

The objective of the course is to present the basic elements of Electrostatics, Magnetostatics, Maxwell's equations, and Electromagnetic Wave propagation.

S.No	Particulars	Contact Hours
1	Vectors and Fields:	8
	Cartesian coordinate System, Cylindrical and Spherical coordinate Systems, Constant coordinate surfaces, Del operator, Gradient, Divergence of a Vector and Divergence Theorem, Curl of a vector and Stoke's theorem, Gradient, Divergence, Curl and Laplacian in the three coordinate Systems, Laplacian of a scalar, Scalar & Vector Fields, Classification of Vector field. Sinusoidally time-varying fields, Complex Numbers and Phasor technique.	
2	Electrostatics:	10
	Field intensity, Gauss's law & its applications, Maxwell's 1 st eqn. (Electrostatics), Electric Energy and potential, the line integral, Potential gradient, the dipole fields, Energy density in an electrostatic field.	
	Current and current density, Continuity of current, Metallic conductors, Conductor properties and boundary conditions, the nature of Dielectric materials and related Boundary conditions, Capacitance, Capacitance of a two-wire line, Current analogies.	
	Electrostatic boundary-value problems, Laplace's and Poisson's equations, Uniqueness theorem, General procedure for solving Laplace's and Poisson's equation, Resistance and capacitance, Method of images.	

3	Magnetostatics:	12
	Biot-Savart's law, Ampere's circuital law, Applications of Ampere's law, Magnetic flux and magnetic flux density - Maxwell's eqn., Maxwell's eqn. for static electromagnetic fields, Scalar and vector magnetic potentials.	
	Magnetic dipole, Force due to Magnetic field on a differential current element, force between two differential current elements, Force and torque on a closed circuit, The nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions, Inductors and inductances, Magnetic energy, Magnetic circuits, Potential energy and force on magnetic materials.	
4	Maxwell's equations and Electromagnetic wave propagation:	12
	Faraday's law, Displacement current, Maxwell's equations in point form, Maxwell's equations in integral form, Kirchoff's Voltage law and Kirchoff's Current law from Maxwell's equations, EM waves in general, EM wave propagation in Lossy Dielectrics, Wave propagation in lossless dielectrics, Plane waves in free space, Plane waves in Good conductors, Power & Poynting Vector, Reflection of a plane wave at normal incidence, Reflection of a plane wave at oblique incidence.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication
1.	Engineering Electromagnetics, William H Hayt, Jr., and John A. Buck, Tata McGraw Hill Publishing Company Ltd, New Delhi, 7 th edition	2005
2.	Elements of Engineering Electromagnetics, Matthew N.O. Sadiku, Oxford University Press, 3 rd Edition	2003
3.	Elements of Engineering Electromagnetics, Nannapaneni Narayan Rao, Prentice Hall of India, New Delhi, 4 th Edition	2000
4.	Introduction to Electrodynamics, D.J. Griffiths, Prentice Hall, 3 rd Edition	2000

NAME OF DEPTT.	/CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN- 351		Course Title:		Artificial Neural Networks	
2. Contact Hours: L: 3		T: 1		P: 2/2	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight: CWS: 20		PRS: 20 MTE: 20		ETE: 40	PRE: 0
5. Credits : 4 6. S		Semester: Both		7. Subject Area: PEC	

7. Pre-requisite: Nil

9. Objective:

To familiarize with the concepts, strength and weaknesses of neural networks in problem solving.

S. No.	Contents	Contact Hours
1.	Introduction: History of neural networks, biological neurons and	3
	information processing in biological neurons; Neural networks,	
	artificial neurons, networks of artificial neurons.	
2.	Single Layer Perceptron: Single neuron models, learning and	7
	generalization in single layer perceptrons, convergence of	
	perceptron learning rule, Hebbian learning, gradient descent	
	learning, least mean square (LMS), concept of decision boundaries,	
	practical considerations, adaline and madaline, adaptive filtering.	
3.	Multi-Layer Perceptrons (MLP): Back-Propagation, learning with	6
	momentum, problems with back-propagation networks under-fitting	
	and over-fitting, methods to improve generalization, applications of	
	multi-layer perceptrons, and computational power of multi-layer	
	perceptrons.	
4.	Radial Basis Function (RBF) Networks: Introduction, Radial	4
	Basis Functions, learning in RBF networks, unsupervised learning of	
	hidden layer, comparison of RBF networks and MLP networks.	
5.	Attractor Type Networks: Hopfield networks, dynamics of	8
	Hopfield networks, energy concepts, Boltzman machine, brain-state-	
	in a box (BSB) networks, generalized BSB networks, attractor type	
	networks for content addressable memories, solving optimization	
	problem using attractor type networks.	

S. No.	Contents	Contact Hours
6.	Support Vector Machines (SVM): Concept of statistical learning,	5
	concept of VC dimension, linear SVM, kernels, nonlinear SVM,	
	classification and function approximation using SVM.	
7.	Unsupervised Learning: Maxnet, competitive learning, self-	8
	organizing feature maps, ART networks, grow when required	
	(GWR) networks, learning vector quantizers (LVQ).	
8.	Advanced Topics: Evolving neural networks, fuzzy logic and evolutionary computation applications in neural networks, hidden	8
	Markov models (HMM) and hybrid approaches, implementation of	
	neural networks- hardware and optical, spiking neurons and pulsed	
	neural networks (PNN)	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Haykin S., "Neural Networks - A Comprehensive Foundation", 2 nd Ed., Prentice Hall International Edition.	2007
2.	Mehrotra K., Mohan C. K. and Ranka S., "Elements of Artificial Neural Networks", Penram International.	2007
3.	Jacek M. Z., "Introduction to Artificial Neural Systems", Jaico Publishing House.	2003
4.	Anderson J. A., "An Introduction to Neural Networks", Prentice Hall of India Private Limited.	2007
5.	Hassoun M. H., "Fundamentals of Artificial Neural Networks", Prentice Hall of India Private Limited.	2007

NAME OF DEPTT.	Department of Electrical Engineering				
1. Subject Code: EEN-352		Course Title: Digital Image Processing			
2. Contact Hours:	L: 3	T	: 1	P: 0	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight: CWS: 25		PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits : 4 6. S		Semester: Both		7. Subject Area: PEC	

8. Pre-requisite: Nil

9. Objective:

To familiarize with the concepts of 2-D discrete signals, their transformation, design of 2-D digital filters, image enhancement, restoration, segmentation and compression techniques.

S. No.	Contents	Contact Hours
1.	Digital Image Fundamentals: Human visual system and visual	4
	perception, image sensing and acquisition, image file types, pixel representation and relationship.	
2.	2-D Discrete Signals and Systems: 2-D signals and their representation, linear, shift-invariant, causal and BIBO stable systems.	6
3.	2-D Signal Operations: Additions, multiplications, shifting, folding, convolution- linear and circular.	3
4.	2-D Signal Transforms: 2-D continuous and discrete-time Fourier	5
	transform, 2-D discrete Fourier transform, 2-D z-transform and	
	stability concepts.	
5.	Design of 2-D Digital Filters: Design of 2-D FIR filters, design of	4
	2-D FIR filters.	
6.	Image Enhancement and Restoration Techniques: Contrast	7
	modification and stretching, histogram equalization, unsharp	
	masking, homomorphic processing, interpolation, mean and median	
	filtering, least square and Wiener filtering.	

S. No.	Contents	Contact Hours
7.	Image Segmentation Techniques: Thresholding, edge based	7
	segmentation, region based segmentation.	
8.	Image Compression Techniques: Fundamentals of image compression, loss-less compression techniques, lossy compression techniques.	6
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Bose T., "Digital Signal and Image Processing", Wiley India.	2008
2.	Gonzalez R. C. and Woods R. C., "Digital Image Processing", 2 nd Ed., Pearson Education.	2007
3.	Jain A. K, "Fundamentals of Digital Image Processing", Prentice Hall of India Private Limited.	2007
4.	Sonaka M., Hlavac V. and Boyle R., "Image Processing, Analysis and Machine Vision", 2 nd Ed., Cengage Learning.	2008

NAME OF DEPTT./	CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-353		Course Title: Digital Design with VHDL			
2. Contact Hours: L: 3		Т: 0		P: 2	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight:	CWS: 15	PRS: 25	MTE: 20	ETE: 40	PRE: 0
5. Credits: 4 6. S		emester: Bo	th	7. Subject Ar	ea: PEC

8. Pre-requisite: Knowledge of Digital Systems

9. Objective:

The course aims to familiarize the students with the VHDL language and the principles of digital system design including CPU. The course also deals with FPGAs and CPLDs which allow rapid prototyping of digital design.

S. No.	Contents	Contact Hours
1.	Review of Logic Design Fundamentals: Combinational logic,	4
	hazards in combinational networks, Mealy and Moore sequential	
	circuit design, sequential circuit timing, setup and hold times.	
2.	VHDL: Introduction, VHDL terms, code structure, data types,	4
	operators and attributes, concurrent and sequential code, variables	
	and signals, subprograms and procedures, packages and libraries,	
	pre-defined attributes.	
3.	VHDL Description of Combinational Circuits: Multiplexers,	5
	decoders, encoders, code converters.	
4.	VHDL Description of Sequential Circuits: Flip-flops, registers,	6
	counters, clock synchronization.	
5.	Design of Programmable Logic Devices: Read-only memories,	5
	programmable logic arrays, programmable array logics,	
6.	Design of Circuits with Arithmetic Operations: Serial adder,	4
	binary multiplier, multiplication of signed numbers, binary divider.	
7.	Design of Memories: VHDL models for memories and buses,	3
	simplified bus model, interfacing memory to a microprocessor bus.	

S. No.	Contents	Contact Hours
8.	Design with Programmable Gate Arrays: Introduction of FPGAs,	5
	designing with FPGAs and CPLDs.	
9.	Hardware Testing and Design: Testing combinational logic,	2
	testing sequential logic, scan testing.	
10.	Case Study: Design of UART, design of microcontroller CPU, top-	4
	level CPU design, sample instruction representation.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Mano M. M. and Ciletti M. D., "Digital Design", 4 th Ed., Pearson Education.	2008
2.	Wakerly J. F., "Digital Design – Principles and Practices", 4 th Ed., Pearson Education.	2008
3.	Perry D. L., "VHDL Programming by Example", 4 th Ed., Tata McGraw-Hill Publishing Company Limited.	2008
4.	Roth C. H., "Digital System Design Using VHDL", Cengage Learning.	2008
5.	Brown S. and Vranesic Z., "Fundamentals of Digital Logic with VHDL Design", 2 nd Ed., Tata McGraw-Hill Publishing Company Limited.	2008
6.	Pedroni V. A., "Circuit design with VHDL", Prentice Hall of India Private Limited.	2008

NAME OF DEPTT./CENTRE:		Department of Electrical Engineering			
1. Subject Code: EEN-354		Course Title: Digital Control Systems			
2. Contact Hours: L: 3		T: 1		P: 0	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight: CWS: 25		PRS: 0	MTE: 25	5 ETE: 50 PRE: 0	
5. Credits: 4 6. 5		Semester: Both 7. Subject Area: PEC		rea: PEC	

8. Pre-requisite: Knowledge of Control Systems

9. Objective:

To make the students conversant with the techniques of discrete-time control systems being used for industrial control.

S. No.	Contents	Contact Hours
1.	Review of z-transform and stability analysis, relationship between the s-plane and the z-plane, inverse z-transform; Theorems of the z- transform, applications of z-transform; Delayed z-transform,	6
	Modified z- transform.	
2.	z-Transform design of digital control systems, pulse transfer function, z-transfer function, characteristic equation of closed loop systems; Multirate discrete-data systems.	6
3.	State-space analysis of sampled data systems, state equations of discrete data systems, eigenvalues and eigenvectors, state transition matrix, state diagram of discrete-data systems with zero order hold; Controllability and observability of linear time-invariant discrete-data systems.	6
4.	Design using state-space techniques; Stability tests of discrete data systems: Bilinear transformation method, Jury's stability test and second method of Lyapunov; Root loci for digital control systems, design of discrete PID, PD and PI controllers, effect of adding poles and zeros, pole-placement design techniques.	6

S. No.	Contents	Contact Hours
5.	System identification techniques, estimation of parameters in models of dynamical systems: finite impulse response models, transfer function models, non-linear models and stochastic models.	6
6.	Model reference and self tuning control, determination of adaptation gain, design of model reference adaptive system using Lyapunov theory, properties of adaptive systems, robust adaptive controllers, application of adaptive control; Auto-tuning techniques.	8
7.	Applications.	4
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Leigh J. R., "Applied Digital Control – Theory, Design and Implementation", 2 nd Ed., Prentice-Hall International.	2005
2.	Franklin G. F., Powell J. D. and Workman M. L., "Digital Control of Dynamic Systems", 3 rd Ed., Pearson Education.	2008
3.	Iserman R., "Digital Control System", 2 nd Ed., Springer-Verlag.	1996
4.	Strjec V., "State-Space Theory of Discrete Linear Control", John Wiley and sons.	1981
5.	Gopal M., "Digital Control and State Variable Methods", 2 nd Ed., Tata McGraw-Hill Publishing Company Limited.	2008
6.	Kuo B. C., "Digital Control Systems", 2 nd Ed., Oxford University Press.	2007

NAME OF DEPTT./CENTRE:		Department of Electrical Engineering			
1. Subject Code: EEN-355		Course Title:		Digital Signal Processing	
2. Contact Hours: L: 3		T: 1		P: 2/2	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight: CWS: 20		PRS: 20 MTE: 20		ETE: 40	PRE: 0
5. Credits: 4 6. S		emester: Both 7. Subject Area: PEC		rea: PEC	

8. Pre-requisite: Knowledge of Digital Systems

9. Objective:

To introduce mathematical models of signals, analysis and filter design concepts.

S. No.	Contents	Contact Hours
1.	Review of Signals and Systems: An introduction to signals, systems and signal processing, representation of signals in time domain, classification of signals, periodic sampling, sampling theorem. Discrete time signals, discrete time system; linear, time-invariant systems; impulse response, convolution and correlation; linear constant coefficient difference equation, Z-transform and its properties.	5
2.	Mathematical Methods in Signal Processing: Vector-space geometry, Hilbert spaces, L_P and L_{∞} spaces, vector spaces, norms, projections, orthogonality principle, Linear algebra, linear transformations, linear operators, matrix inverses, least squares and minimax error criteria, eigenvalue decompositions, singular value decompositions, Kronecker products, vee operator.	9
3.	Fourier Analysis: Fourier analysis of continuous and discrete-time signals with periodic and aperiodic nature; discrete Fourier transform and its properties; signal analysis and synthesis based on DFT, fast Fourier transform algorithms: radix-2, radix-3 DIT, DIF FFT algorithms, butterfly structures, relationship between FFT and DFT.	9

S. No.	Contents	Contact Hours
4.	Structure and Design of Digital Filters: Fundamental structures of	12
	digital filters, general considerations for design of digital filters;	
	Internal representation of LTI systems; Design of FIR filters: Low	
	pass, Band pass, High Pass filter designs, Parks-McClellan Method,	
	Half-band FIR filters, Phase response of FIR filters, Analyzing FIR	
	filters; Design of IIR Filters: Pole and zeros to analyze IIR filters,	
	Impulse variant Bilinear transform IIR filter designs, Optimized IIR	
	filter design method, Comparison of FIR and IIR Filters.	
5.	Digital Signal Processing Techniques: Discrete Hilbert transform,	7
	sample rate conversion, multi-rate systems, comb filters, signal	
	averaging, frequency sampling filters, quantization effects.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Mitra S. K., "Digital Signal Processing: A Computer - Based	2001
	Approach", 2 nd edition, Tata McGraw Hill.	
2.	Oppenheim A.V., Schafer R. W. and Buck J. R., "Discrete Time	2009
	Signal Processing", 3 rd edition, Pearson Education.	
3.	Lyons R. G., "Understanding Digital Signal Processing", 3rd edition,	2012
	Pearson Education.	
4.	Moon T. K. and Stirling W. C., "Mathematical Methods and	1999
	Algorithms for Signal Processing", Prentice Hall, 1999.	
5.	Haykin S. and Veen B. V., "Signals and Systems", 2nd edition, John	2004
	Wiley.	
6.	Lathi B. P., "Principles of Signal Processing and Linear Systems",	2009
	Oxford International Version	

NAME OF DEPTT./	Departmei	Department of Electrical Engineering			
1. Subject Code: EEN-356		Course Title:	Signa	Signals and Systems	
2. Contact Hours: L: 3		T: 1		P: 0	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight:	CWS: 25	PRS: 0 MI	ſE: 25	ETE: 50	PRE: 0
5. Credits : 4 6. 5		emester: Both	7. Subject Area: PEC		rea: PEC

8. Pre-requisite: NIL

9. Objective:

To introduce signals characteristics and analysis, theory related to systems and its analysis.

S. No.	Contents	Contact Hours
1.	Introduction: Size of a signal, classification of signals, elementary	3
	signals, signal operations, signal models, even and odd functions,	
	systems, classification of systems, properties of systems, system	
	model.	
2.	Linear Time-Invariant Systems: Properties of linear, time –	4
	invariant systems, convolution, interconnection of LTI systems,	
	zero- input response, zero state response, impulse response, and	
	stability, systems represented by differential and difference	
	equations.	
3.	Fourier Representations of Continuous – Time Signals: Signals	9
	and vectors, correlation, orthogonal set, continuous - time Fourier	
	series, trigonometric and exponential Fourier series, continuous -	
	time Fourier transform, properties, Parseval relationships, Fourier	
	transform properties.	
4.	Fourier Representations of Discrete – Time Signals: Sampling,	9
	discrete - time signals, models, operations, discrete - time systems,	
	zero input response, zero state response, stability, discrete - time	
	Fourier series, discrete - time Fourier transform, reconstruction of	
	continuous – time signals from samples, interpolation.	

S. No.	Contents	Contact Hours
5.	Laplace Transform: Properties, solution of differential and integro	5
	- differential equations, bilateral Laplace transform, transfer	
	function, causality and stability, continuous - time second order	
	systems, poles and zeros.	
6.	Z-Transform: Properties, region of convergence, solution of linear	5
	difference equations, system realization, bilateral transfer function,	
	causality and stability, poles and zeros, Z- transform connection	
	between the Laplace and Z- transform, sampled-data systems.	
7.	Applications: Modulation, types, benefits, window functions,	7
	Filtering, digital filters, frequency response, mapping continuous	
	filters to discrete time filters, digital filters and equalizers,	
	simulation examples: signal representation, system response,	
	Fourier spectrum, pole-zero plots in s-domain and z-domain.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Oppenheim A.V., Willsky A.S., Nawab S.H., "Signals and Systems", 2 nd edition, Prentice Hall.	1997
2.	Haykin S., Veen B.V., "Signals and Systems", 2 nd edition, John Wiley.	2004
3.	Lathi B.P., "Principles of Signal processing and Linear Systems", Oxford International Version.	2009
4.	Lee E.A., Varaiya P., "Structure and Interpretation of Signals and Systems", 2 nd edition, Addison-Wesley.	2011
5.	Hsu H.P., "Schaum's Outline of Signals and Systems, 3 rd edition, McGraw Hill Education.	2013

NAME OF DEPTT./	Depart	ment of E	lectrical E	Ingineering	
1. Subject Code: EEN- 357		Course Title: Advanced Microprocessors and Interfacing			
2. Contact Hours: L: 3		т	T: 1 P: 2/2		/2
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight:	CWS: 20	PRS: 20	MTE: 20	ETE: 40	PRE: 0
5. Credits: 4 6. S		Semester: Bo	th	7. Subject An	rea: PEC

8. Pre-requisite: Knowledge of Digital Systems

9. Objective:

The aim is to expose the students to the architecture, instruction set and assembly language programming of typical 16-bit microprocessors. The course also provides interfacing details of I/O devices with the processor.

S. No.	Contents	Contact Hours
1.	Evolution of Microprocessors: 8-bit and 16-bit microprocessors,	2
	Intel, Zilog and Motorola processors.	
2.	Architecture of a 16-bit Microprocessor: Intel 8086 and 8088	3
	processor, concept of pipelining and memory segmentation, logical	
	address, offset address and physical address; Bus Interface Unit	
	(BIU); Execution Unit (EU), segment registers.	
3.	Operation of 16-bit Microprocessor: Pin configuration of Intel	6
	8086/8088; Minimum and maximum modes of operation; Address	
	bus, data bus and control bus; Clock generator Intel 8284; Memory	
	organization, memory address space.	
4.	Interfacing: Interfacing concepts, interfacing memory; Input-output	2
	techniques, interfacing of I/O devices to the processor.	
5.	Addressing Modes: Data related addressing modes- register,	3
	immediate, direct, register indirect, based relative, indexed relative	
	and based indexed, branch related addressing modes- intrasegment	
	direct and indirect, intersegment direct and indirect.	
6.	Instruction Set of 16-Bit Microprocessor: Machine cycles, data	8
	transfer, arithmetic, bit manipulation, string, program execution	
	transfer and processor control instructions.	

S. No.	Contents	Contact Hours
7.	Assembler Directives: ASSUME, DB, DD, DQ, DT, DW, DUP,	2
	END, EQU, EVEN, ORG, OFFSET, PROC, ENDP, LABEL and	
	PTR.	
8.	Assembly Language Programming: Macro-assembler, segment definition and models.	4
9.	Interrupt Structure: Interrupt pointer, type numbers, processing of interrupt, internal and external interrupts, interrupt priorities, BIOS routines.	3
10.	Programmable Support Chips : Interfacing of programmable parallel interface Intel 8255, programmable interval timer Intel 8253, programmable interrupt controller Intel 8259 with 16-bit processor.	5
11.	Coprocessors and Multiprocessing.	4
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Hall D. V., "Microprocessor and Interfacing –Programming and Hardware", Tata McGraw-Hill Publishing Company Limited.	2006
2.	Liu Yu-Cheng and Gibson G. A., "Microcomputer Systems; The 808618088 Family", 2 nd Ed., Prentice Hall of India Private Limited.	2007
3.	Brey B. B., "Intel 8086, 8088, 80186, 80187, 80286, 80386, 80486, Pentium and Pentium Pro Processors, Architecture, Design and Application", Prentice Hall of India Private Limited.	2006
4.	Mazidi M. A. and Mazidi J. G., "The 80x86 IBM PC and Compatible Computers (Vol. I and II), Assembly Language, Design and Interfacing", Prentice Hall International Edition.	2003
5.	Triebel W. A. and Singh A., "The 8088 and 8086 Microprocessors, Programming Interfacing, Software, Hardware and Applications", 4 th Ed., Prentice Hall of India Private Limited.	2007
6.	Intel Manual on 16-bit Microprocessor.	

NAME OF DEPTT./	CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-358		Course Title:		Data Structures	
2. Contact Hours: L: 3		Т: 0		P: 2	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight: CWS: 15		PRS: 25	25 MTE: 20 ETE: 40 PR		PRE: 0
5. Credits: 4 6. 5		Semester: Both 7. Subject Area: PEC		ea: PEC	

8. Pre-requisite: Knowledge of Programming

9. Objective:

To familiarize students with the concept of abstract data type, hardware and software implementations of data structures, various existing data structures and their related operations with the help of different application problems.

S. No.	Contents	Contact Hours
1.	Introduction: Need of data structures, hardware and software	3
	implementations of data structures, various existing data structures	
	and their related operations, compile time memory allocation and	
	dynamic (run time) memory allocation, garbage collection.	
2.	Linked List: linked array and pointer representations their	7
	advantages and disadvantages, creation traversal, insertion and	
	deletion, sorting, concatenation, merging, searching, header node,	
	link list with grounded header node, circular link list, Josephus	
	doubly linked (two way) link, its advantages and disadvantages.	
3.	Stack: Array Representation, overflow and underflow, push and	2
	pop operations, recursion its advantages, converting a recursive	
	procedure to a non-recursive procedure.	
4.	Tower of Hanoi problem, Infix, prefix and postfix notations,	2
	evaluation a postfix expression using stack, implementing quick sort	
	algorithm using stack,	
5.	Queue: Simple queue, addition to a queue, removal from a queue,	3
	de-queue, input restricted and output restricted de-queue, addition	
	and removal w.r.t. de-queue.	

S. No.	Contents	Contact Hours
6.	Tree: Basic definitions, representation in computer memory,	10
	creating a binary tree, traversal algorithms threading in a binary tree,	
	heap tree, creation of heap tree, inserting a node in a heap tree,	
	deleting the root of heap tree, heap sort algorithm, link list	
	representation using binary tree, multi-way search tree,	
	representation in computer memory and its advantages.	
7.	Graph: Basic definitions, representation in computer memory,	7
	creation of a graph, traversal in a graph, depth first traversal and	
	breadth first traversal, sorting, inserting an arc in a graph, deleting	
	an arc from a graph, searching a node and an arc in a graph.	
8.	Searching Algorithms: Sequential search, binary search, efficiency	2
	of searching algorithms, improving the efficiency of sequential	
	search by move to front, move forward, indexed sequential search.	
9.	Table Data Structure: Hash function and hashing, selection of	4
	hash function, collision and collision resolving methodologies,	
	linear probing, quadratic probing, buckets, chaining, storing	
	(inserting) data in table, searching a data record in a table, deleting a	
	data record from a table, efficiency of search.	
10.	Sorting Algorithms: Bubble sort, quick sort, heap sort, insertion	2
	sort, selection sort, merge sort, efficiency of sorting algorithms.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Tenenbaum A. M., Langsam Y., and Augenstein M. J., "Data structures using C and C++", 2 nd Ed., Prentice Hall of India Private Limited.	2008
2.	Lipschutz S., "Data Structures Schaum's Outline Series", Tata McGraw-Hill Publishing Company Limited.	2008
3.	Rowe G. W., "Introduction to Data Structures and Algorithms With C++", Prentice Hall of India Private Limited.	2004
4.	Sahni S., "Data Structures, Algorithms and Application in C++", 2 nd Ed., University Press.	2007
5.	Preiss B. R., "Data Structures and Algorithms with Object Oriented Design Patterns in C++", Wiley India.	2008

NAME OF DEPTT./	Depart	ment of E	lectrical E	ngineering	
1. Subject Code: EEN-359		Course Title: Single Chip Microcontroller and Its Applications			
2. Contact Hours:	L: 3	т	: 0	P: 2	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight:	CWS: 15	PRS: 25	MTE: 20	ETE: 40	PRE: 0
5. Credits: 4 6. S		Semester: Bo	th	7. Subject An	rea: PEC

8. Pre-requisite: Knowledge of Microprocessors

9. Objective:

To provide in-depth knowledge of Intel 8051 family microcontrollers, their architectures, operation, instruction set, programming and interfacing.

S. No.	Contents	Contact Hours
1.	Review of 8-bit Microprocessor: State transition diagram, interrupt	6
	structure, input/output techniques; Review of peripheral devices-	
	Intel 8255 PPI and Intel 8253 PIT; ADC and DAC chips and their	
	interfacing.	
2.	Programmable Interrupt Controller : Intel 8259, pin configuration, functional description and operation in 8-bit and 16-bit environment, initialization and operation control words, operating modes: AEOI, automatic rotation, specific rotation, special mask mode, cascade mode, buffered mode, poll mode, programming.	5
3.	Keyboard and Display Interface: Intel 8279, concept of display interface and keyboard interface, pin configuration of Intel 8279, functional description, scanned keyboard matrix mode, sensor matrix mode, strobed mode, left entry and right entry display, interfacing, programming.	4
4.	Intel 8051/8052 Microcontroller: Introduction, architecture, functional diagram, pin description, CMOS and HMOS microcontrollers and their difference, oscillator, CPU Timing, Intel 8031 and 8751.	4

S. No.	Contents	Contact Hours
5.	Memory Organization: Accessing external program and data	5
	memory, internal data memory, special function registers, hardware	
	interfacing, timing diagrams, I/O expansion.	
6.	I/O Ports and Timer: Internal structure of ports P0, P1, P2 and P3,	5
	alternative functions of port P3; Timer and counter operation, TM0,	
	TM1 and TM2, modes of operation; Applications.	
7.	Programming: Addressing modes; Instruction set: Data transfer	7
	group, arithmetic group, logical group, control group and Boolean	
	processing capability; Programming and erasing EPROM.	
8.	Interrupts: Types, interrupt priority and interrupt enable registers,	3
	processing of interrupt, single-step operation.	
9.	Serial Port: Modes of operation, programming, multi-processor	3
	control.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Intel Manual on 8-bit Microcontroller	
2.	Ayala K. J.," The 8051 Microcontroller- Architecture, Programming and Applications", 3 rd Ed, Cengage Learning.	2008
3.	Hall D.V., "Microprocessor and Interfacing –Programming and Hardware", 2 nd Ed., Tata McGraw-Hill Publishing Company Limited.	2008
4.	Mazidi M.A. and Mazidi J.G., "The 8051 Microcontroller and Embedded Systems", 2 nd Ed., Pearson Education.	2008
5.	Deshmukh A.V., "Microcontroller: Theory and Applications", Tata McGraw-Hill Publishing Company Limited.	2008
6.	Peatman J.B., "Design with PIC Microcontrollers", Pearson Education.	2008

NAME OF DEPTT./	CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-360		Course Title:		Embedded Systems	
2. Contact Hours: L: 3		T: 0		P: 2	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight:	CWS: 15	PRS: 25	MTE: 20	ETE: 40	PRE: 0
5. Credits : 4 6. 5		Semester: Bo	th	7. Subject Ai	rea: PEC

8. Pre-requisite: Basic course on 8-bit Microprocessors

9. Objective:

To familiarize the students with the fundamentals of embedded system architecture, its basic hardware and software elements, programming models and software engineering practices that are used during the system development process.

S. No.	Contents	Contact Hours
1.	Introduction: Embedded system, processor in the system, hardware	2
	and software components, system-on chip.	
2.	Review of Processor and Memory: General-purpose processors,	8
	single-purpose processors, application specific processors, CISC and	
	RISC processor architecture, arm processors, memory devices,	
	processor and memory selection for an embedded system,	
	interfacing processor, memory and I/O devices, 8/16 bit	
	microcontrollers.	
3.	Devices and Buses: Review of I/O and timer devices, parallel	8
	communications using ISA, PCI and other buses, serial	
	communication using I ² C, CAN, USB and advanced buses, interrupt	
	serving mechanism, device drivers.	
4.	Embedded Programming: Review of programming in ALP and in	6
	C, embedded programming in C++, memory organization, compiler	
	and cross compiler.	
5.	Embedded Software Development: Program modelling concepts,	6
	modelling processes for software analysis, response time constraint	
	for real time programs, multi-processor systems.	

S. No.	Contents	Contact Hours
7.	Real Time Operating Systems: Operating system services, i/o	7
	subsystems, network operating systems, embedded system operating	
	systems, interrupt routines in RTOS environment.	
8.	Hardware-Software Co-design: Embedded system design and co-	5
	design issues, software tools for development of an embedded	
	system	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Kamal R., "Embedded Systems – Architecture, Programming and	2008
	Design", Tata McGraw-Hill Publishing Company Limited.	
2.	Vahid F. and Givargis T., "Embedded System Design – A Unified	2008
	Hardware/Software Introduction", Wiley India.	
3.	Maxfield C. M., "The Design Warrior's Guide to FPGAs – Devices,	2006
	Tools and Flows", Newnes.	
4.	Berger A. S., "Embedded System Design - An Introduction to	2001
	Processes, Tools and Techniques", CMP Books.	
5.	Labrosse J. J., "Embedded Systems Building Blocks", 2 nd Ed., CMP	1999
	Books.	
6.	Barr M., "Programming Embedded Systems in C and C++",	1999
	O'Reilly.	

NAME OF DEPTT./	CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-361		Course Title:	Optimization Techniques		
2. Contact Hours:	L: 3	T: 1	Ρ:	0	
3. Examination Duration (Hrs.):		Theory: 3	Pract	Practical: 0	
4. Relative Weight:	CWS: 25	PRS: 0 M	re: 25 ere: 50	PRE: 0	
5. Credits : 4 6. S		emester: Both	7. Subject	Area: PEC	

8. Objective:

To familiarize students with foundations of optimization techniques & tools for the modeling and solving the engineering problems.

9. Details of Course:

S. No.	Contents	Contact Hours
1.	Classical Optimization Technique: Modeling Optimization Problems, Defining the Problem, Formulating a Mathematical Model, Single variable optimization, Concepts and terms related to optimization problem, necessary and sufficient conditions for a multivariable function, Multivariable optimization: without constraints, with equality constraints and with unequality constraints	5
2.	Linear Programming: Simplex method, Big M method; Two phase Method; Degeneracy; Alternate optima; Unbounded optimal solutions; Infeasible solutions; Duality & sensitivity analysis- dual simples Method, primal dual computations.	7
3.	Transportation Problems: Determination of starting solution; Iterative computations of algorithm; Assignment problems- Hungarian method & its simplex explanation	5
4.	Integer Programming: Branch & bound method; Zero-one implicit enumeration algorithm; Cutting plane algorithm.	5
5.	Non-Linear Programming I: Constrained and unconstrained optimization problems. Concept of Lagrange multipliers and its application to unconstrained optimization problem. Solution of unconstrained minimization problem using, Gradient descent method, Steepest descent method, Newton's method. Davison-Fletcher-Powell method, Exterior point method.	8

S. No.	Contents	Contact Hours
6.	 Non-Linear Programming II: Solution of constrained minimization problems using Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions. Understanding of convex sets, convex and concave functions, properties of convex function. definiteness of a matrix and test for concavity of function. convex optimization, quadratic optimization, constrained quadratic optimization 	7
7.	Non-Linear Programming III: Solution of quadratic programming problems using KKT necessary condition, Basic concept of interior penalties and solution of convex optimization problem via interior point method.	5
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Taha H.A.," Operations Research", Eighth Ed., Macmillan	2009
	Publishing Co. Prentice Hall of India.	
2.	Ignizio J. P., "Linear Programming in single & multiple objecting	1982
	systems", Prentice Hall of India	
3.	Bazaraa M.S., Jarvis J.J.," Programming & Network Flows", John Willy & sons.	1977
4.	Arora J. S., "Introduction to optimum design", Elsevier.	2006
5.	Ravindran A., Ragsdell K. M. and Reklaitis G. V.," Engineering Optimization: Methods and Applications", Wiley India Edition.	2006

NAME OF DEPTT./	CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-363		Course Title: Fuzzy Logic Systems		stems	
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):		Theory: 3	Practica	ıl: 0	
4. Relative Weight:	CWS: 25	PRS: 0 MTE	E: 25 ETE: 50	PRE: 0	
5. Credits: 4 6. 5		emester: Both	7. Subject A	rea: PEC	

8. Pre-requisite: Knowledge of Control Systems

9. Objective:

To familiarize students to identify, formulate, and solve engineering problems in the areas of knowledge representation, uncertainty handling, artificial intelligence and control.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Basic Concepts : Classical sets and fuzzy sets, operations on fuzzy sets, properties of classical sets, fuzzy sets operations, properties of fuzzy sets, membership formulation and parameterization, derivatives of parameterized MFs, Parameterized T-norm and T-conorm.	4
2.	Fuzzy Relations and Approximate Reasoning : Extension principle, fuzzy relations, operations on fuzzy relation, linguistic variables, fuzzy if-then rules, compositional rule of inference, fuzzy reasoning.	4
3.	Fuzzy Logic Control: Basic concept of fuzzy logic control, reasoning with an FLC, relationship to PI, PD and PID control, design of FLC: determination of linguistic values, construction of knowledge base, inference engine, tuning, fuzzification and defuzzification	6
4.	Fuzzy Systems Models: Linguistic models as a tool for complex system representation, Mamdani type models, linguistic models for dynamic systems: state space approach, input-output fuzzy models of dynamic systems, Takagi-Sugeno-Kang (TSK) fuzzy models.	6
5.	Nonlinear and Adaptive Fuzzy Control: Fuzzy controller as a nonlinear transfer element, computational structure, sliding mode fuzzy logic controller, adaptive fuzzy control, the adaptation mechanism, membership function tuning using gradient descent, self-organizing controller, model based controller.	6

S. No.	Contents	Contact Hours
6.	Stability of Fuzzy Control Systems: Stability and robustness indices, the state space approach, input-output stability, circle criterion.	5
7.	Neuro-Fuzzy Modeling: Basics of neural networks, adaptive neuro-fuzzy inference systems (ANFIS), hybrid learning algorithm, extreme ANFIS.	4
8.	Fuzzy Classification and Pattern Recognition: Classification by equivalence relations, cluster analysis, c-means clustering, fuzzy c-means algorithm, feature analysis, partitions of the feature space, multi-feature pattern recognition, syntactic recognition.	7
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Yager R. R. and Filev D. P., "Essentials of fuzzy modeling and	1994
	control", John Wiley and Sons.	
2.	Driankov, Hellendoorn, Reinfrank, "An Introduction to Fuzzy	1993
	Control", Narosa Publishing House.	
3.	Timothy J. R., "Fuzzy Logic with Engineering Applications", 3rd	2011
	edition, John Wiley and Sons	
4.	Jang S. R., Sun C.T. and Mizutani E., "Neuro-fuzzy and soft	2004
	computing: a computational approach to learning and machine	
	intelligence", Prentice-Hall of India	

NAME OF DEPTT./	CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-364		Course Title: Utilization a		and Traction	
2. Contact Hours: L: 3		т	: 1	P: 0	
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weight:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits : 4	5. Credits: 4 6. Semester: Both		oth	7. Subject A	rea: PEC

8. Pre-requisite: Knowledge of Electrical Machines

9. Objective:

To familiarize with important industrial applications of electrical energy such as electric traction, illumination, electric welding, electric heating and electrolytic process.

S. No.	Contents	Contact Hours
	Electric Traction	
1.	Classification of electric traction services, operational constraints of	2
	main line and suburban trains, electric power supply system.	
2.	Nature of traction load, coefficient of adhesion, duty cycle, driving	3
	axle code.	
3.	Types of dc motors used in traction and their series-parallel	2
	connections for sharing load.	
4.	Calculation of tractive effort and energy consumption, maximum	5
	allowable tractive effort.	
5.	Traction dc motor control, conventional and semiconductor	5
	converter control, different topologies.	
6.	Poly-phase motors in traction drives, different topologies.	3
7.	Diesel electric traction.	1
	Illumination	
8.	Nature of sunlight, definition of lighting terms, luminous efficiency,	4
	production of light, electric discharge, fluorescent and filament	
	lamps, polar curves.	
9.	Lighting calculation, solid angle, square law, cosine cube law, light	3
	flux method.	
10.	Design of flood lighting, design of street lighting.	3

S. No.	Contents	Contact Hours
11.	Electric Welding and Heating	6
	Advantages and methods of electric heating, resistance ovens,	
	induction heating, dielectric heating, arc furnace, heating of	
	buildings, electric welding.	
12.	Electrolytic Process	5
	Fundamental principles, extraction and refining of metals, electro-	
	deposition, power supply for electrolytic processes.	
	Total	42

S. No.	Name of Authors /Books / Publishers	Year of Publication/ Reprint
1.	Dubey G. K., "Fundamentals of Electric Drives", 2 nd Ed., Narosa Publishing House.	2007
2.	Taylor E. O., "Utilisation of Electric Energy (in SI units)", Orient Longman, Revised in S.I. units by Rao, V.V.L	1999
3.	Hancock N. N., "Electic Power Utilisation", Wheelers.	1979
4.	Pratap H., "Modern Electric Traction", Dhanpat Rai and Sons.	2007

NAME OF DEPTT.	/CENTRE:	Department of Electrical Engineering			
1. Subject Code: EEN-365		Course Title: Digital Signal Procesors		rocesors	
2. Contact Hours: L: 3		T: 1	P: 2	P: 2/2	
3. Examination Duration (Hrs.):		Theory: 3	Practica	Practical: 0	
4. Relative Weight:	CWS: 20	PRS: 20 MTE	E: 20 ETE: 40	PRE: 0	
5. Credits : 4 6. 5		emester: Both 7. Subject Area: PEC		rea: PEC	

8. Pre-requisite: Knowledge of Signal Processing

9. Objective:

To familiarize students with the architecture, programming and applications of DSP processors.

S. No.	Contents	Contact Hours
1.	Introduction DSP Processors: Microcontrollers, Microprocessors,	5
	digital signal processors, DSP requirements, analysis tools for DSP	
	systems, circular buffering, fixed and floating point, c language and	
	assembly language; Number formats for representation of signals	
	and coefficients, dynamic range and precision, sources of errors in	
	a DSP Implementation, A/D and D/A conversion errors, DSP	
	Computational errors.	
2.	DSP Architecture: Basic architectural features, Von Neumann	6
	architecture, Harvard architecture, superscalar architecture,	
	computational building blocks, Bus architecture and memory, data	
	addressing, address generation unit, DSP data path arithmetic,	
	precision, overflow, multiplier, accumulator, rounding,	
	programmability and program execution, speed issues, features for	
	external interfacing.	
3.	Programmable Digital Signal Processors: The architecture of	7
	digital signal processors, addressing modes, memory spaces,	
	program control, instructions and programming, On-chip	
	peripherals, interrupts, pipeline operation.	

S. No.	Contents	Contact Hours
4.	DSP Development Tools: The DSP development tools, DSP	4
	System design kit, Software for development, initialization, vector	
	file, linker command file, assembler and the assembly source file,	
	linker and memory allocation, C Compiler, Code composer studio.	
5.	Implementations of DSP Algorithms: FIR and IIR filters,	7
	interpolation filters, decimation filters, PID controller, adaptive	
	filters, 2-D Signal Processing, FFT algorithm for DFT	
	computation, butterfly computation, overflow and scaling, bit-	
	reversed index generation, computation of signal spectrum.	
6.	Interfacing to DSP's : Parallel interfacing to DSP processors,	7
	memory space organization, memory and I/O signals, memory	
	interface, parallel I/O, programmed I/O, interrupts and I/O, direct	
	memory access, reading data from memory mapped peripheral	
	ADCs, writing data to memory mapped peripheral DACs, serial	
	interfacing to DSP processors, interfacing to I/O ports, Analog	
	front ends, and codes to DSPs, DSP system interface.	
7.	Applications	6
	Speech processing system, ECG processing, image processing	
	system.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Lapsley P., Bier J., Shoham A. and Lee E. A., "DSP Processor	1996
	Fundamentals: Architectures and Features", Berkeley Design	
	Technology, Inc.	
2.	Singh A. and Srinivasan S., "Digital Signal Processing", 1 st edition, Cengage Delmar Learning India.	2004
3.	Kumar B. P., "Digital Signal Processing Laboratory", 2 nd edition, CRC press.	2010
4.	Kehtarnavaz N., "DSP System Design: Using the TMS320C6000", Prentice-Hall.	2001
5.	Kehtarnavaz N., "C6x-Based Digital Signal Processing", Prentice- Hall.	2000
6.	Chassaing R., "Digital Signal Processing and Applications with the C6713 and C6416 DSK", John Wiley and sons.	2005
7.	Smith S. W., "The Scientist and Engineer's Guide to Digital Signal Processing", California Technical Publishing.	1997