Department of Computer Science.

1.	MAN-001	Mathematics-1	BSC	4
2.	PHN-005	Electrodynamics and Optics	BSC	4
3.	CEN-105	Introduction to Environmental Studies	GSC	3
4.	HS-001A	Communication Skills (Basic)	HSSC	2
5.	HS-001B	Communication Skills (Advance)	HSSC	2
6.	HSN-002	Ethics and General Awareness	HSSC	2
7.	CSN-101	Introduction to Computer Science & Engineering	DCC	2
8.	CSN-103	Fundamentals of Object Oriented Programming	ESC	4
9.	MAN-010	Optimization Techniques	BSC	4
10.	PHN-006	Quantum Mechanics and Statistical Mechanics	BSC	4
11.	ECN-104	Digital Logic Design	DCC	4
12.	CSN-102	Data Structures	DCC	4
13.	CSN-106	Discrete Structures	DCC	4
14.	ECN-102	Fundamentals of Electronics	ESC	4
15.	MIN-106	Engineering Thermodynamics	DCC/ESC	4
16.	ECN-203	Signals and Systems	DCC	4
17.	CSN-221	Computer Architecture and Microprocessors	DCC	4
18.	CSN-261	Data Structures Laboratory	DCC	2
19.	CSN-291	Object Oriented Analysis and Design	DCC	4
20.	MTN-105*			
21.	CSN-212	Design and Analysis of Algorithms	DCC	4
22.	CSN-252	System Software	DCC	3
23.	CSN-254	Software Engineering	DCC	4
24.	CSN-232	Operating Systems	DCC	4
25.	ECN-252	Digital Electronic Circuits Laboratory	DCC	2
26.	CSN-341	Computer Networks	DCC	4
27.	CSN-351	Database Manaement Systems	DCC	4
28.	CSN-353	Theory of Computation	DCC	4

29.	CSN-361	Computer Networks Laboratory	DCC	2
30.	CSN-312	Principles of Programming Languages	DCC	3
31.	CSN-352	Compiler Design	DCC	4
32.	CSN-362	Compiler Laboratory	DCC	2
33.	CSN-371	Artificial Intelligence	DEC	4
34.	CSN-372	Computer Graphics	DEC	4
35.	CSN-373	Probability Theory for Computer Engineering	DEC	4
36.	CSN-381	Information Retrieval	DEC	4
37.	CSN-382	Machine Learning	DEC	4
38.	CSN-521	Mobile and Pervasive Computing and	DEC	4
39.	CSN-510	Network Programming	MSC	3
40.	CSN-471	Computer Vision	DEC	4
41.	CSN-475	Parallel and Distributed Algorithms	DEC	4
42.	CSN-476	Software Project Management	DEC	4
43.	CSN-481	Bioinformatics	DEC	4
44.	CSN-483	Intrusion Detection Systems	DEC	4
45.	CSN-484	Multimedia	DEC	4
46.	CSN-485	Quantum Computing, and	DEC	4
47.	CSN-513	Information Network Security	DEC	4
48.	CSN-515	Datamining and Warehousing,	DEC	4
49.	CSN-516	Modeling and Simulation	MSC/DHC	4
50.	CSN-519	Social Network Analysis	DCC	4
51.	CSN-520	Cloud Computing	DEC	4
52.	CSN-254	Software Engineering	DCC	4
53.	CSN-491	Structure of Information Networks	MSC/DHC	4
54.	CSN-492	High Performance Computing	MSC/DHC	4
55.	CSN-493	Advanced Data Mining	MSC/DHC	4
56.	CSN-494	Big Data Analytics	MSC/DHC	4
57.	CSN-495	Distributed Systems	MSC/DHC	4

58.	CSN-501	Advanced Algorithms	MSC/DHC	4
59.	CSN-503	Advanced Computer Networks	MSC/DHC	4
60.	CSN-506	Advanced Computer Architecture	MSC/DHC	4
61.	CSN-511	Advanced Database Management Systems	MSC/DHC	4
62.	CSN-512	Formal Methods and Software Verification	MSC/DHC	4
63.	CSN-514	Advanced Automata Theory	MSC/DHC	4
64.	CSN-517	Advanced topics in Software Engineering	MSC/DHC	4
65.	CSN-518	Logic and Automated Reasoning	MSC/DHC	4
66.	CSN-522	Advanced Graph Theory	MSC/DHC	4
67.	CSN-523	Computational Geometry	MSC/DHC	4

8. Pre-requisite: NIL

9. Objective: To introduce the discipline of Computer Science & Engineering.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Evolution of Computer Hardware and Moore's Law	2
2.	Problem solving using Computers; Flow charting technique and	6
	writing algorithms	
3.	Introduction to Computer Structure: CPU, 8085 Assembly Language.	8
4.	Basics of Computer Networks, Client Server Computing, Web	6
	Technology.	
5.	Emerging trends and applications of Computers Science and	6
	Engineering, impact of Computer in Science and Engineering.	
	Total	28

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Mano M.M., "Computer System Architecture", Prentice-Hall of India, 3 rd Edition.	2004

2.	Sahni S., "Data Structures, Algorithms and Applications in C++", WCB/McGraw-Hill.	2001
3.	Hall D.V., "Microprocessors and Interfacing", Tata McGraw-Hill, 2 nd Edition.	2006
4.	Tanenbaum A.S, "Computer Networks", Pearson Education, 6 th Edition.	2012

NAME OF DEPT./CEN	OF DEPT./CENTRE: Department of Computer			er Science and I	Engineering
1. Subject Code: CSN-	Course Title: Data Structures				
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration	(Hrs.):	Theory: 3		Practical : 0	
4. Relative Weight:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits: 4	6. 5	Semester: Spi	ring	7. Subject A	Area: DCC

8. Pre-requisite: CSN-103

10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Complexity A nalysis: Time and Space com plexity of algorithms,	3
	asymptotic a nalysis, bi g O and ot her not ations, i mportance of	
	efficient al gorithms, program pe rformance m easurement, data	
	structures and algorithms.	
2.	Linear L ists: Abstract da tat ype, s equential a nd l inked	8
	representations, c omparison of i nsertion, de letion and search	
	operations f or s equential a nd l inked l ists, l ist and c hain c lasses,	
	exception and i terator classes for lists, doubly linked lists, circular	
	lists, linked lists through simulated pointers, lists in STL, skip lists,	
	applications of lists in bin sort, radix sort, sparse tables.	
3.	Stacks an d Q ueues: A bstract d ata t ypes, s equential and linked	6
	implementations, e xception ha ndling i n c lasses, r epresentative	
	applications s uch as p arenthesis m atching, t owers of H anoi, w ire	
	routing in a circuit, finding path in a maze, simulation of que uing	
	systems, equivalence problem.	
4.	Hashing: Search efficiency in lists and skip lists, hashing as a search	4
	structure, ha sh t able, collision a voidance, l inear ope n a ddressing,	
	chains, uses of hash tables in text compression, LZW algorithm.	
5.	Trees: Binary trees and their properties, terminology, sequential and	8
	linked implementations, tree traversal methods and algorithms, heaps	
	as pr iority que ues, he ap i mplementation, i nsertion a nd de letion	
	operations, heapsort, h eaps i n H uffman coding, l eftist t rees,	
	tournament t rees, use o f w inner t rees i n mergesort as an external	

^{9.} Objective: To provide basic data structure concepts in an object-oriented setting for design, implementation, testing and maintenance of software systems.

	sorting algorithm, bin packing.	
6.	Search T rees: Binary s earch t rees, search efficiency, insertion and	4
	deletion operations, importance of balancing, AVL trees, searching	
	insertion and d eletions in A VL t rees, red-black t rees, com parison	
	with AVL trees, search insert and delete operations.	
7.	Multiway Trees: Issues in large dictionaries, m-way search trees, B-	5
	trees, search insert and delete operations, height of B-tree, 2-3 trees,	
	sets and multisets in STL.	
8.	Graphs: Definition, t erminology, di rected and undi rected graphs,	4
	properties, c onnectivity i n g raphs, a pplications, i mplementation –	
	adjacency m atrix and linked adjacency ch ains, g raph traversal –	
	breadth first and depth first, spanning trees.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Sahni, S., "Data Structures, Algorithms, and Applications in C++", WCB/McGraw-Hill.	2001
2.	Sahni, S., "Data Structures, Algorithms, and Applications in Java", WCB/McGraw-Hill.	2001
3.	Drozdek, A., "Data S tructures a nd Algorithms i n C ++", V ikas Publishing House.	2002
4.	Wirth, N ., " Algorithms a nd D ata S tructures", P rentice-Hall of India.	1985
5.	Lafore, R., "Data S tructures a nd A lgorithms i n J ava", 2 nd Ed., Dorling Kindersley.	2007

9. Objective: To introduce the concepts of Object Oriented Programming through Java.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Introduction t o c omputer s ystems, c omputer a s a	3
	programmed machine; machine l anguage, assembly l anguage, high	
	level languages; concept of flow chart and algorithms, algorithms to	
	programs, obj ect or iented pr ogramming concept, di fference i n	
	approach from procedural programming,	
2.	Introduction t o Java Programming E nvironment: Java com piler	3
	and virtual m achine, Structure of a J ava p rogram, stand-alone	
	programs and applets; concepts of portability.	
3.	Programming E lements in Java: Data t ypes, variables and array	6
	operators, assignment a nd selection statements, ite rative s tructures,	
	nested loops, string handling in Java, I/O mechanism, command line	
	arguments.	
4.	Classes in Java: General form of a class, creating objects, access	10
	control i n c lasses; C onstructors, m ethods, parameters, m ethod	
	overloading, r ecursive methods, r eturning obj ects, s tatic m embers,	
	finalization, final qualifier, nested and inner classes.	
5.	Dynamic M emory: Pointers, references and d ynamic m emory	5
	handling i n C ++, O bjects as r eferences i n Java, dynamic m emory	
	allocation and garbage collection in Java	

6.	Inheritance: Basics, super cl asses and subclasses, the keyword	5
	extends, multilevel hi erarchy, method overriding; r un time	
	polymorphism, abstract classes, final in inheritance, the object class.	
7.	Packages an d I nterfaces: Defining pa ckage, a ccess pr otection,	3
	importing classes and packages, defining and implementing interfaces,	
	nested interfaces, use of interfaces, variables in interfaces.	
8.	Exception H andling: Fundamentals, t ypes o f e xceptions, c atching	4
	exceptions, m ultiple c atching, ne sted t ry s tatements, unc aught	
	exceptions, throw and throws, finally mechanism, built-in exceptions,	
	creating exception subclasses, using exceptions.	
9.	Applets: Applet f undamentals, na tive m ethods, s tatic i mport, t he	3
	applet c lass, a pplet di splay m ethod, r equesting repainting, a banner	
	applet, passing parameters to applets, uses of applets.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Dietel H.M., Dietel P.J., "Java: How to Program", Prentice-Hall, 7 th Edition.	2006
2.	Flanagan D., "Java in a Nutshell", O'Reilly Media, Inc., 5 th Edition.	2005
3.	Eckel B., "Thinking in Java", Prentice-Hall.	1998
4.	Gosling J., Joy B., Steele G., Bracha G., "The J ava Language Specification", Prentice-Hall, 2 nd Edition.	2000
5.	Xavier C ., "Java P rogramming – A P ractical A pproach", Tata McGraw-Hill.	2011

NAME OF DEPT/CEN	Department of	of Compute	r Science and H	Engineering	
1. Subject Code: CSN	Course Title:	Discrete St	ructures		
2. Contact Hours:		L: 3	T:1	P: 0	
3. Examination Duration	n (Hrs.):	Theory: 3	I	Practical: 0	
4. Relative Weight:	CWS: 25	PRS: 0	MTE : 25	ETE: 50	PRE: 0
5. Credits: 4	6. Sen	nester: Spring		7. Subject Ar	ea: DCC

- 8. Pre-requisite: NIL
- 9. Objective: To introduce to the students the fundamental discrete structures used in computer science.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	Sets: Properties, relations, functions, finite and infinite sets, lattice.	6
2.	Graphs: Directed, undirected, directed acyclic, and bipartite graphs;	10
	Connected c omponents, E ulerian graphs, H amiltonian c ycles; S ome	
	fundamental theorems, applications.	
3.	Logic: Propositional and predicate logic; Syntax, semantics, resolution	10
	principle, s oundness, c ompleteness, uni fication, i nferencing;	
	Applications.	
4.	Abstract A lgebra: Groups, r ings, f ields, G alois f ield, E uler's phi	10
	function, Fermat's theorem, discrete logarithm, applications.	
5.	Introduction t o Number T heory: Remainder t heorem, gcd,	6
	factorization theorem.	
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Herstein, I., "Abstract Algebra", Pearson Education.	2005
2.	Harary, F., "Graph Theory", Narosa Publishing House.	2001
3.	Huth, M. and R yan, M., "Logic in C omputer S cience: Modeling and	2005
	Reasoning About Systems", Cambridge University Press.	

NAME OF DEPT./CENTRE: Department of Computer Science and Engineering

1. Subject Code: CSN-212 Course Title: Design and Analysis of Algorithms

2. Contact Hours:		L: 3	T:	1	P: 0
3. Examination Dura	ation (Hrs.):	Theo	ory:3	Pra	ictical:0
4. Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:5	PRE:0
5. Credits:4	6.	Semester	: Spring	7. Subjec	t Area: DCC

- 8. Pre-requisite: CSn-102
- 9. Objective: To familiarize students with the design strategies and bounds on the performance of different computer algorithms.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Review of Data Structures.	2
2.	Program P erformance : T ime and space c omplexity, asymptotic not ation, c omplexity a nalysis, r ecurrence e quations and their solution.	4
3.	Algorithmic T echniques: A lgorithm de sign strategies, divide and c onquer, m erge s ort, qui ck s ort a nd i ts pe rformance analysis, randomized qui ck s ort, S trassen's m atrix multiplication; G reedy method a nd i ts a pplications, kna psack problem; D ynamic pr ogramming and i ts pe rformance a nalysis, optimal bi nary s earch t rees, 0/1 kna psack pr oblem; T raveling salesman problem; Back-tracking, n-queens pr oblem, gr aph coloring, Hamiltonian c ycles, kna psack pr oblem; B ranch a nd bound e xamples, 15 -puzzle pr oblem, 0/1 kna psack, t raveling salesman.	14
4.	Graph A lgorithms : D FS a nd B FS, s panning t rees, biconnectivity; Minimum cost spanning trees: Kruskal's, Prim's and S ollin's a lgorithms; P ath f inding a nd shortest pa th algorithms; Topological sorting; Bipartite graphs.	6
5.	Infeasibility: P and NP-classes, NP-hard problems, reduction.	4
6.	Parallel Algorithms : Data and control parallelism, embedding of problem graphs into processor graphs, parallel algorithms for matrix multiplication.	6
7.	Other Algorithms : N umber the oretic a lgorithms, string matching a lgorithms, a pproximation a lgorithms, r andomized algorithms.	6
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication /
		Reprint
1.	Sahni, S., "Data Structures, Algorithms and Applications in C++",	2001
	WCB/McGraw-Hill.	
2.	Mchugh, J.A., "Algorithmic Graph Theory", Prentice-Hall.	1990
3.	Quinn, M.J., "Parallel Computing Theory & Practice", McGraw-	1994
	Hill.	
4.	Cormen, T.H., Leiserson, C.E., R ivest, R.L. a nd S tein, C.,	2002
	"Introduction to Algorithms", 2 nd Ed., Prentice-Hall of India.	
5.	Dasgupta, S., Papadimitriou, C. and Vazirani, U., "Algorithms",	2008
	Tata McGraw-Hill.	

NAME OF DEPT./CENTRE: Department of Computer Science and Engineering

1. Subject Code: C	CSN-221	21 Course Title: Computer Architecture and Microprocessors				
2. Contact Hours:	L: 3	T: 1	P:	0		
3. Examination Dur	ation (Hrs.): Theory	:3	Practical	:0	
4. Relative Weight:	CWS	:25 PRS:0	MTE:25	ETE:50	PRE:0	
5. Credits:4		6. Semester: A	utumn 7.	Pre-requisite:	EC – 104	

- 8. Subject Area: DCC
- 9. O bjective: T o familiarize s tudents with the a rchitecture of a p rocessor and machine l evel programming.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	CPU s tructure and f unctions, processor or ganization, A LU, d ata	5
	paths, internal registers, status flags; S ystem bus s tructure: D ata,	
	address and control buses.	
2.	Processor control, m icro-operations, i nstruction fetch, h ardwired	6
	control, m icroprogrammed c ontrol, m icroinstruction s equencing	
	and execution.	
3.	Instruction set principles, machine instructions, types of operations	8
	and ope rands, e ncoding a n i nstruction s et, a ssembly l anguage	
	programming, addressing modes and formats.	
4.	Memory s ystem, internal a nd external me mory, memory	5
	hierarchy, cache m emory and its w orking, vi rtual m emory	
	concept.	
5.	I/O or ganization: I/O techniques: i nterrupts, polling, D MA:	4
	Synchronous vs. asynchronous I/O	
6	8085 microprocessor architecture: Instruction set instruction types	8
0.	and formats. Instruction execution i nstruction c voles di fferent	0
	types of machine cycles and timing diagram	
7	16 bit m jaronroassors 2026 a rahitaatura r agistars m amary	6
/.	accompation a red a depending 22 hit/64 hit m issues account	0
	segmentation a nu a duressing, 52 -ou/64-ou m icroprocessor	
	tamilies.	
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication
		/ Reprint
1.	Mano, M.M., "Computer System Architecture" 3 rd Ed., Prentice-Hall of	2004
	India.	
2.	Rajaraman, V. and R adhakrishnan, T., "Computer O rganization a nd	2007
	Architecture", Prentice-Hall of India.	
3.	Govindrajalu, B., "Computer A rchitecture a nd Organization", T ata	2004
	McGraw-Hill.	
4.	Stallings, W., " Computer O rganization a nd A rchitecture", 5 th Ed.,	2001
	Pearson Education.	
5.	Hall, D.V., "Microprocessors and Interfacing", 2 nd Ed., Tata McGraw-	2006
	Hill.	
6.	Brey, B.B., "The Intel Microprocessors", 6 th Ed., Pearson Education.	2003

NAME OF DEPT.	Co	Computer Science Engineering					
1. Subject Code:	CSN-232	Cou	urse Title:	Op	erating	Systen	ns
2. Contact Hours:		L:	3	T:	1	P:	0
3. Examination Du	ration (Hrs.)	: The	eory3		F	Practic	cal0
4. Relative Weight	: CWS:25	PRS:0	MTE: 25		ETE:50	D	PRE:0
5. Credits: 4	6. Semester	Spring	7. Pre-	requ	isite: C	SN-25	52
8. Subject Area: D	CC						

9. O bjective: To provide a n understanding of the functions and m odules of a n op erating system and study the concepts underlying its design and implementation.

10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Fundamental C oncepts of O perating System: Operating	5
	system f unctions a nd characteristics, historical e volution of	
	operating systems, issuess in operating system design.	
2.	Process Man agement: Process abs traction, process addr ess	6
	space, pr ocess m anagement, s ystem c alls, t hreads, pr ocess	
	hierarchy.	
3.	CPU Sc heduling: Levels of scheduling, c omparative s tudy of	4
	scheduling algorithms, multiple processor scheduling.	
4.	Deadlocks: Characterization, pr evention a nd a voidance,	4
	deadlock detection and recovery.	
5.	Concurrent P rocesses: Critical s ection pr oblem, s emaphores,	5
	monitors, i nter-process c ommunication, m essage p assing	
	mechanisms.	
6.	Memory Man agement: Storage a llocation m ethods, vi rtual	5
	memory concept, demand paging, page replacement algorithms,	
	segmentation, thrashing.	
7.	File S ystems: Functions, f ile a ccess and a llocation m ethods,	5
	directory s ystem, file pr otection mechanisms, implementation	
	issues, file system hierarchy.	
8.	Device Man agement: Hardware or ganization, de vice	5
	scheduling policies, device drivers.	
9.	Case Studies: Windows, Unix, Linux.	3
	Total	42
	Laboratory component	
	Creating processes in Unix with commands like Fork and Exec;	14x2
	Pipes and process communication; Performance study of various	
	CPU s cheduling a lgorithms; P rocess s ynchronization us ing	
	semaphores, and threading.	

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Silberscharz, A. and Galvin, P.B., "Operating System Concepts", 7 th Ed., Addison-Wesley.	2006
2.	Tanenbaum, A ., " Modern O perating S ystems", P rentice-Hall of India.	2004
3.	Nutt, G., "Operating Systems", Addison-Wesley.	2004
4.	Joshi, R. C. a nd T apaswi, S., " Operating S ystems", W iley Dreamtech.	2005

NAME OF DEPT./CENTRE: Department of Computer Science and Engineering

1. Subject Code: CSN-252 Course Title: System Software L: 2 2. Contact Hours: **T:1 P: 0 Theory :2** 3. Examination Duration (Hrs.): Practical:0 4. Relative Weight: **CWS:25** PRS:0 **MTE:25 ETE:50** PRE:0 7. Pre-requisite: CS - 101 / CS - 103 5. Credits: 3 6. Semester Spring

- 8. Subject Area: DCC
- 9. Objective: T he objective of the course is to familiarize students with the design and functioning of computer software.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	Introduction to system s oftware, machine ar chitecture, machine level	6
	representation of pr ograms, a ssembly l anguage pr ogramming a nd	
	optimizing program performance.	
2.	Assemblers, ba sic f unction, m achine d ependent a nd i ndependent	4
	assembler features, assembler design options.	
3.	Two-pass, one-pass and multi-pass assembler design.	6
4.	Macro-processors, ba sic f unctions, m achine i ndependent f eatures,	4
	nested definitions and calls, design options.	
5.	General pur pose m acro-processor de sign, m acro-processing w ithin	2
	language translators.	
6.	Loaders a nd l inkers, ba sic functions, m achine de pendent and	3
	independent features, linkers, loaders and editors, design options.	
7.	Relocating loaders and dynamic linking loader designs.	3
	Total	28

S. No.	Name of Authors / Books / Publishers	Year of
		Publication /
		Reprint
1.	Beck, L.L., "System Software", 3rd Ed., Addison Wesley.	1997
2.	Dhamdhere, D.M., "System Programming & Operating Systems", 2nd	1999
	Ed., Tata McGraw-Hill.	
3.	Abel, P. "IBM P C A ssembly Language and P rogramming", 3 rd Ed.,	2000
	Prentice-Hall of India.	
4.	Bryant, R .E. a nd O 'Hallaron, D .R., " Computer S ystems: A	2001
	Programmer's Perspective", Prentice-Hall of India.	

7. Pre-requisite: CSN-102

8. Subject Area: DCC

9. Objective: To introduce the concepts of software development, design and implementation.

10. Details of Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction t o s oftware a nd s oftware e ngineering, va rious s oftware	6
	process modules, capability, maturity, module and KPAs.	
2.	Project pl anning, pr oject i ntroduction, t eam o rganization, s cheduling	6
	and management, constructive cost model.	
3.	Software measures, indicators and metrics, software risk analysis and	5
	management.	
4.	Software r equirement a nalysis a nd specifications, applicability to	4
	small, medium, and large-scale systems.	
5.	Software design, technical design, objectives of design, design metrics,	8
	modularity, module coupling and cohesion, relation between cohesion	
	and coupling; Design strategies: Bottom up de sign, top down de sign,	
	hybrid design, functional oriented design, object oriented design; IEEE	
	recommended practice for software design description	
6.	Software t esting, testability, te sting process, structural te sting, unit	7
	testing a nd i ntegrated t esting, de bugging, t esting t ools, s oftware	
	maintenance, m aintenance pr ocess, maintenance cost, reverse	
	engineering and re-engineering.	
7.	Configuration management, assessing and controlling software quality.	3
8.	CASE tools and workbenches.	3
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Pressman R., "Software Engineering", 7 th Ed., McGraw-Hill.	2000
2.	Sommerville, I., "Software E ngineering", 6 th Ed., P earson	2007
	Education.	
3.	Dfleeger, S. L., "Software Engineering", Pearson Education.	2000

NAME OF DEPT./CENTRE:		Computer	Scien	ce an	d Enginee	ering
1. Subject Code: CSI	N-261	Course Title:	Data S	structu	ires Labora	tory
2. Contact Hours:		L: 0	T:	0	P: 3	
3. Examination Durati	on (Hrs.):	Theory:0		P	Practical:3	
4. Relative Weight:	CWS:0	PRS: 50	MTE	:0	ETE:0	PRE:50
5. Credits: 2	6. Sem	ester: Autumn		7. F	Pre-requisite:	CSN-103

8. Subject Area: DCC

9. Objective: To provide basic data structure concepts in an object-oriented setting for design, implementation, testing and maintenance of software systems.

10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	Laboratory component	
	 (a) Programming of various data structures and applications in C++ and Java. (b) Data structure programming using STL. 	14x2

S. No.	Name of Authors / Books / Publishers	Year of
		Publication /
		Reprint
1.	Sahni, S., "Data S tructures, A lgorithms, and A pplications in C++",	2001
	WCB/McGraw-Hill.	
2.	Sahni, S., "Data S tructures, A lgorithms, and A pplications in J ava",	2001
	WCB/McGraw-Hill.	
3.	Drozdek, A ., " Data S tructures and A lgorithms i n C ++", V ikas	2002
	Publishing House.	
4.	Wirth, N., "Algorithms and Data Structures", Prentice-Hall of India.	1985
5.	Lafore, R., "Data Structures and Algorithms in Java", 2 nd Ed., Dorling	2007
	Kindersley.	

NAME OF DEPT./C	Computer Science & Engineering				
1. Subject Code: C	CSN-291	Cour	se Title: Obj	ect Oriented Ana	alysis and Design
2. Contact Hours:		L: 3	T: 0	P: 2	
3. Examination Dura	ation (Hrs.):	Theor	ry: 3	Practical:0)
4. Relative Weight:	CWS:15	PRS:25	MTE:20	ETE:40	PRE:0
5. Credits:4	6. 8	Semester:	Autumn	7. Pre-requisite:	CSN-103

- 8. Subject Area: DCC
- 9. O bjective: In t his course, t he s tudents w ill l earn f undamental pr inciples of obj ect-oriented modeling, r equirements development, a nalysis, a nd de sign. In particular, s tudent will be introduced t he v arious m odeling c oncepts pr ovided by Unified Modeling Language; identify use cases and expand them into full behavioral designs.
- 10. Details of the Course:

Sl.	Contents	Contact Hours
No.		
1.	Introduction to Course	4
	Object-Oriented P rogramming L anguages a nd t he obj ect-oriented	
	model, Object-oriented analysis, design, and implementation, Objects	
	and Classes, Messages and Interfaces, Inheritance and Polymorphism	
2.	Introduction to a Unified Methodology	4
	Types of models: Unified Modeling Language(UML) views and basic	
	features, O bject-oriented design m ethodologies, t he ra tional uni fied	
	process, Object-oriented CASE tools	
3.	Object Oriented Analysis:	6
	Object Orientation, OO Methods, OOA approaches, Analysis in	
	OMT: Identify objects and classes, Identify associations and	
	aggregations, Identify attributes, Simplify object classes using	
	inheritance, Verify access paths for likely queries, Iterate and refine	
	model, Group classes into modules, Analysis in Use Cases	
4.	Object Oriented Concepts and Examples:	4
	Object oriented design to object oriented programming, Abstraction	
	and ADT, Class Hierarchies, Modularity, Namespace, Assemblies,	
	Inheritance, Encapsulation and Information hiding, Interfaces,	
	Polymorphism, Overloading and overriding, Early and Late binding,	
	Boxing and Unboxing, Abstract and sealed classes, Design Issues for	
	OOP Languages, The Exclusivity of Objects, Subclasses as Types,	
	Type Checking and Polymorphism, Single and Multiple Inheritance,	
	Object Allocation and De-Allocation, Dynamic and Static Binding,	
	Nested Classes	

5.	Classes and Class Models in UML:	6
	Class models and diagrams, Attributes and operations, Association	
	and whole-part relationships, Aggregation and composition, Roles,	
	navigability, and constraints, Generalization and inheritance	
	relationships, Dependency, Qualified and derived associations,	
	Association classes, Properties, tagged values, and Stereotypes,	
	Abstract classes and Parameterized classes.	
6.	Use Case Models in UML:	4
	Actors and s ervices, S ystem boundary, U se-case relationships and	
	Use-case g eneralization, A ctors and classes, Using us e-cases i n	
	software development	
7.	OO Modeling, Design Methodologies and Interaction Diagrams:	6
	Design approaches, methods to get design entities from requirements,	
	Domain modeling and class diagrams, Class associations, Whole part	
	relationships, Generalization and Inheritance	
8.	Interaction, State and Activity Diagrams	8
	Interaction and collaboration, Collaboration diagrams, Sequence	
	diagrams, Message passing and timing, Activity diagrams, State	
	diagrams, Packages, Subsystems, Models	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication /
		Reprint
1.	Bennett, S., "Schuam's Outline of UML". New York: McGraw-Hill	2004
2.	S. Perdita. "Using UML: S oftware E ngineering with O bjects a nd	2000
	Components." Addison-Wesley	
3.	R. Miles, "Learning UML 2.0", O'REILLY	2006
4.	G. Booc h, "Object-Oriented A nalysis a nd D esign w ith	2007
	Application", Willy.	
5.	E. Gamma., " Design P atterns: E lements of Re usable O bject-	1994
	Oriented Software", Addison-Wesley	

NAME OF DEPT./CENTRE:	Computer Science and Engineering				
1. Subject Code: CSN-312	Course Title:	Principles of F	Programming Langu	ages	
2. Contact Hours:	L: 3	T: 0	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Pra	actical 0		
4. Relative Weight: CWS:25	PRS:0 MTE	E 25 ETE:50) PRE:0		
5. Credits:3 6. Semester : S _I	oring	7. Pre-requisite:	CSN-353		

- 8. Subject Area: DCC
- 9. O bjective: To introduce the semantics of programming languages and develop skills in describing, analyzing, and using the features of programming languages.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Lambda Calculus an dT uring Machines: Equivalence o f	6
	Lambda calculus and Turing machines, free and bound variables,	
	substitutions.	
2.	Sequential P rogramming L anguages: Constructs, pr ograms a s	6
	state transformers, denotational semantics.	
3.	Object-oriented Programming L anguages: Constructs,	4
	mathematical structures, implementation, constraint matching.	
4.	Type Theory: Operational semantics, basic type systems and type	6
	soundness, advanced type systems.	
5.	Nondeterminism: Predicate t ransformers, guarded command	6
	language, algebraic specification.	
6.	Program C orrectness: Program te rmination, well-foundedness,	6
	logics of programs, correctness proof.	
7.	Program V erification: Hoare l ogic, m odel checking, model	8
	checkers, algorithmic versus deductive approaches.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Sethi, R., "Programming Languages: C oncepts a nd C onstructs",	2004
	Pearson Education.	
2.	Tucker, A. and Noonan, R., "Programming Languages: Principles	2007
	and Paradigms", Tata McGraw-Hill.	
3.	Van Roy, P. and Haridi, S., "Concepts, Techniques and Models of	2005
	Computer Programming", Prentice-Hall of India.	

NAME OF DEPT./C	ENTRE:	Computer Science and Engineering			ering	
1. Subject Code: C	SN-341	Course Title: Computer Networks				
2. Contact Hours:		L: 3 T: 1 P: 0				
3. Examination Duration (Hrs.):		Theory :3		Practical:0		
4. Relative Weight:	CWS:25	PRS:0	MTE:25		ETE:50	PRE:0
5. Credits:4	6. Semester	ester Autumn 7. Pre-requisite: CSN-252				

- 8. Subject Area: DCC
- 9. O bjective: To familiarize s tudents with t he l ayered de sign a nd p rotocols of computer networks, including the Internet.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	Introduction: Use of computer ne tworks, n etwork hardware	7
	and s oftware; Layering, r eference m odels a nd t heir	
	comparison.	
2.	Physical L ayer: Theoretical basis for data communication,	6
	transmission media and impairments, switching systems.	
3.	Data Link Layer: Design issues, framing, error detection and	6
	correction, elementary and sliding window protocols, examples	
	of data link layer protocols.	
4.	Medium A ccess Control S ub L ayer: Channel al location	6
	problem, multiple a ccess protocols, E thernet, d ata l ink l ayer	
	switching.	
5.	Network Layer: Design issues, routing algorithms, congestion	6
	control, QOS, internetworking, IP and IP addressing.	
6.	Transport L ayer: Transport s ervice, e lements of t ransport	6
	protocols, TCP and UDP.	
7.	Application Layer Overview: Email, DNS, WWW.	5
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Tanenbaum, A .S, "Computer N etworks", 4 th Ed., P earson	2003
	Education.	
2.	Forouzan, B.A., "Data Communication and Networking", 4 th Ed.,	2006
	Tata McGraw-Hill.	
3.	Stallings W ., " Data a nd C omputer C ommunication", 8 th Ed.,	2007
	Prentice-Hall.	
4.	Kurose, J.F. and Ross, K.W., "Computer Networking: A Top-Down	2004
	Approach Featuring the Internet", 3 rd Ed., Addison Wesley.	
5.	Comer, D.E. and Droms, R.E., "Computer Networks and Internets",	2004
	4 th Ed., Prentice-Hall.	

NAME OF DEPT./C	CENTRE:	Computer Science and Engineering				
1. Subject Code: CSN-351 Course Title: Database Management System					Systems	
2. Contact Hours:		L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):		Theory	:3	Practical:0		
4. Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0	
5. Credits:4	6. Semester:	Autumn	7. Pre-r	equisite: CS - 10)2	

- 8. Subject Area: DCC
- 9. O bjective: To i ntroduce t he c oncepts of da tabase m anagement s ystems a nd t he de sign of relational databases.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Introduction t o da tabase m anagement, da ta a bstraction a nd s ystem structure.	3
2.	Entity r elational m odel, e ntity s et, r elationship s ets, m apping cardinalities, keys, E-R diagrams.	3
3.	Relational model, database schema, relational algebra, outer join and manipulation of databases.	6
4.	Tuple r elational c alculus: E xample que ries, formal de finitions a nd safety of expressions; SQL: Query processing and optimization, set operations, aggregate functions, data definition language and views, comparison of que ries in r elational algebra, S QL, t uple r elation calculus and domain relation calculus.	7
5.	Relational da tabase de sign, va rious nor mal f orms, f unctional dependencies, c anonical c over, l ossless j oin, de pendency preservation, m ulti va lue de pendency and hi gher nor mal f orms, transaction management, ACID property.	6
6.	Serializability and testing f or serializability, concurrency c ontrol schemes, lock-based protocols, two-phase locking protocols, graph-based protocols, time stamp-based protocols, deadlocks.	5
7.	Recovery s ystems, log-based r ecovery, de ferred a nd i mmediate database modification, object oriented database design.	6
8.	Data w arehousing, h eterogeneous c omponent s ystems, da ta scrubbing.	3
9.	Data mini ng and kn owledge di scovery, ba sic m athematical, numerical a nd statistical te chniques; A pplications in information retrieval.	3
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Abraham, H. and S udershan, S., "Database S ystem C oncepts", 4 th Ed.,	2002
	McGraw-Hill.	
2.	Elmasi, R. and Navathe, S.B., "Fundamentals of Database Systems", 4 th	2005
	Ed., Pearson Education.	
3.	Date, C. J., "Introduction to Database Systems", Pearson Education.	2002
4.	Ramakrishnan, R. and Gekhre, J., "Database Management Systems", 3 rd	2003
	Ed., McGraw-Hill.	
5.	Pang, N. T., S teinbach, M. a nd K umar, V., "Introduction t o D ata	2007
	Mining". Pearson Education.	

NAME OF DEPT./C	CENTRE:	Computer Science Engineering				
1. Subject Code: C	SN-352	Course	Title: Co	mpile	er Design	
2. Contact Hours:		L: 3	T:	1	P: 0	
3. Examination Dura	ation (Hrs.):	Theory	y3		Practical 0	
4. Relative Weight:	CWS: 25	PRS: 0	MTE: 25		ETE: 50	PRE: 0
5. Credits:4	6. Semester	Spring	7. Pre-	requi	site: CS - 35	3

- 8. Subject Area: DCC
- 9. O bjective: To i ntroduce s tudents t o t he t echniques us ed i n designing a nd w riting compilers.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	Introduction t o t he t ranslation pr ocess, ph ases of t he compiler, compiler tools.	3
2.	Role of 1 exical ana lyzer, specification and recognition of t okens, automatic generation of lexical analyzer.	6
3.	Top dow n p arsing m ethods, e limination of l eft recursion, r ecursive descent a nd p redictive pa rsers; Bottom up pa rsing, s hift-reduce parsing, precedence parsing, LR parsers, SLR (1) table construction, limitations of SLR parsing, non-SLR (1) grammars; Introduction to canonical and LALR parsing.	8
4.	Type checking, type systems, type expressions, type conversion and overloading.	3
5.	Run t ime e nvironments, s torage or ganization a nd a llocation strategies, parameter passing, symbol tables.	4
6.	Intermediate code generation, interpreters, intermediate l anguages, syntax trees, postfix code, triples and indirect triples, syntax directed translation of simple statements.	6
7.	Issues in code generation, basic blocks and flow graphs, next us e information, r egister allocation and a ssignment, s imple c ode generation.	6
8.	Sources o f opt imization, opt imization of ba sic bl ocks, da ta f low analysis, code improving transformations.	6
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/
		Reprint
1.	Aho, A.V., Lam, M., Sethi, R. a nd Ullman, J.D., "Compilers:	2007
	Principles, Techniques and Tools", 2 nd Ed., Pearson Education.	
2.	Tremblay, J.P. a nd S orenson, P.G., "Theory and P ractice of	2005
	Compiler Writing", SR Publications.	
3.	Cooper, K.D. and Torczon, L., "Engineering a Compiler", Morgan	2004
	Kaufmann.	
4.	Louden, K.C., "Compiler C onstruction: P rinciples a nd P ractice",	1997
	Course Technology.	
5.	Tremblay, J.P. and Sorenson, P.G., "Parsing Techniques: A Practical	1998
	Guide", Ellis Horwood.	

NAME OF DEPT./CEN	TRE:	Computer Science and Engineering			
1. Subject Code: CSN-353		Course Title: Theory of Computation			
2. Contact Hours:		L: 3	T: 1	P: 0	
3. Examination Duration	n (Hrs.):	Theory :	:3	Practical	1:0
4. Relative Weight: CV	VS:25	PRS:0 M	1TE:25	ETE:50	PRE:0
5. Credits:4	6. Se	emester: Au	itumn 7.	Pre-requisite:	CS-106

- 8. Subject Area: DCC
- 9. O bjective: To pr ovide a n unde rstanding of t he t heoretical de velopment of c omputer science, particularly for finite representations of languages and machines.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Abstract machines and computation, formal languages and	3
	grammars.	
2.	Regular languages, finite state machines, deterministic and	9
	non-deterministic finite state machines, r egular grammars,	
	regular expressions, equivalence of the three models, state	
	equivalence and minimization.	
3.	Properties of f inite s tate la nguages, closure, d ecidability,	5
	pumping lemma.	
4.	Context-free l anguage m odels, context-free g rammars,	5
	simplification of c ontent-free grammars, Chomsky nor mal	
	form, Greibach normal form.	
5.	Pushdown a utomata, de terministic a nd non -deterministic	7
	pushdown automata and their equivalence with context free	
	languages, parsing.	
6.	Closure properties of context-free languages.	3
7.	Turing m achines, c omputable l anguages and f unctions,	6
	modifications of T uring m achines, r estricted T uring	
	machines, Church's hypothesis.	
8.	Recursive, and recursively enum erable l anguages;	4
	Undecidability, notion of reduction.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Hopcropt, J.E., M otwani, R. a nd U llman, J.D., "Introduction t o	2001
	Automata T heory, Languages and C omputation", P earson	
	Education.	
2.	Lewis, H.R. and Papadimitriou, C.H., "Elements of the Theory of	1998
	Computation", 2 nd Ed., Prentice-Hall.	
3.	Linz, P., "An Introduction to Formal Languages and Automata",	1998
	Narosa Publishing House.	
4.	Cohen, D.I.A., "Introduction to Computer Theory", John Wiley &	1991
	Sons.	
5.	Denning, P. J., D. ennis, J. B., a nd Q. ualitz, J.E., "Machines,	1978
	Languages and Computation", Prentice-Hall.	

NAME OF DEPT./C	CENTRE:	Com	puter Sc	ience and	Engineering	
1. Subject Code: C	SN-361	Course	Title: Co	mputer Netw	orks Laborato	ry
2. Contact Hours:		L: 0	Т	: 0 1	2:3	
3. Examination Duration (Hrs.):		Theory:0		Prac	Practical :0	
4. Relative Weight:	CWS:0	PRS:100	MTE:0	ETE:0	PRE:0	
5. Credits: 2	6. Semest	ter : Autum	in 7.	Pre-requisite	: CSN-341	

- 8. Subject Area: DCC
- 9. Objective: To design program and configure various hardware and software components of computer networks, including protocols.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
	Socket programming using RPC and RMI.	
	Cryptography algorithms, D ES, R SA, a nd di gital	
	signatures.	
	Implementation of v arious LAN pr otocols a nd	14 x 3
	configurations.	
	Network simulation using the NS2 package.	
	Network simulation using the Qualnet software.	
	Configuration of PC as router and switch.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/				
		Reprint				
1.	Tanenbaum, A.S., "Computer N etworks", 4 th Ed., P earson	2003				
	Education.					
2.	Forouzan, B.A., "Data Communication a nd N etworking", 4 th	2006				
	Ed., Tata McGraw-Hill.					
3.	Stallings, W., "Cryptography and Network Security: Principles	2006				
	and Practice", 4 th Ed., Prentice-Hall of India.					
4.	Stallings, W., "Data and C omputer C ommunication", 8 th Ed.,	2007				
	Prentice-Hall of India.					
5.	Stevens, W. R., "Unix Network Programming: Vol. II", 2 nd Ed.,	2002				
	Pearson Education					
NAME OF DEPT./CENTRE:		Comp	Computer Science and Engineering			
---------------------------------	-------	------------	---	--------------------	-------	--
1. Subject Code: CSN-362		Course	Course Title: Compiler Laboratory			
2. Contact Hours:		L: 0	L: 0 T: 0 P: 3			
3. Examination Duration (Hrs.):		Theory	:0	Practical:0		
4. Relative Weight:	CWS:0	PRS:100	MTE:0	ETE:0	PRE:0	
5. Credits:2 6. Semeste		er: Spring	7. Pre	-requisite: CS - 3	353	

- 8. Subject Area: DCC
- 9. O bjective: To give the students practice in writing various phases of a compiler and to familiarize them with various compiler writing tools.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
	Design and coding of lexical analyzer manually.	
	Use of LEX, LEX specification for tokens and construction of	
	lexical analyzer, programming problems with LEX.	14 x 3
	Parser c onstruction, pr oducing s imple de sk c alculator w ith	
	YACC, generating postfix code with YACC.	
	Machine code generation.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/
		Reprint
1.	Aho, A.V., Lam, M., Sethi, R. and Ullman, J.D., "Compilers:	2007
	Principles, Techniques and Tools", 2 nd Ed., Pearson Education.	
2.	Das, V.V., "Compiler D esign us ing F LEX a nd YACC",	2007
	Prentice-Hall of India.	
3.	Tremblay, J.P. a nd S orenson, P.G., "Parsing Techniques: A	1998
	Practical Guide", Ellis Horwood.	

NAME OF DEPT./CENTRE:		Computer Science and Engineering			
1. Subject Code: CS	Course Title: Artificial Intelligence				
2. Contact Hours:	L: 3	Т:	1	P: 0	
3. Examination Duration (Hrs.):		Theory: 3		Practical:()
4. Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits: 04	r: Autumn	7. Pre	e-requisite: C	S-102	

8. Subject Area: DEC

- 9. Objective: To acquaint the students with the theoretical and computational techniques in Artificial Intelligence.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	Fundamental C oncepts: Agents, environments, g eneral	4
	model; Problem solving techniques.	
2.	Search T echniques: Uninformed s earch, he uristic s earch,	6
	adversarial s earch and game t rees; S olution of cons traint	
	satisfaction problems using search.	
3.	Knowledge R epresentation: Propositional a nd pr edicate	8
	calculus, semantics for pr edicate calculus, inference r ules,	
	unification, semantic networks, conceptual graphs, structured	
	representation, frames, scripts.	
4.	Prolog: Basic constructs, answer extraction.	4
5.	Bayesian Reasoning: Bayesian networks, dynamic Bayesian	4
	networks.	
6.	Planning: State-space search, planning graphs.	4
7.	Learning: Inductive learning, decision tree learning.	4
8.	Advanced T opics: Role of know ledge i n l anguage	8
	understanding, s tages o fl anguage a nalysis, pa rsing us ing	
	context free g rammars, transition ne twork pa rser, C homsky	
	hierarchy and context sensitive grammars, rule based expert	
	systems, neural networks, genetic algorithms.	
	Total	42

Sl.No.	Name of Books/Authors	Year of Publication
1.	Russell, S. a nd N orvig, P., "Artificial Intelligence: A M odern	2006
	Approach", Pearson Education.	
2.	Rich, E. and Knight, K., "Artificial Intelligence", Tata McGraw-	2006
	Hill.	
3.	Nilsson, N. J., "Artificial Intelligence: A New Synthesis", Morgan	1998
	Kaufmann.	
4.	Bratko, I., "Prolog P rogramming f or A rtificial Intelligence", 3 rd	2001
	Ed., Pearson Education.	

NAME OF DEPT./C	Computer Science and Engineering				
1. Subject Code: CS	N-372	Cour	se Title: Cor	nputer Graph	nics
2. Contact Hours:	L: 3	T	: 1	P: 0	
3. Examination Durat	tion (Hrs.):	Theory: 3	3	Practical:	0
4. Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0

5. Credits: 04 6. Semester: Autumn

7. Pre-requisite: i) Knowledge of object oriented programming and basic

8. Subject Area: DEC

9. Objective Of Course: to introduce the concepts of computer graphics through theoretical, algorithmic and a dvanced m odeling a spects a long with, applications in 3D graphics and visualization. T his course is a lso covering part of O penGL for graphics. A fter successful completion of the course student should be able to apply the concepts and techniques to various problem domain and visualization of data-sets and processes.

10. Details Of Course:

Sl.No.	Contents	Contact Hours
1	Overview of graphics systems – What, Why & Where about	3
	Graphics, Hardware & Software, Input & Output Technology,	
	Mathematical complexity involved - Demonstration through	
	some examples	
2	Raster G raphics Algorithms f or Drawing 2D o bjects Line,	3
	Circle, Ellipse, Parabola, Hyperbola, Polygon & Filled Closed	
	Objects	
3	Concepts of 3D and OpenGL: Introduction to 3D- Graphics &	4
	3D Coordinate Geometry and Introduction of OpenGL	
4	2D & 3D S caling, T ranslation, R otation, S hear, R eflection,	3
	Projection and Composite Transformations	
5	Viewing & C lipping i n 2D -Cohen's and P arametric Line	3
	Methods	
6	Viewing & Clipping in 3D (Perspective & Parallel projection,	4
	Clipping a gainst a C anonical V iew V olume, C lipping in	
	Homogeneous Coordinates, and Mapping into a Viewport	
7	Hermite, Bezier, C ontinuties, B spline C urves & S urfaces	5
	Rational Cubic Polynomial Curves & Quadric Surfaces	
8	Solid Modeling - Representations, Operations, Geometry, and	3
	Interface	
9	Visible Surface Detection - Need & Algorithms, Ray Tracing	4

	and Hidden Line elimination	
10	Light & Color Models - Light, halftoning, Color Models, Color	2
	Conversion & Interpolation, Dithering Matrix	
11	Rendering - Models, Physics, Shading Polygons & Surface, &	4
	Shadows	
12	Animation - Languages, T echniques, C ontrol, B asic R ules &	2
	Problems	
13	Applications of 3D Graphics in Visualization	2
	Total	42

11. Books recommended

Sl.No.	Name of Books/Authors	Year of
		Publication
1	James D. Foley, A. Van Dam, S.K. Feiner, and J.F. Hughes,	1996
	Computer Graphics: Principles and practice, 2nd ed in C,	
	Addision-Wesley Publishing Company.	
2	Rogers B., Mathematical Elements of Computer Graphics, Tata	2002
	McGraw Hill.	
3	D. Hearn and M.P. Baker, Computer Graphics, C Version,	2002
	Pearson Education, 2002.	
4	D. Hearn and M.P. Baker, Computer Graphics with OpenGL	2004
	Version, (3rd edition), Pearson Education.	

N	AME OF DEPT./CE	ENTRE:	Compu	ter Science	and Engineeri	ng
1.	1. Subject Code:	CSN-373	Course 7	f itle : Probab	oility Theory fo	or Computer Engineers
2.	Contact Hours:	L: 3	Т:	1	P: 0	
3.	Examination Durati	ion (Hrs.):	Theory: 3		Practical:0	
4.	Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5.	Credits: 04	6. Semester	Autumn	7. Pre	e-requisite: Ni	I

8. Subject Area:

- Objective: To impart to the students in-depth knowledge of Probability and Statistics so that they can be well equipped to employ them in state-of-art applications in Engineering.
- 9. Details of the Course:

Sl.No.	Contents	Contact Hours
1	Concept of p robability, r andom va riable and di stribution	09
	function: di screte a nd c ontinuous, m oments a nd m oment	
	generating functions.	
2	Special di stributions (discrete): B inomial, Poisson, Negative	09
	binomial, Geometric. (continous): U niform, E xponential,	
	Gamma, Beta, Normal, Lognormal, Function of Random Variable	
4	Bivariate r andom va riables: joi nt, m arginal, c onditional	03
	distribution. Statistical independence, product moment.	
5	Random s ample, l aw of l arge num bers, c entral l imit t heorem,	07
	correlation, regression.	
6	Estimation: maximum likelihood estimation, unbiasedness and	07
	efficiency, interval estimation with normal, t, χ^2 distribution.	
7	Testing of Hypothesis: simple and composite hypothesis, type I	07
	and type II errors. Power of test, some MP tests for simple vs	
	simple hypothesis. Some tests based on normal, t, χ^2 distribution.	
	TOTAL	42

Sl.No.	Name of Books/Authors	Year of
		Publication
1.	Kishor S. Trivedi, Probability and Statistics with Reliability, Queuing,	2001
	and Computer Science Applications, John Wiley and Sons, New York.	
2.	V. K. R ohatgi and A. K. M d. E hsanes S aleh: A n Introduction t o	2000
	Probability and Statistics, (John Wiley and Sons), (2 nd Ed.)	
3.	R. V. Hogg and A. Craig: Introduction to Mathematical Statistics,	2006
	(Pearson Education) (5 th Ed.)	
4.	Richard A. Johnson, I. Miller and John E. Freund: Miller & Freund's	2011
	probability and statistics for engineers, (Prentice Hall PTR) (8 th Ed.)	
5.	W. W. Hines, D. C. Montgomery, D. M. Goldsman and C. M. Borror :	2003
	Probability and Statistics in Engineering, (John Wiley & sons) (4 th Ed.)	
6.	A. Papoulis, S.U. Pillai: Probability, Random Variables and Stochastic	2002
	Processes(Tata McGraw-Hill) (4 th Ed.)	

NAME OF DEPT./CENTRE:		Computer Science and Engineering			
1. Subject Code: CSN-381			Course Title: Information Retrieva		
2. Contact Hours: L: 3		3	T: 1	P: 0	
3. Examination Duration (Hrs.): Theory				Practical	
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4 6. Semester Spr			ng 7.	Pre-requisite	: CS - 211

- 8. Subject Area: DEC
- 9. Objective: To provide an understanding of the information retrieval techniques and web search.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Introduction to the Course: Information retrieval problem, first	03
	take at building an inverted index, processing of Boolean queries,	
	extended Boolean model vs. ranked retrieval.	
2.	Term vocabulary and postings lists: document delineation and	03
	character sequence de coding, determining v ocabulary of t erms,	
	Faster pos tings list intersection via s kip pointers, pos itional	
	postings and phrase queries.	0.6
3.	Dictionaries, T olerant R etrieval and I ndexing: search	06
	structures for dictionaries, wildcard queries, spelling correction,	
	indexing gingle pass in memory indexing distributed indexing	
	dynamic i ndexing a nd ot her types. Index compression: Heaps'	
	and Zinfs l aw d ictionary c ompression and no stings f ile	
	compression	
4	Scoring an d IR S ystem E valuation: parametric a nd z one	08
	indexes, term frequency and weighing, vector space model for	00
	scoring, variant t f-idf f unctions, e fficient s coring and ranking,	
	components of a n I R s ystem, vector space s coring a nd que ry	
	operator interaction; I R sy stem ev aluation, S tandard test	
	collections, evaluation of unranked and ranked retrieval results,	
	Assessing relevance, System quality and user utility; R elevance	
	feedback and pseudo r elevance f eedback, Global methods f or	
	query reformulation.	
5.	XML and Probabilistic Information Retrieval: Basic concepts	04
	of XML retrieval and challenges, vector space model for XML	
	retrieval, Text-centric vs. data centric XML retrieval; probability	
	ranking pr incipal, bi nary i ndependence m odel, a ppraisal a nd	
	some ext ensions; L anguage models for i information retrieval,	
	just production in the second se	
6	III IN. Document Classification: Text of assification problem Naiva	06
0.	Bayes t ext cl assification B ernoulli m odel Feature sel ection	00

	evaluation of t ext cl assification; Vector s pace classification: Document r epresentations and measure of r elatedness in v ector spaces, Rocchio classification, k n earest ne ighbour, Linear v s. Non-linear cl assifiers, bias-variance tradeoff; S upport v ector machines, extensions to SVM models, Issues in the classification of text doc uments, M achine learning m ethods i n a d ho c information retrieval.	
7.	Document Clustering and M atrix D ecomposition: Flat clustering, cardinality, evaluation of clustering, K-means, Model-based clustering; H ierarchical A gglomerative clustering, single-link and complete-link clustering, G roup-average agglomerative clustering, Centroid c lustering, Optimality of H AC, Divisive clustering, C luster l abeling; M atrix d ecompositions, T erm-document matrices and singular value de composition, L ow-rank approximations, Latent semantic indexing.	06
8.	Web S earch: ba sics co ncepts, web g raph, s pam, s earch us er experience, Index size a nd estimation, Near-duplicates an d shingling; Web crawling and indexes: overview, crawler architecture, DNS resolution, URL frontier, Distributing indexes and connectivity ser vers; Link ana lysis: A nchor t ext and web graph, PageRank, Hubs and Authorities.	06
	Total	42

Sl. No.	Name of Books / Authors	Year of
		Publication
1.	Manning, C. D., Raghavan, P., & Schütze, H. "Introduction to	2008
	information retrieval". Cambridge: Cambridge university press.	
2.	Witten, I. H., Moffat, A., & Bell, T. C. "Managing gi gabytes:	1999
	compressing a nd indexing doc uments a nd i mages." M organ	
	Kaufmann.	
3.	Grossman, D . A . " Information retrieval: A lgorithms a nd	2004
	heuristics" Springer.	
4.	Baeza-Yates, R ., & R ibeiro-Neto, B . "Modern i nformation	1999
	retrieval" New York: ACM press.	
5.	Belew, R. K. "Finding out a bout: a c ognitive pe rspective o n	2000
	search e ngine technology a nd t he W WW". Cambridge	
	University Press.	
6.	Chakrabarti, S. "Mining the Web: Discovering knowledge from	2003
	hypertext data." Morgan Kaufmann.	
7.	Manning, C . D . " Foundations of s tatistical natural language	1999
	processing." H. Schütze (Ed.). MIT press.	

NAME OF DEPT. / CENTRE:		Computer Science and Engineering			g	
1. Subject Code: CSN-382		Course Title: Machine Learning			arning	
2. Contact Hours:		L: 3	T:	1	P: 1	
3. Examination Duration (Hrs.):		Theory:3		Practical:0		
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0	
5. Credits:4	6. Semes	ster Spring 7. Pre-requisite		quisite: Nil		

- 8. Subject Area: DEC
- 9. Objective: To provide an understanding of the theoretical concepts of machine learning and a working knowledge of state-of-art techniques used in this area.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Introduction to Machine Learning, supervised learning, learning multiple classes, regression, model selection and generalization, Bayesian de cision t heory, l osses a nd r isks, di scriminant functions, utility theory, association rules.	4
2.	Data P re-processing a nd unde rstanding, pa rametric m ethods, maximum likelihood estimation, bias and variance, multivariate data, parameter e stimation, estimating mis sing va lues, multivariate nor mal di stribution, multivariate c lassification and regression, di mensionality reduction, s ubset s election, P CA, LDA, Isomaps, LLE.	6
3.	Clustering, mixture d ensities, K-means a lgorithm, E M- algorithm, hi erarchical clustering, choosing number of clusters. Non-parametric m ethods, non -parametric de nsity es timation, non-parametric classification and regression.	6
4.	Classification T echniques, de cision t rees, pr uning, rule extraction from t rees, l earning rules from da ta, Linear discrimination, two classes, multiple c lasses, pairwise separation. Perceptrons, multilayer perceptrons, backpropagation algorithm, training procedures and network tuning. Competitive learning, R adial ba sis f unctions, Incorporating r ule ba sed knowledge, Kernel machines, h yperplanes, S VM, kernel trick, kernel machines for regression, kernel dimensionality reduction.	8
5.	Bayesian Estimation, estimating parameter of Distributions and Functions. G raphical models, c onditional i ndependence, d - separation, b elief pr opagation, M arkov r andom fields, learning the structure of a graphical model, influence diagrams.	6

6.	Hidden M arkov M odels, di screte m arkov pr ocesses, HMM, three problems of H MM, evaluation pr oblem, f inding s tate sequence, learning model parameters, HMM with input.	6
7.	Reinforcement l earning, single s tate c ase, el ements of reinforcement l earning, m odel ba sed l earning, t emporal difference l earning, generalization, pa rtially obs ervable s tates. Combining m ultiple l earners, m odel c ombinations s chemes, voting, e rror-correcting out put c odes, b agging, boos ting, cascading.	6
	Total	42

Sl. No.	Name of Books / Authors	Year of Publication
1.	Ethem A lpaydin "Introduction to M achine L earning" S eond E dition, PHI Learning	2012
2.	Christopher M. Bishop "Pattern R ecognition and Machine L earning", Springer	2013
3.	Trevor Hastie R . T ibshirani, J . F riedman "The E lements of Statistical Learning" Second Edition, Springer	2008

NAME OF DEPTT./CENTRE:		Computer Science and Engineering			
1. Subject Code: CSN-471		Course Title: Computer Vision			
2. Contact Hours: L: 3			T: 1	P: 0	
3. Examination Duration (Hrs.):		Theory:3		Practical:0	
4. Relative Weightage: C	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4 6. Seme		ester: Autumn 7. Subject Area:		t Area: DEC	

8. Pre-requisite: Nil

9. Objective: To introduce various topics of computer vision with their applications.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Image f ormation an d c amera c alibration: Introduction t o	8
	computer vi sion, geometric c amera m odels, or thographic a nd	
	perspective pr ojections, weak-perspective p rojection, intrinsic	
	and extrinsic camera parameters, linear and nonlinear approaches	
	of camera calibration	
2.	Feature detection and matching: Edge detection, interest points	6
	and c orners, l ocal i mage f eatures, feature m atching a nd H ough	
	transform, m odel fitting a nd R ANSAC, s cale i nvariant f eature	
	matching	
3.	Stereo Vision: Stereo camera geometry and epipolar constraints,	12
	essential a nd fundamental ma trix, image r ectification, local	
	methods f or s tereo m atching: c orrelation a nd m ulti-scale	
	approaches, global methods for stereo matching: order constraints	
	and dynamic programming, smoothness and graph based energy	
	minimization, optical flow	
4.	Shape from Shading: Modeling pixel brightness, reflection at	10
	surfaces, the Lambertian and specular m odel, ar ea s ources,	
	photometric stereo: shape from multiple shaded images, modeling	
	inter-reflection, shape from one shaded image	
5.	Structure f rom motion: Camera s elf-calibration, E uclidean	6
	structure and motion from two i mages, Euclidean structure and	
	motion from multiple images, structure and motion from weak-	
	perspective and multiple cameras	
	Total	42

S. No.	Title/Authors/Publishers	Year of Publication/ Reprint
1.	Forsyth, D. A. and P once, J., " Computer V ision: A M odern	2011
	Approach", Prentice Hall, 2 nd Ed.	
2.	Szeliki, R., "Computer V ision: A lgorithms a nd Applications",	2011
	Springer	
3.	Hartley, R . a nd Z isserman, A ., "Multiple V iew G eometry in	2003
	Computer Vision", Cambridge University Press	
4.	Gonzalez, R. C. and Woods, R. E., "Digital Image Processing",	2009
	Prentice Hall, 3 rd Ed.	
5.	Trucco, E. a nd V erri, A., " Introductory T echniques f or 3 -D	1998
	Computer Vision", Prentice Hall	

Computer Scien	ice and Engi	neering
Course Title: Pa	rallel and D	istributed Algorithms
T: 1	P: 0	
Theory:3	Practical:0	
5 PRS:0 MTE:25	ETE:50	PRE:0
mester: Autumn	7.Sul	bject Area: DEC
	Computer Scier Course Title: Pa T: 1 Theory:3 5 PRS:0 MTE:25 mester: Autumn	Computer Science and EngiCourse Title: Parallel and DiT:1P:T:1P:0Theory:3Practical:05PRS:0MTE:25ETE:50mester: Autumn7.Sul

- 8. Pre-requisite: CSN-212
- **9. Objective**: To provide an in-depth understanding of the fundamentals of parallel and Distributed algorithms.
- 10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Introduction: Introduction to data and control parallelism.	2
2.	PRAM model and its variants, EREW, ERCW, CRCW, PRAM	8
	algorithms, cost optimality criterion, Brent's theorem and its	
	importance.	
3.	Processor organizations such as mesh and hypercube,	4
	embedding of	
	problem graphs into processor graphs.	
4.	Parallel algorithms for matrix multiplication, merging and	8
	sorting for	
	different processor organizations such as mesh and hypercube.	
5.	Introduction to distributed systems, synchronous /	8
	asynchronous	
	network models, leader election problem in ring and general	
	networks; Type of faults, fail safe systems, Byzantine faults,	
	distributed consensus with link and process failures.	
6.	Algorithms for BFS, DFS, shortest paths and spanning trees in	6
	distributed systems.	
7.	Asynchronous networks: Broadcast and multicast, logical time,	6
	global s napshot a nd s table pr operties; N etwork r esource	
	allocation.	
	Total	42

Sl. No.	Name of Books / Authors	Year of Publication
1.	Quinn, M. J., "Parallel Computing Theory & Practice",	1994
	McGraw-Hill	
2.	Horowitz, E., Sahni, S. and Rajasekaran, S., "Computer	2002
	Algorithms: C++", Galgotia Publications	
3.	Lynch, N. A., "Distributed Algorithms", Morgan Kaufmann.	2003
4.	Miller, R. and Boxer, L., "Algorithms Sequential & Parallel: A	2005
	Unified Approach", 2nd Ed., Charles River Media.	

NAME OF DEPTT./CENTRE: Computer Science and Engineering			ering				
1. Subject Code: CSN-476 Course Title: Software Project Management				ıt			
2. Contact Hours:	.: 3	T:	1	Р:	0		
3. Examination Duration	(Hrs.):	Theory:3		Practical:()		
4. Relative Weightage:	CWS:25	PRS:0	MTE:	25 ET	`E:50	PRE:0	
5. Credits:4	6. Ser	nester: Autun	nn 7	.Subject Ai	rea: DE	С	

8. Pre-requisite: CSN-254

9. Objective: To introduce the concepts, practices, and methodologies involved in software project management

10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Introduction: Conventional s oftware m anagement, c onventional	6
	software m anagement pe rformance, processes and project	
	management, project management and CMM. Software economics:	
	Evolution, pragmatic software cost estimation. Reducing Software	
	product s ize, i mproving s oftware p rocesses, i mproving t eam	
	effectiveness, achieving required quality, peer inspections.	
2.	Project and Process P lanning: T he pr ocess d atabase, process	6
	capability baseline, pr ocess a ssets, pr ocess pl anning, s tandard	
	process of planning, process tailoring, change management process.	
	Iterative pr ocess pl anning: w ork br eakdown s tructures, pl anning	
	guidelines, iterative planning process, pragmatic planning.	
3.	Estimation and Scheduling: B asic c oncepts, Effort e stimation	6
	models, e stimating s chedules, bot tom-up effort e stimation, t op-	
	down e ffort e stimation, c ost a nd s chedule e stimation, us e-case	
	point a pproach, e frectiveness a halysis of a pproaches, U verall Scheduling Datailed scheduling and their effectiveness analysis	
4	Planning f or O vality and R isk M anagement: P rocedural and	6
1.	quantitative approach to quality management, setting quality goals.	U
	estimating defects for other stages, quality process planning, defect	
	prevention planning. Risk assessment, Risk control.	
5.	Software Fault Prediction: Fault proneness, fault density, nature of	6
	faults, categories of s oftware faults, software f ault pr ediction	
	methods, ut ilization of f ault pr ediction i n software p roject	
6	Project T racking and management: M atrics and measurements	6
0.	rioject i facking and management. Wrettics and measurements,	U

	project activities, generating status reports from tracking, milestone analysis, d efect a nalysis a nd pr evention, pr oject c losure, n ext generation software economics, modern process transitions	
,.	project activities, generating status reports from tracking, milestone	0
7	management process. Project C ontrol: Project r eview process data c ollection tracking	6
	indicators, qua lity i ndicators. Team M anagement, C onfiguration	
	collection, l ogging a nd t racking de fects, m easuring s ize a nd schedule project t racking Seven core m etrics management	
	process moni toring through statistical process control, e ffort da ta	

Sl. No.	Name of Books / Authors	Year of Publication
1.	Royce Q., Software Project Management: A Unified Framework, Pearson Education publisher.	2005
2.	Jalote, P., Software Project Management in Practice, Pearson Education Publisher.	2005
3.	Hughes. B., and Cotterell M., Software Project Management, McGraw Hill publication, 5 th ed.	2009
4.	Henry, J., Software Project Management, Pearson Education publisher.	2006
5.	Available literature on software fault prediction.	

NAME OF DEPTT./CENTRE:		Computer Science and Engineering			d Engineering
1. Subject Code: CSN-481		Course Title: Bioinformatics		natics	
2. Contact Hours:	L: 3		T: 4	P: 0	
3. Examination Duratio	n (Hrs.):	Theory:	3	Pr	actical:0
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4	6. Semester:	: Spring		7.Subject	Area: DEC

- 8. Pre-requisite: Nil
- 9. Objective: To expose students to the algorithms, data structures and application areas in bioinformatics.
- 10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Sequence c omparison an d alignment methods: Dynamic programming; G lobal, semi global and local alignment algorithms; G ap m odel; D atabase searching tools; M ultiple sequence alignment.	6
2.	Suffix tree: Implicit s uffix tree; E xplicit s uffix tree; Suffix link; Ukkonen's algorithm; Applications of Suffix tree.	6
3.	Phylogenetic tree: Rooted and unrooted tree, Newick format, scaled and unscaled tree, character and distance ba sed methods, distance matrix, UPGMA, WPGMA, additive tree, neighbor joining me thod, parsimony, maximum like lihood approach, phylogenic comparison, agreement tree.	6
4.	Gene n etwork analysis: Bayesian ne twork, Gene ne twork, clustering, classification, DNA a rray; Gene ne twork reconstruction m ethods: Boolean, linear, non-linear and machine learning.	8
5	Sequencing techniques by h ybridization: Microarray, Hamiltonian path, Euler path.	6
6.	RNA structure prediction: RNA s econdary structure, psuedoknot, l oops, R NA s econdary structure pr ediction algorithm, R NA s tructure c omparison, i nferring R NA structure.	8
7.	Computational aspects of drug designing.	2
	Total	42

Sl. No.	Name of Authors / Books / Publishers	Year of Publication
1.	Krane, D. E. and Raymer, M. L., "Fundamental Concepts of Bioinformatics", Benjamin Cummings.	2005
2.	Baxevanis, A. D. and Ouellette, B. F. F., "Bioinformatics: A Practical Guide to Analysis of Genes and Proteins", 2 nd Ed., Wiley.	2003
3.	Rastogi, S.C., M endiratta, N. and Rastogi, P., "Bioinformatics: C oncepts, Skills and Applications", CBS	2001
4.	Xiong, J., "Essential Bioinformatics", Cambridge University Press.	2007

NAME OF DEPTT./CENTR	E: Co	Computer Science and Engineering		
1. Subject Code: CSN-483	Co	Course Title: Intrusion Detection System		
2. Contact Hours: L: 3	T:	1	P: 0	
3. Examination Duration (Hrs	s.): Theory:3		Practical:0	
4. Relative Weightage: CW	S:25 PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4	6. Semester: Au	ıtumn	7.Subject A	rea: DEC

8. Pre-requisite: CSN-341

9. Objective: To To introduce the elements of intrusion detection systems and its models.

10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Intruder types, intrusion methods, processes and detection,	8
	message	
	integrity and authentication, honey pots.	
2.	General IDS model, data mining based IDS, Denning model, data	6
	mining framework for constructing features and models for	
	intrusion	
	detection systems.	
3.	Unsupervised anomaly detection, CV5 clustering, SVM,	8
	probabilistic	
	and statistical modeling, general IDS model and taxonomy,	
	evaluation of IDS, cost sensitive IDS.	
4.	NBAD, specification based and rate based DDOS, scans/probes,	6
	predicting attacks, network based anomaly detection, stealthy	
	surveillance detection; Defending against DOS attacks in scout:	
	signature-based solutions, snort rules.	
5.	Host-based anomaly detection, taxonomy of security flaws in	6
	software, self-modeling system calls for intrusion detection with	
	dynamic window size	
6.	Secure intrusion detection systems, network security, secure	8
	intrusion	
	detection environment, secure policy manager, secure IDS sensor,	
	alarm management, intrusion detection system signatures, sensor	
	configuration, signature and intrusion detection configuration, IP	
	blocking configuration, intrusion detection system architecture.	
	Total	42

Sl. No.	Name of Books / Authors	Year of Publication
1.	Endorf, C., Schultz E. and Mellander J., "Intrusion Detection and	2003
	Prevention," McGraw-Hill.	
2.	Marchette, D. J., "Computer Intrusion Detection and Network	2001
	Monitoring: A Statistical Viewpoint", Springer.	
3.	Rash, M., Orebaugh, A. and Clark, G., "Intrusion Prevention and	2005
	Active Response: Deploying Network and Host IPS", Syngress.	

NAME OF DEPTT./CENT	Computer Science and Engineering				
1. Subject Code: CSN-484 Course Title: Multimedia Tech				chnologies	
2. Contact Hours: L:	3	T: 1	l	P: 0	
3. Examination Duration (H	Hrs.):	Theory:3	Р	ractical:0	
4. Relative Weightage: C	WS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4	6. Sem	ester: Spring	7.Subjec	t Area: DEC	1

8. Pre-requisite: Student must have the knowledge of basics concepts of data structure, discrete mathematics, and computer networks.

9. Objective: To introduce the various concepts, techniques, methodologies, and communication related issues of multimedia technologies.

10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Introduction: Components of M ultimedia, Multimedia a nd	6
	Hypermedia m ultimedia bui lding bl ocks, c ommunication a nd	
	information transfer m odel, multimedia inf ormation systems,	
	application pur poses of m ultimedia, e lectronics pe rformance	
	support s ystems. Interaction T echnologies a nd devices: H uman	
	Computer Interface, Input/output t echnologies, c ombined I/O	
	device, storage technologies, processing technologies.	
2.	Multimedia A uthoring a nd da ta representation: M ultimedia	6
	Authoring: P roduction, presentation, a nd auto a uthoring. Image	
	data t ypes, image r epresentation, image acquisition, pi cture	
	display, working with image.	
3.	Compression Technologies for multimedia: ne ed for da ta	8
	compression, compression basics, lossless and lossy compression,	
	image compression standards, video compression standards, basic	
	audio compression standards.	
4.	Text, Hypertext and H ypermedia, and Digital a udio: V isual	8
	representation of t ext, digital r epresentation of characters,	
	Formatting a spect t ext, H ypertext a nd h ypermedia, pr oducing	
	digital audio, Psychoacoustics, processing sound, representation of	
	audio i lies, di gitization oi s'ound, M IDI, quantization a nd	
	transmission of audio.	4
5.	Designing multimedia: D evelopment ph ases and teams, analysis	4
	phase, de sign pha se, de velopment pha se, i mplementation pha se,	
	evaluation and testing.	

6.	Multimedia ne tworks a nd c ommunication: M ultimedia in the	8
	Internet, streaming stored audio/video, streaming live audio/video,	
	real-time interactive audio/video, Real-time interactive protocols:	
	RTP, RTCP, S ession Initialization protocol (SIP), H.323, SCTP.	
	QoS: D ata flow, flow classes, flow c ontrol, Integrated s ervices,	
	Differentiated services. Multimedia content management systems,	
	multimedia indexing, multimedia retrieval.	
	Total	42

Sl.No.	Name of Books / Authors	Year of Publication
1.	Li. Z., D rew M., F undamentals o f Multimedia, Pearson E ducation publishers.	2004
2.	Chow V. W. S., Multimedia technology and applications, Springer	
3.	Banerji A., and Ghosh A.M., Multimedia Technologies, McGraw Hill International	2009
4.	Stamou G., and Kollias S., Multimedia Contents and the Semantic Web, John Wiley & Sons.	2005

NAME OF DEPTT./CE	Computer Science and Engineering				
1. Subject Code: CSN	-485	Course Title: Quantum Computation			
2. Contact Hours:	L: 3	T: 1	l	P: 0	
3. Examination Duration (Hrs.):		Theory:3		P ractic	al:0
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4 6. Se		mester:Spring	7.8	Subject Area	: DEC

- 8. Pre-requisite:CSN-106
- 9. Objective: The objective of this course is to provide the students an introduction to quantum computation. Much of the background material related to the algebra of complex vector spaces and quantum mechanics is covered within the course.
- 10. Details of Course:

S.No.	Particulars	Contact Hours
1	Introduction t o Q uantum C omputation: Quantum bits, B loch s phere	02
	representation of a qubit, multiple qubits.	
2	Background M athematics a nd P hysics: Hilber s pace, P robabilities a nd	08
	measurements, e ntanglement, d ensity o perators an d co rrelation, b asics o f	
	quantum mechanics, Measurements in bases other than computational basis.	
3	Quantum Circuits: single qubit gates, multiple qubit gates, design of quantum	06
	circuits.	
4	Quantum Information and Cryptography: Comparison between classical and	06
	quantum i nformation th eory. B ell s tates. Q uantum te leportation. Q uantum	
	Cryptography, no cloning theorem.	
5	Quantum Algorithms: Classical c omputation o n q uantum c omputers.	10
	Relationship b etween q uantum a nd cl assical co mplexity cl asses.Deutsch's	
	algorithm, Deutsch's-Jozsa algorithm, Shor factorization, Grover search.	
5	Noise and error correction: Graph states and codes, Quantum error correction,	10
	fault-tolerant computation.	
	Total	42

S.No.	Author(s)/Name of Books/Publishers	Year of Publication
1	Nielsen M. A ., Quantum C omputation a nd Q uantum I nformation,	2002
	Cambridge University Press.	
2	Benenti G., Casati G. and Strini G., Principles of Quantum Computation and	2004
	Information, Vol. I: Basic Concepts, Vol II: Basic Tools and Special Topics,	
	World Scientific.	
3	Pittenger A. O., An Introduction to Quantum Computing Algorithms	2000

7. Pre-requisite: Nil

8. Subject Area: MSC/DHC

- 9. O bjective: T o familiarize s tudents w ith the concepts a nd i ssues a bout how t he s ocial, technological, and n atural worlds are connected, and how the study of n etworks sheds light on these connections.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Graph T heory a nd S ocial N etworks: G raphs, Strong a nd W eak T ies,	7
	Positive and Negative Relationships	
2.	Game T heory: Games, Modeling N etwork Traffic us ing Game T heory,	7
	Auctions	
3.	Markets a nd S trategic Interaction on N etworks: M atching M arkets,	7
	Network Models of Markets with Intermediaries, Bargaining and Power in	
	Networks	
4.	Information Networks and the World-Wide Web: The Structure of the Web,	7
	Link Analysis and Web Search, Sponsored Search Markets	
5.	Network D ynamics: P opulation M odels - Evolutionary Game T heory,	7
	Information Cascades, Network Effects, Power Laws and Rich-Get-Richer	
	Phenomena, Markets and Information	
6.	Network Dynamics: S tructural M odels: C ascading Behavior in N etworks,	7
	The Small-World Phenomenon, Epidemics	
	Total	42

Sl.	Name of Books/Authors
No.	
1.	D. E asley, J. K leinberg. Networks, C rowds, a nd M arkets: R easoning A bout a H ighly
	Connected World. Cambridge University Press, 2010

- 7. Pre-requisite: CSN-221 Computer Architecture & Microprocessors
- 8. Subject Area: MSC/DHC
- 9. O bjective: Students w ill be a ble build and s imulate the c omplex m odels us ing High Performance Computing. They are expected to design various related algorithms and implement programming.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	HPC Building Blocks: Single Processor Performance, Memory	9
	Hierarchy, Pipelining, Multi-core, Multi-threaded, Superscalar	
	Architectures, Vector Computers, Interconnects, Clusters, Distributed	
	Memory Computers, Grid Computing, Cloud Computing, and	
	Petascale Systems.	
2.	Accelerators, Parallel I/O, File Systems, and Operating Systems	5
	Perspective	
4.	Parallel Programming: Asymptotic Analysis of Parallel Programs,	8
	Principles of Message Passing, MPI, Shared Memory, Designing	
	Asynchronous Programs, openMP, GPU Programming, CUDA, and	
	MapReduce.	
3.	Parallel Algorithms: Algorithmic Primitives, Decomposition	10
	Techniques, Mapping Techniques, Load Balancing, Various Parallel	
	Models and Algorithms. Performance Metrics for Parallel Systems,	
	Effect of Granularity, Data Mapping, Scalability, and Time.	
5.	Power-Aware Computing: Designing of power-aware processing,	5
	memory, and interconnect. Power Management Software.	
6.	Advances: Optics in Parallel Computing, Quantum Computing,	5
	Application of Nanotechnology.	
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Introduction to Parallel Computing, A nanth G rama, A nshul G upta,	2003
	George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey.	
2.	Petascale Computing: Algorithms and Applications, David A. Bader	2007
	(Ed.), Chapman & Hall/CRC Computational Science Series.	
3.	Parallel Programming in C with MPI and OpenMP, Michael J Quinn,	2003
	McGraw Hill	
4.	"Scalable P arallel C omputing", b y K ai H wang, M cGraw H ill	1998
	Thamarai Selvi, McGraw Hill	
5.	"Parallel C omputer A rchitecture: A ha rdware/Software A pproach",	1999
	by David Culler Jaswinder Pal Singh, Morgan Kaufmann.	
6.	"Advanced Computer A rchitecture: P arallelism, Scalability,	1993
	Programmability", by Kai Hwang, McGraw Hill	
7.	Programming Massively Parallel Processors: A Hands-on Approach,	2010
	David B. Kirk and Wen-mei W. Hwu, Morgan Kaufmann	

NAME OF DEPT/CENTRE: Computer Science & Engineering

1. Subject Code: CSN-493	Course Title:	Advanced D	ata Mining		
2. Contact Hours:	L: 3	T: 1	P:	0	
3. Examination Duration (Hrs.):	Theory	3	Practical	0	
4. Relative Weight: CWS 25	PRS 0	MTE 25	ETE 50	PRE	00
5. Credits: 4	6. Semester:	Spring			

7. Pre-requisite:CSN-102 8. Subject Area: MSC/DHC

- 9. Objective: To introduce students to the various advanced concepts and techniques in data mining
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction to data mining: Motivation and significance of	5
	data mini ng, data mining f unctionalities – clustering,	
	classification, association rule mini ng, data pr e-processing,	
	major issues in data mining.	
2.	Classification: Definition and Basics, M odel o ver-fitting and	6
	under-fitting, pe rformance e valuation a nd c omparisons, r ule	
	based classifier – direct and in direct methods, Nearest neighbor	
	classifiers, Ensemble methods.	
3.	Association R ule M ining: Definition and b asic con cepts,	6
	handling c ategorical a ttributes, s equential pa tterns, m ining	
	patterns from graphs and sub graphs, techniques for infrequent	
	pattern mining	
4.	Cluster Analysis: Definition and basic concepts, characteristics	6
	of clustering algorithms, fuzzy clustering, grid based clustering,	
	subspace clustering, constraint based clustering, clustering high	
	dimensional data	
5.	Mining time series data, sequences and data streams: Basic	6
	concepts, trend analysis, similarity search in time series data,	
	sequential pattern mining, methods for stream data processing,	
	frequent p attern mining from da ta s treams, classification of	
	dynamic data streams and evolving data stream concepts	
6.	Spatial an d We b M ining: Definition and ba sic c oncepts,	6
	tinding s patial a ssociations a nd c o-location patterns, spatial	
	classification, s patial t rend a nalysis, m ining w eb pa ges,	
	discovering s emantics b ased on natural l anguage p rocessing,	
	document summarization.	

	data analysis, mining retail data, biological data analysis, mining telecommunication data, ot her s cientific a pplications of da ta	
	mining, trends in data mining	
8.	Case St udies: Some c ommercial D ata mini ng software and	3
	functionalities	
	Total	42

SI.	Name of Authors / Books / Publishers	Year of
No.		Publication
1.	Han, J. and Kamber, M., "Data M ining - Concepts and	2011
	Techniques", 3rd Ed., Morgan Kaufmann Series.	
2.	Alex Berson, Smith S J, "Data Warehousing, Data Mining &	2010
	OLAP", Tata McGraw Hill Publishers.	
3.	Tan, P.N., Steinbach, M. and Kumar, V., "Introduction to Data	2011
	Mining", Addison Wesley – Pearson.	
4.	Pujari, A. K., "Data Mining T echniques", 4 th Ed., S angam	2008
	Books.	

- 7. Pre-requisite: NIL
- 8. Subject Area: MSC/DHC
- 9. O bjective: The purpose of this course is to introduce the students with B ig D ata S torage Systems and important algorithms that form the basis of B ig Data Processing. The course also introduces the students with major application areas of B ig Data Analytics.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Introduction to Big Data: Introduction to Big Data	6
	The four dimensions of Big Data: volume, velocity, variety, veracity,	
	Drivers for Big Data, Introducing the Storage, Query Stack, Revisit	
	useful technologies and concepts, Real-time Big Data Analytics	
2.	Distributed File Systems: Hadoop Distributed File System, Google	6
	File System, Data Consistency	
3	Big D ata S torage Models: Distributed Hash-table, Key-Value	10
	Storage M odel (Amazon's Dynamo), Document S torage M odel	
	(Facebook's Cassandra), Graph storage models	
4.	Scalable A lgorithms: Mining l arge graphs, with f ocus on s ocial	10
	networks a nd w eb gr aphs. C entrality, s imilarity, a ll-distances	
	sketches, community d etection, l ink a nalysis, spectral t echniques.	
	Map-reduce, Pig Latin, and NoSQL, Algorithms for detecting similar	
	items, Recommendation s ystems, D ata s tream a nalysis algorithms,	
	Clustering algorithms, Detecting frequent items	
5.	Big Data Applications: Advertising on the Web, Web Page Quality	6
	Ranking, Mining Social-Networking Group, Human Interaction With	
	Big-Data. Recommendation systems with case studies of A mazon's	

	Item-to-Item recommendation and Netfix Prize, Link Analysis with case studies of the PageRank algorithm and the Spam farm analysis, Crowd Sourcing	
6	Big Data Issues: Privacy, Visualization, C ompliance and S ecurity,	4
	Structured vs Unstructured Data	
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Mining of massive datasets, Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman	2014
2.	An I ntroduction to I nformation R etrieval, Christopher D. M anning, Prabhakar Raghavan, Hinrich Schütze	2009
3	Data-Intensive Text Processing with MapReduce, Jimmy L in a nd C hris Dyer.	2010

7. Pre-requisite: Knowledge of Computer Networks

8. Subject Area: MSC/DHC

- 9. Objective: To familiarize students with the latest distributed system technologies.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction: Historical ba ckground, ke y characteristics, de sign	4
	goals and challenges; Review of ne tworking a nd i nternetworking,	
	Internet protocols.	
2.	Processes an d I nter p rocess C ommunication: processes and	10
	threads, vi rtualization, c ode m igration; T he A PI f or t he Internet	
	protocols, External data representation, Client-server communication,	
	Multicast c ommunication, message or iented c ommunication,	
	Network virtualization: Overlay networks, RPC, MPI	
3.	Naming: Name s ervices and Domain N ame System, Directory	2
	services, Case study: X.500 directory service	
4.	Time, Global S tates and Sy nchronization: Physical and logical	4
	clocks, global states, mutual exclusion, election algorithms	
5.	Consistency an d R eplication: Consistency m odels, R eplica	4
	management, Consistency protocols, Case studies of highly available	
	services: the gossip architecture and Coda	
6.	Fault T olerance an d Security: Distributed Commit, R ecovery,	6
	Security Issues, Cryptography.	
7.	Distributed Fi le Systems: File se rvice architecture, Case s tudy: S un	4
	Network File System, The Andrew File System	
8.	Peer t o peer S ystems: Introduction, N apster, P eer-to-peer	4
	middleware, Routing overlays, Case studies: Pastry, Tapestry	

9.	Distributed Object Based Systems: Distributed objects, Java beans,	4
	CORBA	
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Tanenbaum, A.S, "Distributed Systems: Principles and Paradigms",	2006
	2 nd Ed., Pearson Education.	
2.	Coulouris G., Dollimore J., Kindberg T. and Blair G., "Distributed	2011
	Systems: Concepts and Design", 5 th Edition, Addison Wesley.	
3.	Hwang K., Dongarra J., Geoffrey C. Fox, "Distributed and Cloud	2011
	Computing: F rom P arallel P rocessing to the Internet of T hings",	
	Morgan Kaufmann	
4.	Mahajan S., S hah S., " Distributed C omputing", 1 st Ed., Oxford	2010
	University Press.	
5.	Comer, D.E. and Droms, R.E., "Computer Networks and Internets",	2004
	4 th Ed., Prentice-Hall.	

NAME OF DEPT/CENTRE:	Compute	r Science a	and Engin	eering	
1. Subject Code : CSN-501	Course Title	e: Advanced	l Algorithms		
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0 0	
4. Relative Weight: CWS	25 PRS 00	2	5 5	0	00
5. Credits: 0 4 6. Semester Autumn					
7. Pre-requisite: CSN-212	8. Subject A	rea: MSC	/ DHC		

9. Objective: To introduce some advanced concepts in algorithms.

10. Details of the Course:

Sl.	Contents	Contact			
110.		liouis			
1.	Revisit t he not ions of greedy s trategy, dynamic p rogramming, gr aph	10			
	algorithms, complexity classes P, NP, NP-hard, NP-complete.				
2.	Approximation Algorithms: pe rformance r atio, ve rtex c over pr oblem.	12			
	travelling salesman problem, set covering problem, subset sum problem.				
3.	Randomized Algorithms: Tools and techniques. Applications.	10			
4.	Multithreaded Algorithms: Dynamic mul tithreaded programming,	10			
	multithreaded matrix multiplication, multithreaded merge sort.				
	Total	42			

SI.	Name of Books/Authors	Year of
No.		Publication
1.	Cormen T, Leiserson C, Rivest R, and Stein C: Introduction t o	2009
	Algorithms, MIT Press.	
2.	Motwani a nd R aghavan: R andomized A lgorithms. C ambridge	2004
	University Press.	

- 7. Pre-requisite: CSN-341
- 8. Subject Area: MSC/DHC
- 9. O bjective: T o familiarize s tudents with the architecture of a pr ocessor and machine l evel programming.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Basic networking concepts revisited: introduction to networks, layering and	5
	link layer, network layer, routing, end-to-end layer, congestion control,	
2.	Modeling a nd m easurement: ne twork t raffic m odeling, ne twork	6
	measurement, simulation issues, network coding techniques	
3.	Routing a ndr outer design, s cheduling and Q oS, i ntegrated a nd	5
	differentiated services, RSVP	
4.	Wireless networks and mobility supports, MAC protocol, routing, AODV,	4
	group communication, multicast	
5.	Flow and congestion control, T CP variants, T CP modeling, a ctive que ue	6
	management	
6.	Overlay networks: RON, P 2P, C DN, W eb caching, c ross-layer	10
	optimizations, Emerging ne twork t ypes: data center, DTN, 4G mobile	
	networks (LTE, Wi-Max), Online social networks (OSN), wireless sensor	
	networks (WSN) - cross-layer sensor data dissemination	
7.	Emerging applications – VoIP, SIP, video over P2P	6
	Total	42

SI.	Name of Books/Authors
No.	
1.	J.F. Kurose and K.W. Ross, Computer networking: A top-down approach, 6th edition,
	Adison Wesley.
2.	L.L. Peterson and BS. Davie, Computer Networks ISE: A System Approach, 5th edition,
	Morgan Kaufman.
3.	B.A. Forouzan, Data communication & networking, 5th Edition, Tata Mc-Graw Hills.

7. Pre-requisite: CSN – 221 or equivalent

8. Subject Area: MSC/DHC

- 9. Objective: To expose students to advanced techniques of computer design such as pipelining, vector processing and multiprocessing.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	Fundamentals of computer design, Amdahl's law, measuring and reporting performance.	2
2.	Principles of line ar pi pelining; Instruction level pa rallelism a nd instruction pi pelines, s peedup, da ta de pendency ha zards, remedial me asures, branch handling; A rithmetic pi pelines; Pipeline control methods; Job sequencing, collision prevention and pipeline chaining; Case study of pipelined systems.	8
3.	Loop unr olling, s oftware pi pelining a nd t race s cheduling techniques for exposing instruction level parallelism.	4
4.	Dynamic s cheduling a lgorithms, exploiting ILP us ing s tatic scheduling and dynamic scheduling, h ardware b ased speculation, multiple issues, and speculation.	8
5.	Data le vel pa rallelism, Vector pr ocessing characteristics and requirements, pipelined vector processing, vectorization methods, examples of vector processing.	4
6.	Graphics pr ocessing un its (GPUs), Instruction set a rchitecture, Programming on GPU, Comparison with vector processors	4
7.	Array pr ocessing, SIMD ar ray p rocessors, com munication between P Es, S IMD i nterconnection ne tworks, a lgorithms f or array processing	2

8.	Data a nd control pa rallelism, PRAM model of pa rallel	4
	computation, pa rallel a lgorithms. E mbedding o f t ask graphs i n	
	processor graphs, di lation a nd l oading, l oad ba lancing,	
	Overview of parallel programming with MPI and Open MP.	
9.	Multiprocessors a nd m ulti-computers; P rocessor or ganizations:	6
	mesh, bi nary t ree, h ypercube; S hared m emory and m essage	
	passing systems; Mapping and Scheduling:	
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Hennessy, J. L. and Patterson, D. A., "Computer A rchitecture", 4 th	2007
	Ed., Morgan Kaufmann.	
2.	Sima, D., Fountain, T. and Kacsuk, P., "Advanced C omputer	2007
	Architecture: A Design Space Approach", Pearson Education.	
3.	Michael, J.Q., "Parallel C omputing: T heory and P ractice", T ata	2002
	McGraw-Hill.	
4.	Hwang, K., "Advanced Computer Architecture", Tata McGraw-Hill.	2003

NAME OF DEPT./CEN	ITRE:	Computer Science & Engineering				
1. Subject Code: CSN-	Course Title: Network Programming					
2. Contact Hours:	L: 3	T: 1 P: 0				
3. Examination Duration	Theory		Practical			
4. Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0	

- 5. Credits:3 6. Semester: Spring
- 7. Pre-requisite: CSN-341 or equivalent

8. Subject Area: MSC

- 9. Objective: To familiarize students with advanced concepts of network programming in UNIX environment.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	OSI model, client server model, TCP/IP protocols, introduction to Unix;	6
	Process, groups, j ob c ontrol a nd non -job control s hells, r eliable a nd unreliable signals.	
2.	Inter process c ommunication i n U nix, pi pes, m essage que ues, s hared	6
	memory, mmap function and its use, RPC, authentication, timeout and retransmission, call semantics, XDR.	
3.	Daemon processes and inetd daemon.	2
4.	Introduction t o B erkeley sockets, s ocket a ddressing, T CP a nd U DP	8
	socket f unctions, s ockets a nd U nix s ignals, s ocket i mplementation,	
	client and server examples for TCP and UDP and their behavior under	
	abnormal conditions.	
5.	Socket options, IPv4, IPv6, TCP, I/O multiplexing, Unix I/O models,	4
	select and poll functions	
6.	Unix domain protocols	2
7.	Routing s ockets, r aw s ockets, e xample pr ograms, pi ng, t raceroute,	6
	methods f or w riting c lient a nd s erver i n U nix, iterative s erver,	
	concurrent server, preforking, prethreading.	
8.	Data 1 ink access, 1 ibpcap, BPF, D LPI, Linux S OCK_PACKET,	4
	programming using libpcap	
9.	Socket Programming in JAVA	4
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Stevens, W.R., F enner, B. a nd R udoff A.M., "Unix N etwork	2004
	Programming: Vol. I", 3rd Ed., Pearson Education	
2.	Stevens, W.R., "Unix N etwork P rogramming: V ol. II", 2 nd Ed.,	2002
	Pearson Education	
3.	Stevens, W.R., "Advanced Programming in Unix Environment",	2002
	Pearson Education	
4.	Bovet, D.A. and Cesati, M., "Understanding the Linux K ernel",	2004
	2 nd Ed., O'Reilly.	

NAME OF DEPT/CENTRE: Computer Science and Engineering

1. Subject Code: CSN-511 Course Title: Advanced Database Management Systems							
2. Contact Hours:	L:	3	T: 1		P:	0	
3. Examination Duration (Hrs.):	Theory	3	Pr	actical	0		
4. Relative Weight: CWS 1	5 PRS 0	MTE	35	ETE	50	PRE	0
5. Credits: 4 6. S	emester: Spi	ring					
7. Subject Area: MSC/DHC							

- 8. Pre-requisite: CSN-351
- 9. Objective: To e ducate s tudents a bout a dvanced c oncepts pe rtaining t o da tabases, database management systems and their applications
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Review of D BMS concepts; Relational da tabase systems,	3
		(
2.	Serializability View and conflict serializability, Recoverability,	6
3.	Concurrency Control: Lock based protocols, timestamp based protocols, validation based protocols, deadlock handling, insert and delete operations	6
4.	Recovery System: Failure classification, recovery and atomicity, log based recovery, shadow paging, buffer management, remote backup systems	6
5.	Distributed Databases: H omogeneous and he terogeneous databases, di stributed t ransactions, c ommit pr otocols, concurrency control in distributed databases	6
6.	Advanced Data T ypes: T ime i n da tabases, s patial and geographic databases, multimedia databases	5
7.	Advanced applications : Knowledge discovery and data mining, data mining functionalities, classification of data mining systems, data warehousing concepts, slicing, dicing, schemas, data warehouse architecture, introduction to Data Mining Query Language (DMQL)	6
8.	Study of typical DBMS packages.	4
	Total	42

SI.	Name of Authors / Books / Publishers	Year of
No.		Publication
1.	Silberchatz, A., K orth, H. F. a nd S udarshan, S., "Database	2010
	System Concepts", 6 th Ed., Tata-McGraw Hill.	
2.	Han, J. a nd K amber, M., "Data M ining: Concepts a nd	2006
	Techniques", 2 nd Ed., Morgan Kaufmann.	
3.	Ray Chhanda, "Distributed Database Systems", Pearson.	2009
4.	Date, C. J, "An Introduction to Database Systems", 8 th Ed.,	2008
	Pearson.	

NAME OF DEPT/CENTRE:	Computer Science and Engineering					
1. Subject Code: CSN-512	Course Title: Formal Methods and Software Verification					
2. Contact Hours:	L: 3 T: 1 P		P: 0	P: 0		
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0	0	
4. Relative Weight: CWS 2	25 PRS 00	2	5 5	0		00
5. Credits: 0 4 6. Se	emester Autum	n				
7. Pre-requisite: NIL 8.	Subject Area:	MSC/DHC	C			

- 9. Objective: To introduce the basic model checking techniques and tools for software verification.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Temporal logics: syntax and semantics of temporal logics PLTL, CTL,	6
	and CTL*	
2.	Model checking: Model checking CTL, PLTL, state explosion problem	6
3.	Symbolic model c hecking: bi nary decision diagrams (BDDs),	6
	representing automata by BDDs, BDD based model checking.	
4.	Reachability properties: Safety properties, Liveness properties, deadlock	6
	freeness	
5.	Fairness properties: PLTL, CTL	6
6.	SMV: symbolic model checker	6
7.	SPIN: model checker based on communicating automata	6
	Total	42

SI.	Name of Books/Authors	Year of
No.		Publication
1.	Berard, B. Bidoit, M. Finkel, A. Laroussine, F. Petit, A. Petrucci, L.	2001
	Schnoebelen, Ph. And McKenzie, P. Systems and Software verification.	
	Springer.	
2.	Huth, M. and R yan, M., "Logic in C omputer S cience: M odeling and	2005
	Reasoning About Systems", Cambridge University Press.	

NAME OF DEPTT./CH	ENTRE:	Computer Scie	Computer Science and Engineering			
1. Subject Code: CSN-	CSN-513 Course Title: Information and Network Securit			ecurity		
2. Contact Hours:	L: 3	T: 1	P: 0			
3. Examination Duratio	n (Hrs.):	Theory:3		Practic	al:0	
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0	
5. Credits:4	6.	Semester: Autumn	7.	Subject Are	a: DEC	

- 8. Pre-requisite: CSN-106
- 9. Objective: This course provides an introduction of symmetric key and public key encryption techniques, hash functions, message authentication codes, digital signatures. Application of these cryptographic techniques in different fields email, web and IP security is discussed. The goal of this course is to provide the students adequate foundation to apply cryptographic technique to emerging area of information and network security.
- 10. Details of Course:

S.No.	Particulars	Contact Hours
1	Classical Encryption: symmetric cipher models, Vigenere cipher, stream ciphers,	02
	LFSR based ciphers.	
2	Block C iphers: Substitution and p ermutation networks (SPN), F eistel s tructure,	06
	description of Data Encryption Standard (DES). Review of finite fields. Advanced	
	Encryption Standart (AES). Linear and differential attacks on block ciphers.	
3	Public Key Encrytion: Principles of public key cryptosystems, RSA, E1G amal	08
	cryptosystems. T esting p rimality: q uadratic r eciprocity, C hinese R emainder	
	Theorem (CRT), Miller – Rabin algorithm, Solovay Strassen algorithm.	
4	Hash Functions: Random oracle model, security of hash functions, Merkel	06
	Damgard iterative construction. Message Authentication and has functions. MD5	
	message digest algorithm. Secure Hash Algorithm.	
5	Digital S ignatures: Properties of d igital signatures. G eneric s ignatures. RS A	04
	signature, El Gamal signature.	
5	Authentication Application: Kerberos. X.509 Authentication service.	04
6	Electronic Mail Security: Pretty Good Privacy (PGP). S/MIME.	04
7	IP Security: IP security overview, architechture, key management.	04
8	WEB S ECURITY: Secure S ockets L ayer (SSL) and Transport L ayer S ecurity	04
	(TLS). Secure Electronic Transaction.	
	Total	42

S.No.	Author(s)/Name of Books/Publishers	Year of
		Publication
1	Stallings W ., Cryptography a nd N etwork Se curity, 4/ E, P earson E ducation	2006
	India.	
2	Stinson D., Cryptography Theory and Practice, 3/E, (Special Indian E dition,	2006
	first reprint 2011) Chapman & Hall/CRC	
3	Pieprzyk J., Hardjono T. and Seberry J. Fundamentals of Computer Security,	2003
	Springer (International Edition) (First Indian reprint 2008)	
4	Koblitz N. A Course in Number Theory and Cryptography, 2/E, Springer	1994
5	Menezes, A. Handbook of Applied Cryptography, CRC Press, (available free of	2001
	cost at: http://cacr.uwaterloo.ca/hac/)	

- 9. Objective: To provide a deeper understanding of automata theory.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Automata and Logical s pecification: M SO1 ogic over w ords, T he	7
	equivalence theorem, consequences and applications in model checking,	
	FO and MSO definability.	
2.	Congruences a nd m inimization: hom omorphisms, quot ients, a nd	7
	abstraction; mini mization and equivalence of DFAs; e quivalence and	
	reduction of NFAs.	
3.	Tree aut omata: t rees and tree l anguages; deterministic t ree	8
	automata, nondeterministic t ree a utomata, emptiness, c ongruences a nd	
	minimization; logic oriented formalisms over trees; applications.	
4.	Pushdown and counter systems	8
5.	Communicating systems	6
6.	Petri nets	6
	Total	42

Sl.	Name of Books/Authors	Year of
No.		Publication
1.	Thomas, W. "Applied Automata Theory". Springer	2005
2.	Pin, J. "Mathematical foundations of automata theory." Springer	2012

NAME OF DEPTT./CE	NTRE:	Compute	er Scien	ce and Eng	gineering	
1. Subject Code: CSN-	-515	Course Ti	itle: Dat	a Mining a	& Wareho	using
2. Contact Hours:	L: 3	T:	1	P:	0	
3. Examination Duration	n (Hrs.):	Theory	:3	Pra	actical:0	
4. Relative Weightage:	CWS:25	PRS:0		MTE:25	ETE:50	PRE:0
5. Credits:4	6. 5	Semester:	Autumn	7.Su	bject Area:	DEC

- 8. Pre-requisite: CSN-102
- 9. Objective: To educate students to the various concepts, algorithms and techniques in data mining and warehousing and their applications.
- 10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Introduction to data mining: Motivation and significance	3
	of data mining, data mining functionalities, interestingness	
	measures, classification of data mining system, major issues	
	in data mining.	
2.	Data p re-processing: Need, data s ummarization, da ta	6
	cleaning, data integration and transformation, data reduction	
	techniques – Singular Value Decomposition (SVD), Discrete	
	Fourier I ransform (D FI), Discrete W avelet I ransform	
	(DW1), data di scretization and concept ni erarchy	
2	generalization.	1
5.	definition multidimensional data model(s), data warehouse	4
	architecture O I AP s erver t where da ta w architecture	
	implementation on-line analytical processing and mining	
4	Data cube computation and data generalization: Efficient	Δ
т.	methods f or da ta cube c omputation di scovery dr iven	Т
	exploration of da ta c ubes complex a generation attribute	
	oriented induction for data generalization.	
5.	Mining frequent patterns, associations and correlations:	6
	Basic con cepts, efficient and scalable f requent ite mset	
	mining algorithms, mining various kinds of association rules	
	- multilevel and multidimensional, association rule mining	
	versus c orrelation a nalysis, c onstraint ba sed a ssociation	
	mining.	
6.	Classification a nd p rediction: Definition, de cision t ree	6
	induction, Bayesian classification, rule based classification,	
	classification by b ackpropagation and support ve ctor	
	machines, associative classification, lazy learners, prediction,	
	accuracy and error measures.	

7.	Cluster an alysis: Definition, clustering algorithms – partitioning,	6
	hierarchical, de nsity b ased, grid ba sed and model ba sed;	
	Clustering hi gh di mensional da ta, constraint ba sed c luster	
	analysis, outlier analysis – density based and distance based.	
8.	Data mining on complex data and applications: Algorithms for	7
	mining of spatial da ta, multimedia da ta, text data; Data mini ng	
	applications, social impacts of data mining, trends in data mining.	
	Total	42

Sl. No.	Name of Authors / Books / Publishers	Year of
		Publication
1.	Han, J. and Kamber, M., " Data M ining - Concepts and	2011
	Techniques", 3rd Ed., Morgan Kaufmann Series.	
2.	Ali, A. B. M. S. and Wasimi, S. A., "Data Mining - Methods and	2009
	Techniques", Cengage Publishers.	
3.	Tan, P.N., Steinbach, M. and Kumar, V., "Introduction to D ata	2008
	Mining", Addison Wesley – Pearson.	
4.	Pujari, A. K., "Data Mining Techniques", 4 th Ed., Sangam Books.	2008

NAME OF DEPTT./CENTF	RE:	Computer Science and Engineering			
1. Subject Code: CSN-516		Course Title: Modeling and Simulation			
2. Contact Hours: L: 3	i	T: 1	P: 0		
3. Examination Duration (H	rs.): Theory:	3	Practi	cal:0	
4. Relative Weightage: CW	VS:25 PRS	:0 MTE	:25 ETE:50	PRE:0	
5. Credits:4	6. Semester: Aut	tumn 7.Sub	ject Area: DEC	2	

8. Pre-requisite: Knowledge of Probability theory

9. Objective: To acquaint the student to modeling and simulation techniques for discrete, dynamic and stochastic systems.

10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Introduction: Systems, mode ls, deterministic and stochastic	4
	systems, static and dynamic systems, discrete event simulation,	
	continuous simulation, Monte Carlo simulation.	
2.	Discrete Event Simulation: Time-advance mechanisms, event	4
	modeling of discrete dynamic systems, event graphs, process	
	oriented and event or iented approaches, single-server single	
	queue model.	0
3.	GPSS: Program m odel, entities a nd t ransactions, bl ocks i n	8
	GPSS, us er de fined f unctions, S NA, I ogic s witches, s ave	
	locations, us er c hains, t abulation of r esult, pr ogramming	
	examples.	
4.	Random Number Generation: Congruence generators, long	5
	period generators, statistical quality m easures of g enerators,	
	uniformity a nd 1 ndependence t esting, chi-square a nd ot her	
	hypotheses testing, runs testing.	
5.	Random V ariate G eneration: random variable, pr obability	6
	density and distribution functions, Location, s cale and s hape	
	parameters, di screte a nd c ontinuous pr obability distributions;	
	Inverse t ransform m ethod, c omposition a nd a cceptance-	
	rejection m ethods, e fficiency and qua lity measures of	
	generators; Input M odelling, s election of di stribution f or a	
	random s ource, f itting di stributions t o da ta, c onstructing	
	empirical distributions from data.	10
6.	Random Processes and Queuing Models: random process,	10
	discrete/continuous t ime pr ocesses, Markovian pr operty,	
	Markov c hain, state transition diagrams, birth-death process,	
	Little's theorem, steady state analysis of M/M/1 model; multi-	

	server models, M /G/1 and ot her qu euing m odels, Burke's	
	theorem, network of queues, Jackson theorem.	
7.	Network Si mulation: SimEvent tool bo x in M ATLAB,	5
	general features of network simulation packages, case study of	
	OMNET++/ns2/ns3/NetSim.	
	Total	42

Sl. No.	Name of Books / Authors	Year of Publication
1.	Karian, Z.A. and Dudewicz, E.J., "Modern Statistical Systems and GPSS Simulation", 2 nd Ed., CRC Press.	1999
2.	Banks, J., C arson, L.S., N elson, B.L. a nd N icol, D.M., "Discrete E vent S ystem S imulation", 4th Ed., P earson Education.	2007
3.	Law, A. M. a nd K elton, W. D., "Simulation, Modeling a nd Analysis", 3 rd Ed., Tata McGraw-Hill.	2003
4.	Alberto L eon-Garcia, "Probability and R andom Processes for Electrical Engineers", 2 nd Ed., Pearson Education	2011

7. Pre-requisite: Student must have the knowledge of basics concepts of software engineering.

8. Subject Area: MSC/DHC

9. Objective: To introduce the advanced concepts related to software engineering, metrics, and technical aspects of project management.

10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Product M etrics: S oftware Q uality, Framework f or pr oduct metrics, metrics for analysis model, metrics for design model, metrics f or s ource c ode, metrics f or te sting, metrics f or maintenance.	5
2.	Web E ngineering: E ngineering Layers, Engineering P rocess, Formulating w eb b ased s ystems, P lanning, Team, P roject Management, M etrics f or W eb E ngineering a nd W ebApps, Analysis m odel f or W ebApps, C ontent M odel, Interaction Model, F unctional m odel, C onfiguration m odel, N avigation analysis, WebApp Design and Testing.	8
3.	Cleanroom s oftware engineering: C lean R oom a pproach, functional specification, Cleanroom design, Cleanroom testing.	4
4.	Component ba sed D evelopment: T he C BSE P rocess, D omain engineering, C omponent ba sed d evelopment, C lassifying and Retrieving Components, Economics of CBSE.	5
5.	Formal M ethods: B asics, Mathematics in Software Development, mathematical pr eliminaries, applying	7

	mathematical not ations f or f ormal s pecification, Object Constraint language.	
6.	Formal S pecification: F ormal S pecification in the S oftware process, S ub-system i nterface s pecification, Behavioral Specification.	7
7.	Agile D evelopment: A gile p ractices, extreme pr ogramming, planning, t esting, r efactoring, A gile d esign b asics. S oftware process models and metrics for evolving technologies.	6
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Duke, R. and R ose, G., "Formal O bject O riented Specification	2000
	Using O bject-Z", Cornerstones of C omputing S eries (editors: R.	
	Bird, C.A.R. Hoare), Macmillan Press.	
2.	Diller, A., "Z: An Introduction t o F ormal M ethods", 2nd e d.,	1994
	Wiley.	
3.	Heineman, G.T., and Councill, W.T., "Component-Based Software	2001
	Engineering: Putting the Pieces Together", Pearson Higher	
	Education/Addison Wesley.	
4.	Prowell, S. J., Trammell, C. J., Linger, R. C., Poore, J.H., "Cleanroom	1999
	Software Engineering: Technology and Process", Addison Wesley.	
5.	Pressman R., S., "Software Engineering: A Practitioner's	2010
	Approach", 6th Ed., Tata McGraw-Hill.	
6.	Sommerville, I., "Software Engineering", 6th Ed., Pearson	2007
	Education.	
7.	Pressman, R. S. and Lowe, D., "Web Engineering: A Practitioner's	2008
	Approach", Special Indian Edition, Tata McGraw-Hill.	
8.	Martin, R.C., Agile Software Development: Principles, Patterns,	2011
	and Practics, Pearson Education Publisher.	

- 9. Objective: To provide the foundations of some basic logical languages and their mechanization.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Propositional L ogic: syntax, s emantics, s oundness a nd c ompleteness	8
	theorems.	
2.	Boolean s atisfiability p roblem (SAT): nor mal f orms, H orn c lauses,	6
	resolution principle, DPLL algorithm, recent SAT solvers.	
3.	First-order L ogic: syntax, s emantics, s oundness and completeness	8
	theorems.	
4.	Higher-order Logic (HOL): syntax, semantics, and types.	8
5.	Automated theorem p roving: F irst-order t heorem pr oving, uni fication,	6
	term rewriting.	
6.	Theorem provers for HOL: Isabelle/Coq	6
	Total	42

SI.	Name of Books/Authors	Year of
No.		Publication
1.	Huth, M. and R yan, M., "Logic in C omputer S cience: M odeling and	2005
	Reasoning About Systems", Cambridge University Press.	
2.	Nipkow, T. Paulson, L. Wenzel, M. "Isabelle/HOL a proof assistant for	2002
	higher-order logic."	

NAME OF DEPT./CE	NTRE:	Computer Science and Engineering			
1. Subject Code: CSN-	-519	Course Title: Social Network Analysis			
2. Contact Hours:	L: 3	T	: 1	P: 0	
3. Examination Duratio	on (Hrs.):	Theory :3		P	ractical :0
4. Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits: 4	6. Sei	nester Spring		7. Pre-	-requisite: Nil

8. Subject Area: DCC

9. Objective: To introduce the basic notions used for social network analysis.

10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Social N etwork Analysis: P reliminaries and definitions, Erdos	4
	Number Project, Centrality measures, Balance and Homophily.	
2.	Random graph models: Random graphs and alternative models,	4
	Models of network growth, Navigation in social Networks	
3.	Network t opology a nd di ffusion, C ontagion i n N etworks,	4
	Complex contagion, Percolation and information, Epidemics and	
	information cascades	
4.	Cohesive subgroups, Multidimensional Scaling, Structural	6
	equivalence, roles and positions, Ego networks, Weak ties,	
	Structural holes	
5.	Small world experiments, small world models, origins of small	6
	world, Heavy tails, Small Diameter, Clustering of connectivity	
6.	The E rdos R envi M odel, C lustering M odels, P referential	6
	Attachment	
7.	Navigation in Networks Revisited, Important vertices and page	6
	rank algorithm, towards rational dynamics in networks, basics of	
	game theory	
8.	Coloring a nd consensus, bi ased vot ing, ne twork f ormation	6
	games, ne twork s tructure a nd e quilibrium, be havioral	
	experiments, Spatial and agent-based models	
	Total	42

Sl. No.	Name of Books/Authors
1.	S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications (Cambridge,
	Cambridge University Press, 1994).
2.	D. Easley and J. Kleinberg, Networks, Crowds and Markets: Reasoning about a highly connected
	world

NAME OF DEPTT./CEI	Computer Science and Engineerin			gineering	
1. Subject Code: CSN-	520	Cour	Course Title: Cloud Computing		
2. Contact Hours: I	2:3	T:	1	P: 0	
3. Examination Duration	(Hrs.):	Theory:3		Practical:	0
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4	6. Sei	mester: Spring	7.Subject	Area: DEC	2

- 8. Pre-requisite: CSN-341
- 9. O bjective: This c ourse w ill c over the s tudy of v arious algorithms involved in better implementing the c loud-based s ystems s tarting t hrough f undamentals of deployment.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Introduction: Distributed Computing and Enabling Technologies,	3
	Cloud Fundamentals: Cloud Definition, Evolution, Architecture,	
	Applications, deployment models, and service models.	
2.	Virtualization: Issues with virtualization, virtualization	5
	technologies and architectures, Internals of virtual machine	
	monitors/hypervisors, virtualization of data centers, and Issues with Multi-tenancy	
3.	Implementation: Study of Cloud computing Systems like Amazon	7
	EC2 and S3, Google App Engine, and Microsoft Azure, Build	
	Private/Hybrid Cloud using open source tools, Deployment of	
	Web Services from Inside and Outside a Cloud Architecture.	
	MapReduce and its extensions to Cloud Computing, HDFS, and	
	GFS.	
4.	Interoperability and Service Monitoring: Issues with	5
	interoperability, Vendor lock-in, Interoperability approaches. SLA	
	Management, Metering Issues, and Report generation.	
5.	Resource Management and Load Balancing: Distributed	9
	Management of Virtual Infrastructures, Server consolidation,	
	Dynamic provisioning and resource management, Resource	
	Optimization, Resource dynamic reconfiguration, Scheduling	
	Techniques for Advance Reservation, Capacity Management to	
	meet SLA Requirements, and Load Balancing, various load	
	balancing techniques.	
6.	Migration and Fault Tolerance: Broad Aspects of Migration into	3
	Cloud, Migration of virtual Machines and techniques. Fault	
	Tolerance Mechanisms.	

7.	Security: Vulnerability Issues and Security Threats, Application-	7
	level Security, Data level Security, and Virtual Machine level	
	Security, Infrastructure Security, and Multi-tenancy Issues.	
	IDS: host-based and network-based, Security-as-a-Service. Trust	
	Management, Identity Management, and Access Controls	
	Techniques	
8.	Advances: Grid of Clouds, Green Cloud, Mobile Cloud	3
	Computing	
	Total	42

Sl. No.	Name of Books / Authors	Year of
		Publication
1.	Cloud C omputing P rinciples a nd P aradigms, Rajkumar B uyya,	2011
	James Broberg, Andrzej Goscinski, Wiley Publishers	
2.	Cloud Computing Bible, Barrie Sosinsky, Wiley Publishers	2010
3.	Cloud C omputing : W eb-based Applications that change the way	2008
	you work and collaborate onl ine, M ichael M iller, P earson	
	Education	
4.	Mastering C loud c omputing, R ajkumar B uyya, C hristian	2013
	Vacchiola, S Thamarai Selvi, McGraw Hill	
5.	Cloud Computing and SOA C onvergence in Y our E nterprise: A	2010
	Step-by-Step Guide, David S. Linthicum	
6.	Cloud S ecurity and P rivacy: A n E nterprise P erspective on R isks	2010
	and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif,	
	O'Reilly	
7.	Cloud Computing : A Practical Approach, Toby Velte, Antohy T	2009
	Velte, Robert Elsenpeter, McGraw Hill	

- 7. Pre-requisite: Nil
- 8. Subject Area: DCC
- 9. O bjective: To familiarize s tudents with the concepts a nd i ssues of m obile a nd pe rvasive computing technologies.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Introduction t o m obile c omputing a nd pe rvasive/ubiquitous c omputing,	5
	Pervasive computing systems - HP's Cooltown, Microsoft's EasyLiving	
2.	Enabling t echnologies f or m obile a nd p ervasive c omputing: s ensor	10
	technology and wireless sensor networks, RFID technology, smartphones	
3.	Mobile and pervasive networking: wireless TCP, Mobile IP, ad-hoc routing;	10
	data access and management; pe rvasive c omputing m iddleware: AUR A,	
	GAIA, ONE.WORLD, service discovery	
4.	Context-aware computing: location-aware systems-Active Badge, RADAR,	5
	Cricket, GPS; loc ation-aware s ervices; i ssues and challenges in context-	
	awareness	
5.	Security and privacy in pervasive and mobile computing environment	5
6.	Applications: Internet of T hings, s mart homes/offices, intelligent tr affic	7
	systems, social computing, wearable computing	
	Total	42

SI.	Name of Books/Authors
No.	
1.	Jochen B urkhardt, Pervasive C omputing : Technology and A rchitecture of M obile
	Internet Applications 14th Edition, Pearson Education Singapore Pte Ltd 2002.
2.	Stefan Poslad, Ubiquitous Computing: Smart Devices, Environments And Interactions
	1st Edition, 2010, Wiley India Pvt Ltd
3.	Laurence T . Y ang, Handbook O n M obile And U biquitous C omputing S tatus And
	Perspective, 2012, CRC Press

NAME OF THE DEPARTMENT: Computer Science and Engineering

1.	Subject Code: CSN-522 Co	urse Title:	Advanced Grap	h Theory
2.	. Contact Hours: L: _3; T:1	<u>;</u> P: <u>0</u>	<u>)</u>	
3.	. Examination Duration (Hrs.): Theory	03	Practical -	-
4.	. Relative Weightage: CWS 2 5 M	TE 2 5	ETE 5 0	
5.	Credits: 0 4 6. Semester:		-	
	S	pring	Autumn	Both

- 7. Pre-requisite: CS106
- 8. Subject Area: MSC/DHC
- 9. **Objective of t he course:** The objective of this course is to provide the students a detailed understanding of graph theory.
- 10. Details of the Course:

S.	Particulars	Contact
No.		Hours
1	Review of b asics: Graphs and digraphs, incidence and adjacency matrices,	04
	forests. Cayley's formula, the Matrix-Tree theorem, minimum spanning trees. Cut	
	vertices cut edges bonds the cycle space and the bond space blocks	
	Menger's theorem: Paths and Cycles: Fuler tours. Hamilton paths and cycles	
	theorems of Dirac, Ore, Bondy and Chvatal, girth, circumference,	
2	Matchings: Matchings: Berge's Theorem, perfect matchings, Hall's theorem,	10
	Tutte's theorem, Konig's theorem, Petersen's theorem, algorithms for matching	
	and weighted matching (in both bipartitie and general graphs), factors of graphs	
	(decompositions of the complete graph), Tutte's f-factor theorem;	
3	Extremal Pro blems: Extremal problems: Independent sets and covering	10
	numbers, Turan's theorem, Ramsey theorems; Colorings: Brooks theorem, the	
	greedy algorithm, the weish-Powell bound, critical graphs, chromatic	
	polynomials, ginn and chromatic number, vizing's theorem, Graphs on surfaces.	
	cell embeddings, graphs on other surfaces.	
4	Directed G raphs : Tournaments, directed paths and cycles, connectivity and	06
	strongly connected digraphs, branching.	
5	Networks and flows: Flow cuts, max flow min cut theorem, perfect square.	06
6	Random Graphs: The basic models - use of expectations, simple properties of	06
	almost all graphs, almost determined variables - use of variance, Hamiltonian	
	cycles, the phase transition.	
	Total	42

S.No.	Author(s)/Name of Books/Publishers	Year of Publication
1	Douglas B. West, Introduction to Graph Theory, Prentice Hall of India.	2002
2	Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science. Prentice-Hall.	2004
3	Frank Harary, Graph Theory, Narosa.	2000
4	R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall.	
5	Bollobas, Bela, Modern Graph Theory, Springer	
6	Diestel, R. Graph Theory, Springer	

Name of Department: Computer Science and Engineering

1.	Subject Code: CSN-523		С	ourse Ti	tle: C	Com	putational C	Jeon	netry
2.	Contact Hours L : 3	T:	1		ł	P:	0		
3.	Examination Duration (Hrs)) : Tl	heory	y 03		Pra	ctical		
4.	Relative Weightage: CWS	2	5	MTE	2	5	ЕТЕ	5	0
5.	Credits 0 4			Sprin	ng	6.	Semester		
7.	Pre Requisite: CSN-212								

- 8. Subject Area: DEC
- 9. Objective O f C ourse: To i ntroduce geometric a lgorithms and t o give a n

exposure to algorithms and data structures for geometric problems.

10. Details Of Course:

S.	Topics	No. of				
No.		Lectures				
1	Polygon T riangulation: Triangulation T heory, A rea of P olygon,	6				
	Segment intersection, Segment-triangle intersection.					
	Polygon P artitioning: M onotone P artitioning, T rapezoidalization,					
	Partition into Monotone Mountains, Linear-Time Triangulation, Convex					
	Partitioning.					
2	Convex Hulls in Two Dimensions: Definitions of Convexity and Convex	5				
	Hulls, Naive Algorithms for Extreme Points, Gift Wrapping, QuickHull,					
	Graham's Algorithm, Lower Bound, Incremental Algorithm, Divide and					
	Conquer					
3	Convex Hulls in Three Dimensions: Polyhedra and data structures,	6				
	Gift w rapping, Preparata-Hong a lgorithm, Incremental al gorithm,					
	Randomized incremental algorithm					
4	Voronoi D iagrams: Definitions a nd B asic P roperties, D elaunay	6				
	Triangulations, Algorithms, Applications in D etail, Medial A xis,					
	Connection to Convex Hulls, Connection to Arrangements					
5	Arrangements: Combinatorics of Arrangements, Incremental Algorithm,	6				
	Three and Higher Dimensions, Duality, Higher-Order Voronoi Diagrams,					

	Applications	
6	Search an d I ntersection: S egment-Segment Intersection, S egment-	8
	Triangle Intersection, Point in Polygon, Point in Polyhedron, Intersection	
	of C onvex P olygons, Intersection of Segments, Intersection of N on-	
	convex Polygons, Extreme Point of Convex Polygon, Extremal Polytope	
	Queries, Planar Point Location	
	Motion Planning: Shortest Paths, Moving a Disk, Translating a Convex	
7	Polygon, Moving a Ladder, Robot Arm Motion, Separability	5
	Total	42

11. Books recommended

S.	Name of Authors/Books/ Publishers	Year of
No		Publication
1	M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf,	2000
	Computational Geometry: Algorithms and Applications (2nd	
	Edition), , Springer-Verlag.	
2	J. O'Rourke, Computational Geometry in C, 2nd ed., Cambridge	1998
	Univ. Press, 1998.	
3	B. Casselman, Mathematical Illustrations: A Manual of Geometry	2005
	and PostScript, Springer-Verlag,.	
	(http://www.math.ubc.ca/~cass/graphics/manual)	
4	K. Mulmuley, Computational Geometry: An Introduction Through	1994
	Randomized Algorithms, Prentice Hall.	

NAME OF DEPTT./CE	NTRE:	Department of Electronics and Communication Engineering				
1. Subject Code: ECN	-102	Course Title:	Fundamen	tals of Elect	ronics	
2. Contact Hours: I	.: 3	T: 1		P: 0		
3. Examination Duration	n (Hrs.):	Theory: 3	P	Practical: 0		
4. Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0	
5. Credits: 4	6. Sen	nester: Spring	7. S	ubject Area:	ESC	

- 8. Pre-requisite: Nil
- 9. Objective: To impart knowledge of basic principles of electronics to UG students from other disciplines of engineering and science.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Review of properties of metals, dielectrics and semiconductors.	1
2.	Diodes : Working principle and characteristics and diode applications	4
	(rectification with capacitive filter and zener regulation).	
3.	BJT : Operation and characteristics, brief overview of DC biasing, 're'	6
	model, Amplifier (CE, CB and CC).	
4.	MOSFET : Introduction to MOSFET operation and characteristics.	1
5.	Operational Amplifiers: Input modes and parameters, introduction to	5
	concept of n egative f eedback, ne gative f eedback i n O PAMP, bi as	1
	currents and offsets, open and closed loop responses.	
6.	Op-Amp A pplications : C omparator, summing, integrator,	8
	differentiator, instrumentation amplifiers, isolation amplifiers,	
	Operational T ransconductance A mplifiers, Log and A ntilog	
	amplifiers, C onverters, Introduction to O PAMP based a ctive filters,	1
	Brief description of OPAMP based oscillators.	
7.	Basic Digital Electronics : Binary num ber s ystem, Boolean algebra,	8
	Logic gates, adders, one-bit me mory, flip-flops (S R, JK), shift	
	registers, Asynchronous counter.	
8.	Introduction t o microprocessor : F our-bit m icroprocessor	9
	architecture, s tored pr ogram c omputer, i nstruction s et a nd ba sic	
	assembly language programming.	
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication/
		Reprint
1.	Boylstead R.L., Nashelsky L., "Electronic D evices and Circuit Theory", Pearson, 10 th Edition.	2009
2.	Floyd T .L., Buchla D.L., "Electronics Fundamentals: C ircuits, Devices and Applications", 8 th Edition	2010
3.	Millman J., Halkias C.C., J it S., "Electronic D evices and C ircuits", Tata McGraw-Hill, 2 nd Edition.	2007
4.	Dorf R.C., Smith R.J., "Circuits, Devices and Systems: A First Course in Electrical Engineering", 5 th Edition	1991

NAME OF DEPTT./CENTRE:		Department of Electronics and Communication Engin				
1. Subject Code: ECN-	104	Course Title:	Digital Log	ic Design		
2. Contact Hours: La	: 3	T: 1		P: 0		
3. Examination Duration	(Hrs.):	Theory	y:3	Practica	1:0	
4. Relative Weightage:	CWS : 25	PRS: 0	MTE: 25	ETE : 50	PRE: 0	
5. Credits: 4	6. Sem	ester: Spring	7. S	ubject Area: D	OCC	

- 8. Pre-requisite: NIL
- 9. Objective: To acquaint the students with the fundamental principles of Digital Logic Circuits and their design.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Number s ystems and B oolean a lgebra: Introduction t o num ber	5
	system and Boolean algebra; Boolean identities, basic logic functions,	
	standard f orms of 1 ogic e xpressions, s implification of 1 ogic	
	expressions.	
2.	Logic families: Brief overview of Transistor as a switch; Logic gate	4
	characteristics – propagation delay, speed, noise margin, fan-out and	
	power dissipation; Standard TTL and static CMOS gates.	
3.	Combinational logic: Arithmetic ci rcuits, de coders, encoders,	6
	multiplexers, de-multiplexers, and their us e in logic s ynthesis;	
	Hazards in combinational circuits.	
4.	Introduction to VHDL : Behavioral – data flow, and algorithmic and	6
	structural de scription, lexical e lements, data objects types, attributes,	
	operators; V HDL c oding e xamples, c ombinational c ircuit de sign	
	examples in VHDL and simulation.	
5.	Sequential logic circuits: Latches and Flip Flops (SR, D, JK, T);	6
	Timing in sequential circuits; Shift register; Counters – synchronous,	
	asynchronous; S equential c ircuit de sign e xamples i n V HDL a nd	
	simulation.	
6.	Finite state machines: Basic concepts and design; Moore and Mealy	7
	machines examples; S tate mini mization/reduction, state a ssignment;	
	Finite s tate m achine de sign case s tudies and FSM ci reuit d esign	
	examples in VHDL and simulation.	
7.	ROM and RAM, PLA, PAL and FPGA; RTL b ased de sign projects	5
	and their implementation in FPGA using VHDL.	

8.	Astable and monostable multivibrator circuits using basic logic gates; Internal structure of 555 and its applications, clock circuits.	3
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Mano M.M., Ciletti M.D., "Digital Design", Pearson India, 4 th Edition.	2006
2.	Katz R.H., Borriello G., "Contemporary Logic Desing", Prentice Hall	2008
	India, 2 nd Edition.	
3.	Kohavi Z., Jha N.K., "Switching and Finite Automata Theory",	2011
	Cambridge University Press, India, 2 nd Edition.	
4.	Wakerly J.F., "Digital Design: Principles and Practices," Pearson	2008
	India, 4 th Edition.	
5.	Harris D., Harris S., "Digital Design and Computer Architecture",	2007
	Elsevier Publications, 2 nd Edition.	
6.	Pedroni V.A., "Digital Circuit Design with VHDL", Prentice Hall	2001
	India, 2 nd Edition.	

NAME OF DE	NAME OF DEPT./CENTRE: Electronics and Computer Engineerin					neering		
1. Subject Code:ECN-203Course Title:Signals and Systems								
2. Contact Hours: L: 3				L: 3		T: 1	Р:	0
3. Examination Duration (Hrs.):			Theor	y3		Practica	10	
4. Relative We	ight:	CWS:25		PRS:0	MTI	E:25	ETE:50	PRE:0
5. Credits:4	6. Semester	Autumn	7. Pre	-requisite:	MA -	– xxx (Math	s 1 + Math	s 2)

- 8. Subject Area: DCC
- 9. Objective: To provide a thorough understanding of the fundamentals of s ignals and s ystems required in the s tudy of s ignal pr ocessing, c ommunication s ystems and c ontrol systems.
- 10. Details of the Course:

Sl.No.	Contents	Contact Hours
1.	Classification and representation of signals and systems, examples; Impulse response and step response of a system	6
2	Paviou of Fourier garies and its exponential representation: Paviou	6
Ζ.	of Fourier transform and its monomics, relationship between Fourier	0
	of Fourier transform and its properties, relationship between Fourier	
	transform a nd F ourier's eries; G eneralized Fourier't ransform;	
	Amplitude a nd pha se s pectra, e nergy a nd pow er s pectral de nsity, signal bandwidth	
2	Signal bandwiddi. Relationship of Lonloss and Equiver transforms: Transfor function	6
5.	and it to be a lock di agram r appropriation a appropriation integral and the	0
	Equipres t rongfor f unotion: S votom pr opertion 1 incertity and t imp	
	Fourier transfer Function, S ystem properties, I meanty and time	
4	invariance, bandwidth.	10
4.	Review of z -transform and its properties, geometric e valuation of	10
	Fourier t ransform from pol e-zero plot; D iscrete time Fourier	
	transform a nd 1 ts pr operties; D iscrete c onvolution a nd dua lity;	
	Discrete Fourier t ransform a nd i ts pr operties; C omputation o f	
	discrete t ime F ourier t ransform and discrete Fourier t ransform,	
	approximation of F ourier transform and discrete c onvolution using	
	discrete Fourier transform.	
5.	Difference equation, impulse response, convolution sum and transfer	8
	function representation of discrete time linear time invariant systems;	
	Transform a nalysis a nd ne tworks s tructures f or di screte-time	
	systems.	
6.	Distortionless transmission, ideal and non-ideal filters, Butterworth	6
	and C hebyshev f ilters; T ime a nd f requency domain a nalysis of	
	continuous time LTI systems.	
	Total	42
S.No.	Name of Authors / Books / Publishers	Year of
-------	--	--------------
		Publication/
		Reprint
1.	Oppenheim, A. V., Willsky, A. S. a nd N awab, S. H., "Signals &	1997
	Systems", 2 nd Ed., Prentice-Hall of India.	
2.	Haykin, S. and V an B een, B., "Signals and S ystems" 2 nd Ed., J ohn	2003
	Wiley & Sons.	
3.	Roberts, M.J., "Fundamentals of Signals & Systems", Tata McGraw-	2007
	Hill.	
4.	Ziemer, R.E., Tranter, W.H. and Fannin, D.R., "Signals and Systems:	2001
	Continuous and Discrete", 4 th Ed., Pearson Education.	
5.	Lathi, B. P., "Linear Systems and Signals", 2 nd Ed., Oxford University	2006
	Press.	

NAME OF DEPT./CENTRE	E: D Ei	epartment (ngineering	of Electron	ics and Computer
1. Subject Code: ECN-252	Со	ourse Title: Di	gital Electro	onic Circuits Laboratory
2. Contact Hours:	L:	т 0	: 0	P: 3
3. Examination Duration (Hi	rs.): Theory	/:0	Practical :	3
4. Relative Weight: CV	WS:0 PRS:50	MTE:0	ETE:0	PRE:50
5. Credits: 2 6. Semes	ster : Spring	7. Pre-requis	ite: EC - 203	i
8. Subject Area: DCC				

- 9. Objective: To provide hands-on experience on the various building blocks of digital circuits.
- 10. Details of the Course:

Sl.No.	Contents	ContactHours
1	Hardware based	
	Design of binary adders.	
	Design and testing of switch debouncers.	
	Design of TTL- and 555-based multivibrators, timers and clock	
	circuits.	
	Basic programming of 8085 microprocessor.	
	Simple I/O exercises using 8255.	
2		
	VHDL and FPGA kit based	
	Design of a 'last-in, first-out'(LIFO) stack or a FIFO queue.	
	(i) Design of a 'rising edge detector' circuit using an FSM.	14 x 4
	(ii) Design of a debouncing circuit.	14 4 4
	Design of a UART receiver and transmitter.	
	Design of various types of memory	
	Interfacing of a $P S/2$ ke yboard (Controlling the s topwatch	
	through a PS/2 keyboard)	
	Interfacing of a VGA monitor (A simple animation)	
	Design of a s imple single-cycle 'reduced instruction set	
	computer (RISC)' based on the MIPS design	
	Design o f a pi pelined R ISC pr ocessor with va rious	
	enhancements like forwarding, hazard detection	
-		
	Total	56

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/ Renrint
1.	Mano, M.M. and Ciletti, M.D., "Digital Design", 4 th Ed., Prentice-	2006
	Hall.	2007
2.	Gaonkar, R. S., "Microprocessor A rchitecture, P rogramming a nd Applications", 5 th Ed., Penram International.	2007
3.	Pong P . C hu, "FPGA P rototyping b y V HDL E xamples: X ilinx Spartan-3 Version" Wiley.	2008
4.	Bhasker, J., "A VHDL Primer," Pearson India.	2005
5.	Volnei A. Pedroni, "Circuit Design and Simulation with VHDL," 2nd	2008
	Ed. PHI India	

NA	ME OF DEPTT./CEN	TRE:	Departmen	t of Mather	natics	
1.	Subject Code: MAN-	010	Course Ti	tle: Opti r	nization Tec	hniques
2.	Contact Hours: L	: 3	T:1	Р	:0	
3.	Examination Duration	n (Hrs.): Th	eory: 3	Practic	cal : 0	
4.	Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5.	Credits: 4	6. Semester:	Spring	7. Subje	ect Area: BS	С

- 8. Pre-requisite: Nil
- 9. Objective: To acquaint the students with the basic concepts of Optimization.
- 10. Details of Course

S. No.	Contents	Contact
		Hours
1	Different T ypes of OR M odels, C ase s tudies i n E ngineering	2
	applications	
2	Convex S ets, G raphical M ethod, S implex M ethod, B ig – M	10
	Method, Two Phase Method, Revised Simplex Method	
3	Duality Theory, Dual Simplex Method, Sensitivity Analysis	7
4	Cutting Plane and Branch and Bound Techniques for all Integer	9
	and Mixed Integer Programming Problems, 0-1 Integer Problems,	
	Travelling Salesman Problem, Cargo Loading Problem	
5	Transportation Problems and Assignment Problems	4
6	Game Theory: Rectangular Games, Minmax Theorem, Graphical	5
	Solution of 2 X n a nd m X 2 g ames, R eduction t o L inear	
	Programming Problems	
7	Sequencing and Scheduling: Processing of Jobs through Machines,	5
	CPM and PERT	
		42
	TOTAL	

S.No.	Name of Authors / Books / Publishers	Year of
		Publication /
		Reprint
1	Taha, H.A., "Operations Research: An Introduction", MacMillan Pub	2013
	Co., NY, Ninth Edition (Reprint).	
2.	Ravindran, A., Phillips, D.T. and Solberg, J.J., "Operations Research:	2012
	Principles and Practice", John Wiley and Sons, NY, Second Edition	
	(Reprint).	
3.	Pant, J.C., "Introduction to Optimization", Jain Brothers,	2012
4.	Hillier, F. S. and Lieberman, G. J., "Introduction t o O perations	2009
	Research," 9 th Edition, McGraw-Hill	
5.	Mittal, K. V. a nd M ohan, C., " Optimization Methods i n S ystem	1996
	Analysis and Operations Research"	
6.	Mohan C. and Deep K., "Optimization Techniques"	2009

NAME OF DEPTT./CENTRE	E: Departr	Department of Mechanical & Industrial Engineering				
1. Subject Code: MIN-106	Course 7	Course Title: Engineering Thermodynamics				
2. Contact Hours: L: 3	T: 1		P: 2/2			
3. Examination Duration (Hrs	.): Theo	ry: 3	Practical	: 0		
4. Relative Weightage: CWS	S: 15 PRS: 15	MTE: 30	ETE: 40	PRE: 0		
5. Credits: 4	6. Semester: Bot	h 7. St	ubject Area: I	DCC/ESC		
8. Pre-requisite: Nil						

9. Objective: To familiarize the students with basic concepts of macroscopic thermodynamics.

S. No.	Contents	Contact Hours
1.	Introduction: Introduction to thermodynamic system, surrounding,	3
	state, process, properties, equilibrium, heat and work, Zeroth Law of	
	Thermodynamics	
2.	Properties of Pure Simple Compressible Substance: PvT surface,	6
	Pv, Tv, TP di agrams. E quation of s tate f or i deal a nd r eal ga ses.	
	Virial equation of state, van der Waal equation, use of steam tables	
	and Mollier diagram	
3.	First Law of Thermodynamics: First law application to non-flow	7
	processes s uch as i sochoric, i sobaric, i sothermal, a diabatic a nd	
	polytropic pr ocesses. Steady f low en ergy equ ation, f low w ork.	
	Application to various practical systems viz. no zzles, di ffuser,	
	turbines, he at e xchangers e tc. A pplication of energy e quation t o	
	transient flow problems.	
4.	Second L aw of T hermodynamics: Second l aw, r eversible a nd	6
	irreversible p rocesses, Clausius a nd K elvin P lanck s tatements,	
	Carnot cycle, corollaries of second law: thermodynamic temperature	
	scale, C lausius i nequality, e ntropy as a p roperty, pr inciple o f	
	increase of entropy. Calculation of entropy change.	
5.	Entropy and Exergy: Entropy and its generation, entropy balance	5
	for closed system and for control volume, basic concepts of exergy	
	and i rreversibility, exergy for closed s ystem and c ontrol vol ume,	
	exegetic efficiency.	

6.	Gas-Vapour M ixtures and A ir-conditioning: Properties of g as- vapour m ixtures, a diabatic-saturation a nd w et-bulb t emperatures, psychrometric chart, human comfort and air conditioning, various air conditioning processes.	4
7.	Gas and Vapour Power Cycles: Otto, Diesel, Dual, Stirling, Joule- Brayton c ycle. Thermal ef ficiency and mean effective pr essure, Rankine cycle.	5
8.	Refrigeration C ycles: reverse C arnot c ycle, v apour c ompression refrigeration cycle.	4
	TOTAL	42

List of Experiments:

- 1. Study of P-V-T surface of H_2O and CO_2 .
- 2. Determine P-T relationship for steam and verify Clausius Clapeyron equation.
- 3. Determine the calorific value of coal using Bomb calorimeter.
- 4. Analysing exhaust gases using Orsat apparatus.
- 5. Determine Relative Humidity and Specific Humidity of air using Sling Psychrometer and Psychrometric Chart.
- 6. Determine COP of a vapour compression refrigeration unit.
- 7. Analysing different processes on an air conditioning unit.

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Borgnakke, C . a nd Sonntag, R .E., "F undamentals of Thermodynamics" Wiley India	2011
2.	Cengel, Y.A. a nd Boles, M.A., "Thermodynamics an Engineering Approach", Tata McGraw-Hill	2008
3.	Moran, M. J. a nd S hapiro, H. M., "Fundamentals of E ngineering Thermodynamics", 4 th Ed., John Wiley	2010
4.	Russel, L.D., Adebiyi, G. A.," Engineering Thermodynamics", Oxford University Press	2007
5.	Arora, C.P., "Thermodynamics", Tata-McGraw Hill	2001
6.	Nag, P.K., "Engineering Thermodynamics", Tata-McGraw Hill	2005

NAME OF DEPTT./CENTRE :		Department	of Physics		
1. Subject Code: PHN-006		Course Title: Quantum Mec Mechanics		Mechanics ar	nd Statistical
2. Contact Hours: L	: 3	T: 0	P: 2		
3. Examination Duration (Hrs.):		Theory: 3	Р	ractical : 0	
4. Relative Weightage:	CWS: 15	PRS: 15	MTE: 30	ETE: 40	PRE: 0
5. Credits: 4	6. Sem	nester: Spring	7. Sut	oject Area: BS	SC

8. Pre-requisite: None

9. O bjective: To provide ba sic know ledge and a pplications of S tatistical Mechanics and Quantum Mechanics.

S. No.	Contents	Contact Hours
1	Postulates of c lassical statistical me chanics, the three ens embles:	8
	micro c anonical, c anonical a nd grand canonical; M icro c anonical:	
	Definition of entropy from m icrostates, D erivation of the l aws o f	
	thermodynamics, c oncept of t emperature f rom t he de rivative of	
	entropy.	
2	Statistical distributions: Maxwell-Boltzmann, Bose-Einstein, Fermi-	10
	Dirac di stributions; A pplications: e quipartition of e nergy, Bose-	
	Einstein C ondensation, B lack bod y radiation: Classical R ayleigh-	
	Jeans law, Wien's law, Planck's Quantum radiation law, Stefan's law,	
	Wien's di splacement la w, Stimulated emission, E instein's A and B	
	coefficients, Specific heat of solids, free electrons in a metal.	
3	Photoelectric effect, Compton effect, Frank-Hertz experiment, wave	7
	particle duality and wave packets, de Broglie waves, phase and group	
	velocities, D avisson-Germer ex periment and gamma r ay s cattering	
	from electrons, uncertainty principle (single slit thought experiment),	
	applications of the uncertainty principle.	
4	Basic postulates of quantum mechanics and physical meaning of the	11
	wave f unction, S chrödinger w ave e quation, s tationary s tates,	
	expectation values, probability current density; Applications: Particle	
	in a 1 -D box, 1 -D s tep potential, reflection and transmission b y a	
	barrier and tunneling and their applications in electronics, electron in	
	periodic potential, energy band gap, qualitative discussion of Kronig-	
	Penney model, 1-D linear harmonic oscillator.	
5	H-atom and the r elated qua ntum num bers (n,l,m) , normal a nd	6
	anomalous Zeeman effect, Anomalous Zeeman effect (Na D1 and D2	
	lines), Stern-Gerlach experiment, Fine structure of H_{\Box} line.	

]	Fotal 42

List of experiments:

- 1. Study of magnetic field of a pair of coils in Helmholtz arrangement
- 2. Determination of e/m
- 3. Determination of first excitation potential of a gas by Frank-Hertz experiment
- 4. Determination of Stefan's constant
- 5. Determination of Planck's constant by radiation
- 6. To study and verify Malus' law
- 7. Study of polarization of light using quarter wave plate
- 8. Determination of Brewster's angle at glass-air interface
- 9. Determination of width of a slit by single-slit diffraction pattern
- 10. Four probe method of finding resistivity of semiconductor
- 11. Quincke's Method for determining mass susceptibility
- 12. Wavelength of Na light by Newton's ring method

S.No.	Name of Authors / Books / Publishers	Year of
		Publication/ Reprint
1.	A. Beiser, "Concepts of Modern Physics", Tata McGraw Hill	2009
2.	F. Reif," Fundamentals of Statistical and Thermal Physics", Sarat	2010
3.	R.P. Feynman, "The Feynman Lectures On Physics (Vol. 1-3)", Narosa	2008
4.	I.S. Tyagi, "Principles of Quantum Mechanics", Pearson Education	2013
5.	D.J. Griffiths," Introduction t o Quantum M echanics", Pearson	2005
	Education	

NAME OF DEPTT/CENTRE: DEPARTMENT OF CIVIL ENGINEERING

1. Subject code: **CEN-105** Course Title: Introduction to Environmental Studies

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Examination Duration (Hrs): **Theory:** 3 **Practical:** 0

4. Relative Weightage: CWS: 15 PRS: 0 MTE: 35 ETE: 50 PRE: 00

- 5. Credits: **3** 6. Semester: **Autumn** 7. Subject Area: **GSC**
- 8. Pre-requisite: Nil

9. Objective: To introduce fundamentals of environmental pollution and its control.

S. No.	Contents	Contact Hours
1.	Overview: Environment and Natural Processes; Development (Resource Utilization & Waste Generation); Environmental issues; Concept of Sustainable Development; Issues affecting future development (population, urbanization, health, water scarcity, energy, climate change, toxic chemicals, finite resources etc.); Environmental units	6
2.	Air –Water interaction: (Liquid phase-gas phase equilibrium) Henry's Law Constant with units, Dimensionless Henry's Law Constant	3
3.	Water –Soil Interaction: Carbonate System (Alkalinity and buffering capacity); Major ions in water; Natural Organic Matter (NOMs); Water quality parameters; Physical processes (Mass Balance): Spatio-temporal variation in quality of river water, lake water, ground water; Water quality standards	9
4.	Wetlands, water treatment and wastewater treatment .	6
5.	Air resources: Atmosphere; Air pollutants; Emissions and control of air pollutants; Atmospheric meteorology and dispersion; Transport of air (global, regional, local); Air/ atmospheric stability; Plume shape; Gaussian modeling; Air quality standards	9
6.	Land pollution and solid waste management	3
7.	Ecosystem: Structure and function; Energy flow in ecosystem; Material flow in ecosystem; Biodiversity and ecosystem health; Bio-amplification and bio-magnification	3
8.	Hazardous Waste: Definition; Classification; Storage and management; Site remediation; Environmental Risk: assessment, and management	3
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Davis M. L. and Cornwell D. A., "Introduction to Environmental Engineering", McGraw Hill, New York 4/e	2008
2.	Masters G. M., Joseph K. and Nagendran R. "Introduction to Environmental Engineering and Science", Pearson Education, New Delhi. 2/e	2007
3.	Peavy H. S., Rowe D.R. and Tchobanoglous G., "Environmental Engineering", McGraw Hill, New York	1986
4.	Mines R. O. and Lackey L. W. "Introduction to Environmental Engineering", Prentice Hall, New Yark	2009
5.	Miheicic J. R. and Zimmerman J. B. "Environmental Engineering: Fundamentals, Sustainability, Design" John Wiley and Sons, Inc.	2010

NAME OF DEPTT./CENTRE:	Department of Huma Sciences	anities & Social
1. Subject Code: HS-001A	Course Title: Communie	cation Skills (Basic)
2. Contact Hours: L: 1	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory 2 P	Practical 0
4. Relative Weight: CWS 25	6 PRS 00 MTE 25	ETE 50 PRE 0
5. Credits: 2 6. Sen	nester: Autumn/Spring	7. Subject Area: HSS

8. Pre-requisite: NIL

9. Objective: The course intends to build the required communication skills of the students having limited communicative abilities, so that they may communicate effectively in real-life situations

S. No.	Contents	Contact
		Hours
1.	Understanding the Basics of Communication Skills: Listening, Speaking,	01
	Reading & Writing, Scope and Importance	
2.	Grammar & Composition: Time and Tense, Agreement, Active-Passive,	05
	Narration, Use of Determiners, Prepositions & Phrasal Verbs	
3.	Vocabulary Building & Writing: Word-formation, Synonyms, Antonyms, Homonyms, One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words	02
4.	Introduction to Sounds (Vowels & Consonants) Organs of Speech, Place and Manner of Articulation, Stress & Intonation, Listening Comprehension (Practical Sessions in Language Laboratory)	02

5.	Speaking, Countering Stage-fright and Related Barriers to Communication.	02
6.	Reading and Comprehension: Two lessons to be identified by the department.	02
	Total	14

List of Practicals:

- **1.** Ice-breaking Exercises
- 2. Assignments on Time and Tense, Agreement, Active-Passive
- **3.** Laboratory Session on Narration, Use of Determiners, Prepositions & Phrasal Verbs, Revisionary Exercises & Quiz
- 4. Laboratory Session on Synonyms, Antonyms, Homonyms
- 5. Assignments and Practice Sheets on One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words
- **6.** Laboratory Session on Practice of sounds, Intonation and Stress, Listening Comprehension
- 7. Individual presentation, debates, Extempore & Turncoats
- 8. Exercises in Composition and Comprehension
- 11. Suggested Books:

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Murphy, Raymond. Intermediate English Grammar, New Delhi,	2009
	Cambridge University Press.	
2.	Quirk, Randolph & Sidney Greenbaum. A University Grammar of	2009
	English, New Delhi, Pearson.	
3.	McCarthy, Michael & Felicity O' Dell. English Vocabulary in Use,	2010
	New Delhi, Cambridge University Press	
4.	Jones, Daniel. The Pronunciation of English, New Delhi, Universal	2010
	Book Stall.	
5.	Birchfield, Susan M. Fowler's Modern English Usage, New Delhi,	2004
	OUP.	
6.	Llyod, Susan M. Roget's Thesaurus of English Words and Phrases.	2010
	New Delhi: Penguin.	

NAME OF DEPTT./CENTRE:	Department of Sciences	of Humanities & Social
1. Subject Code: HS-001B	Course Title: C (A	ommunication Skills Advanced)
2. Contact Hours: L: 1	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory 2	Practical 0
4. Relative Weight: CWS 2	5 PRS 00 M	ITE 25 ETE 50 PRE 0
5. Credits: 2 6. Set	mester: Autumn/S	pring 7. Subject Area: HSS

8. Pre-requisite: NIL

9. Objective: The course intends to train the learners in using both verbal and non-verbal communication effectively.

S. No.	Contents	Contact
		Hours
1.	Advanced Communication Skills: Scope, Relevance, & Importance	01
2.	Soft Skills: Interpersonal Communication; Verbal & Non-verbal, Persuasion, Negotiation, Neuro-Linguistic Programming	03
3.	Communication and Media (Social and Popular), The Social and Political Context of Communication, Recent Developments and Current Debates in Media	04
4.	Cross-cultural and Global Issues in Communication: Race, Ethnicity, Gender & Diaspora	03
5.	Rhetoric and Public Communication, Audience Awareness, Emotionality	03
	Total	14

List of Experiments:

- 1. Discussion on the Process of Communication in Personal and Professional Life
- 2. Group Discussion, Case Studies and Role-Play
- **3.** Assignments on E-mail Etiquette, Social Networking, Blog Writing, Discussions on Current Issues
- 4. Non-Verbal Communication in Cross-Cultural Situations, Case Studies, Group Discussions and Readings on Topics Related to Race, Ethnicity, Gender and Diaspora
- **5.** Individual Presentations (Audience Awareness, Delivery and Content of Presentation)

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Rentz, Kathryn, Marie E. Flatley & Paula Lentz.	2012
	Lesikar's Business Communication CONNECTING IH A DIGITAL	
	WORLD, McGraw-Hill, Irwin	
2.	Bovee, Courtland L & John V. Thill. Business Communication	2010
	Today. New Delhi, Pearson Education	
3.	McMurrey, David A. & Joanne Buckley. Handbook for Technical	2009
	Writing, New Delhi, Cengage Learning.	
4.	Jones, Daniel. The Pronunciation of English, New Delhi, Universal	2010
	Book Stall.	
5.	Allan & Barbara Pease. The Definitive Book of Body Language,	2004
	New York, Bantam	

NAME OF DEPTT./CENTRE: Department of Humanities and Social Scien			ocial Sciences		
1. Subject Code: HS	N-002	Course T	itle: Ethics	s and Self-awa	areness
2. Contact Hours:	L: 01	T	: 01	P: 0	
3. Examination Dura	tion (Hrs.):	Theory	2	Practical	0
4.Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0

- 5. Credit 02 6. Semester: Autumn 7. Subject Area: HSSC
- 8. Pre-requisite: NIL
- 9. Objective: To introduce the concepts pertaining to ethical and moral reasoning and action and to develop self awareness.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	Introduction : Definition of Ethics; Approaches to Ethics: Psychological, Philosophical, Social.	1
2	Psycho-social theories of moral development : View of Kohlberg; Morality and Ideology, Culture and Morality, Morality in everyday context.	3
3	Ethical Concerns : Work Ethics and Work Values, Business Ethics, Human values in organizations.	3
4	Self-Awareness : Self Concept: Johari Window, Self and Culture, Self Knowledge, Self-Esteem; Perceived Self-control, Self-serving bias, Self-presentation, Self-growth: Transactional Analysis and Life Scripts.	4
5.	Self Development : Character strengths and virtues, Emotional intelligence, Social intelligence, Positive cognitive states and processes (Self-efficacy, Empathy, Gratitude, Compassion, and Forgiveness).	3
	Total	14

S.No.	Name of Authors / Books / Publishers	Year of Publication
1.	Hall, Calvin S., Lindzey, Dardner., & Cambell, John B., "Theories of Personality", Hamilton Printing Company.	1998
2.	Car Alan, "Positive Psychology: The Science of Happiness and Human Strengths", Brunner-Routledge.	2004
3.	Leary M.R., "The Curse of Self: Self-awareness, Egotism and the Quality of Human Life", Oxford University Press.	2004
4.	Louis P. P., "The Moral Life: An Introductory Reader in Ethics and Literature", Oxford University Press.	2007
5.	Corey, G., Schneider Corey, M., & Callanan, P., "Issues and Ethics in the Helping Professions", Brooks/Cole.	2011
6.	Snyder, C.R., Lopez, Shane, J., & Pedrotti, J.T., "Positive Psychology" Sage, 2 nd edition.	2011

9. Objective: To provide essential knowledge of basic tools of Differential Calculus, Integral Calculus, Vector Calculus and Matrix Algebra for degree students.

10. Details	of Course:
-------------	------------

S. No.	Contents	Contact
		Hours
1.	Matrix Algebra: Elementary operations and their use in getting the Rank, Inverse	8
	of a matrix and solution of linear simultaneous equations. Orthogonal, Symmetric,	
	Skew-symmetric, Hermitian, Skew-Hermitian, Normal & Unitary matrices and	
	their elementary properties. Eigen-values and Eigenvectors of a matrix, Cayley-	
	Hamilton theorem, Diagonalization of a matrix.	
2.	Differential Calculus: Limit, Continuity and differentiability of functions of two	12
	variables, Euler's theorem for homogeneous equations, Tangent plane and normal.	
	Change of variables, chain rule, Jacobians, Taylor's Theorem for two variables,	
	Error approximations. Extrema of functions of two or more variables,	
	Lagrange's method of undetermined multipliers	
3.	Integral Calculus:	12
	Review of curve tracing and quadric surfaces, Double and Triple integrals,	
	Change of order of integration. Change of variables. Gamma and Beta functions.	
	Dirichlet's integral. Applications of Multiple integrals such as surface area,	
	volumes, centre of gravity and moment of inertia	
4.	Vector Calculus: Differentiation of vectors, gradient, divergence, curl and their	10
	physical meaning. Identities involving gradient, divergence and curl. Line and	
	surface integrals. Green's, Gauss and Stroke's theorem and their applications.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	E. Kreyszig, Advanced Engineering Mathematics, 9th edition, John	2011
	Wiley and Sons, Inc., U.K.	
2.	R.K. Jain and S.R.K. Iyenger, Advanced Engineering Mathematics,	2005
	2nd Edition, Narosa Publishing House.	
3.	M.D. Weir, J. Hass, F.R. Giordano, Thomas' Calculus, 11th Edition,	2008
	Pearson Education.	

8. Pre-requisite: None

S. No.	Contents	Contact Hours
1.	Basic principles of electrostatics and magnetostatics, Maxwell's equations in differential form, physical significance of Maxwell's equations., wave equation and its solution for a dielectric medium, plane waves in a dielectric, concept of polarization, linear, circular and elliptical polarization, the Poynting vector, energy density and intensity of an e-m wave, reflection and refraction at the interface of two dielectrics	14
2.	Interference of light waves, Young's double slit experiment, interference pattern, intensity distribution, interference with white light, displacement of fringes, phase change on reflection. Interference by division of amplitude, interference by a plane parallel film when illuminated by a plane wave, interference by a film with two non-parallel reflecting surfaces (wedge shaped films), colours of thin films, Newton's rings, the Michelson interferometer. Coherence, Young's double slit and Michelson interferometer to explain coherence, the line width, spatial coherence, optical beats.	10
3.	Fraunhofer diffraction, single-slit diffraction pattern, diffraction by a circular aperture, directionality of laser beams, focusing of laser beams, limit of resolution, resolving power of a microscope, two-slit Fraunhofer diffraction, N-slit Fraunhofer diffraction, diffraction grating, grating spectrum and resolving power.	6
4.	Polarization and double refraction, wire grid polarizer, polarization by reflection and double refraction, Malus law, Brewster's law, superposition	6

^{9.} Objective: **To familiarize students with the basic principles of electrodynamics** and optics and extend its applications to interference, diffraction, and lasers.

	of two disturbances, the mathematical analysis. Phenomenon of double refraction, normal and oblique incidence, interference of polarized light, quarter-wave and half-wave plates, analysis of polarized light, optical activity.	
5.	Basic properties of lasers, spontaneous and stimulated emissions, main components of a laser, ruby and He-Ne laser, semiconductor diode laser	6
	Total	42

S.		Year of
No.	Name of Authors/ Books/Publishers	Publication/Reprint
1.	D. J. Griffiths, "Introduction of Electrodynamics," PHI Learning	2009
	Pvt. Ltd.	
2.	M. N. O. Sadiku, "Elements of Electromagnetics," Oxford Univ.	2009
	Press	
3.	A. Ghatak, "Optics," 6 th Ed., Tata McGraw-Hill Publishing Co.	2012
	Ltd.	
4.	E. Hecht, "Optics," 4 th Ed., Pearson Education Pvt. Ltd.	2003
5.	F. Jenkins and H. White, "Fundamentals of Optics," 4 th Ed.	2001
	McGraw Hill	