Department of Chemical Enigeering

1.	MAN-001	Mathematics-1	BSC	4
2.	CYN-001	Physical Chemistry	BSC	4
3.	CEN-105	Introduction to Environmental Science	GSC	3
4.	HS-001A	Communication Skills (Basic)	HSSC	2
5.	HS-001B	Communication Skills (Advance)	HSSC	2
6.	HSN-002	Ethics and General Awareness	HSSC	2
7.	CHN-101	Introduction to Chemical Engineering	DCC	2
8.	CHN-103	Computer Programming and Numerical Analysis	ESC	4
9.	CHN-102	Material and Energy Balance	DCC	4
10.	CHN-104	Fluid Dynamics	DCC	4
11.	CHN-106	Thermodynamics and Chemical Kinetics	DCC	4
12.	CYN-002	Organic and Inorganic Chemistry	BSC	4
13.	MAN-002	Mathematical Methods	BSC	4
14.	EEN-112	Electrical Science	ESC	4
15.	CHN-112	Energy Engineering	ESC	4
16.	CHN-201	Heat Transfer	DCC	4
17.	CHN-203	Mechanical Operations	DCC	4
18.	CHN-205	Chemical Engineering Thermodynamics	DCC	4
19.	CHN-207	Transport Phenomena	DCC	4
20.	CHN-202	Mass Transfer-I	DCC	3
21.	CHN-204	Reaction Engineering	DCC	5

22.	CHN-206	Chemical Technology	DCC	3
23.	CHN-291	Equipment Design*	DCC	4
24.	CHN-301	Mass Transfer-II	DCC	4
25.	CHN-303	Process Dynamics & Control	DCC	4
26.	CHN-305	Process Equipment Design*	DCC	4
27.	CHN-210	Industrial Instrumentation	DCC	2
28.	CHN-302	Engineering Analysis and Process Modeling	DCC	4
29.	CHN-304	Process Economics and Plant Design	DCC	3
30.	CHN-306	Process Utilities & Safety	DCC	3

1.	CHN-411	Polymer Physics and Rheology*	DEC	4
2.	CHN-413	Novel Separation Techniques*	DEC	4
3.	CHN-415	Heterogonous Catalysis & Reactor Design*	DEC	4
4.	CHN-417	Industrial Safety & Hazards Management	DEC	4
5.	CHN-419	Probability and System's Reliability	DEC	4
6.	CHN-421	Petroleum Refining	DEC	4
7.	CHN-423	Microfluidics*	DEC	4
8.	CHN-425	Nanotechnology in Chemical Engineering*	DEC	4
9.	CHN-427	Clean Technology in Process Industries	DEC	4
10.	CHN-429	Waste-to-Energy*	DEC	4
11.	CHN-431	Fuel Cells Fundamentals*	DEC	4
		Spring Semester		
1.	CHN-412	Modeling of Dynamics System*	DEC	4
2.	CHN-414	Advanced Process Control*	DEC	4
3.	CHN-416	Design of Piping System	DEC	4
4.	CHN-418	Advances in Fluid Mechanics*	DEC	4

5.	CHN-420	Advances in Heat Transfer*	DEC	4
6.	CHN-422	Petrochmicals	DEC	4
7.	CHN-424	Industrial Pollution Abatement	DEC	4
8.	CHN-426	Fertilizer Technology	DEC	4
9.	CHN-428	Polymer Science and Engineering		

Chemical Enigeering Department Elective Course

	Autumn Semester				
1.	CHN-321	Biochemical Engineering	DEC	4	
2.	CHN-323	Computer Application in Chemical Engineering	DEC	4	
3.	CHN-325	DEC	4		
		Spring Semester			
1.	CHN-322	Optimization of Chemical Engineering Processes	DEC	4	
2.	CHN-324	Computational Fluid Dynamics	DEC	4	
3.	CHN-326	Fluidization Technology	DEC	4	

Category 1

	Autumn Semester					
1.	CHN-321	Biochemical Engineering	DEC	4		
2.	CHN-323	Computer Application in Chemical Engineering	DEC	4		
3.	CHN-325	Process Integration	DEC	4		
	Spring Semester					
1.	CHN-322	Optimization of Chemical Engineering Processes	DEC	4		
2.	CHN-324	Computational Fluid Dynamics	DEC	4		
3.	CHN-326	Fluidization Technology	DEC	4		

		1	0 0
1. Subject Code:	CHN-101	Course Title: Int	troduction to Chemical Engineering
2. Contact Hours:	L: 2	T: 0	P: 0
3. Examination Dura	tion (Hrs.):	Theory 0	Practical 0
4. Relative Weightag	ge: CWS	0 PRS 0 MTE	E 0 ETE 100 PRE 0
5. Credits: 2		6. Semester: Autumn	7. Subject Area: DCC
8. Pre-requisite:	Nil		

NAME OF DEPTT./CENTRE: Department of Chemical Engineering

- 9. Objective: To introduce the basic features and concepts of Chemical Engineering to the students.
- 10. Details of Course:

Module No.	Contents	Contact Hours
1.	Introduction: Framework of chemical industry and its classification, production routes, c oncepts of synthesis and segmentation, d efinition of c hemical engineering, historical p erspective and c ontribution; job description and attributes of a ch emical engineer, chemical engineering and its seam less integration with other sciences and engineering disciplines; S ocietal needs and life cy cle of t echnology, market forces; E conomic scale of production; Waste utilization and recycle, sus tainable t echnology, proc ess i ntegration and intensification; E mployment opportunities , k nowledge resources and software tools; Frontiers & future roadmap ; Challenges of chemical engineering practice-safety, economics, ethics, regulation and IP.	7
2.	Chemical Process Industries : Evolution of chemical industries, Technological developments in major challenges; Chemical industries structure and segments of chemical industry, raw material and production pattern; Basic principles of chemical processes, unit processes and unit ope rations and v arious r outes t o produce chemicals; Petroleum, petrochemical and fertilizer industry integration; Cleaner and greener technologies.	7
3.	Basic Tools of Chemical Engineering: Physico-chemical a nd biological sciences; Mathematics a nd computation; Thermodynamics a nd k inetics, Material and Energy ba lances; Transport phe nomena; Equilibrium a nd r ate based processes; Reaction e ngineering a nd r eactors; V arious t ransport processes; Efficiency and economics of proc esses. Measu ring i nstruments, automation and control, concept of scale-up- lab to industrial, nano to terrestrial; Dimensional analysis and semi-empiricis; Degree of freedom analysis; Concept of design, modelling and simulation.	8

4.	Applications of Various tools and Examples: Flash unit and blending system; Coal combustion and gasification; Boiler and steam generation; Biomethanation and a loohol production; Petroleum fractionation and pe trochemicals; Chemical vapour de position; Nano-devices and drug de livery sy stems; Accidents an d safety; Web-based learning and educational videos of refineries, petrochemical plants and fertilizer units; Important de velopments and milestones in chemical engineering.	6
	Total	28

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Denn Morton M., "Chemical Engineering; An Introduction", Cambridge,	2012
	University Press.	
2.	Himmelblau D.M. and Riggs J.B., "Basic Principles and C alculations in	2003
	Chemical Engineering". 7th Edition., Prentice Hall.	
3.	Austin G.T., "Shreve's c hemical pr ocess i ndustries", McGraw-Hill B ook	1984
	Company, 5 TH Edition.	
4.	Groggins, P.H., "Unit processes in organic synthesis", Tata McGraw Hill	1995
	Education Private Limited, 5th Edition.	

NAME OF DEPTT./CENTRE:	Department of Chemical Engineering		
1. Subject Code: CHN-102	Course Title: Material and Energy Balance		
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory : 3 Practical : 0		
4. Relative Weightage: CWS: 25	PRS: 0 MTI	E : 25 ETE: 50 PRE: 0	
5. Credits: 4 6. Ser	mester: Spring	7. Subject Area: DCC	

- 8. Pre-requisite: Nil
- 9. Objective: To provide basic knowledge of principles of material and energy balances applied to chemical engineering systems.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Units and dimension in chemical engineering, units	5
	conversion of dimensional equations, stoichiometric and	
	composition relations, concept of degrees of freedom and linear	
	independence of a set of equations.	
2.	Material Balance: Concept of material balance, open and closed	4
	systems, steady state and unsteady state, multiple component system,	
	selection of a basis, problem solving strategy.	
3.	Material Balance without Chemical Reaction for Single and	5
	Multiple Units: Conservation of mass/atom, material balance for	
	systems without chemical reactions involving single unit and	
	multiple units.	
4.	Material Balance with Chemical Reaction for Single and	6
	Multiple Units: Concept of excess reactant, extent of reaction,	
	material balance for systems with chemical reactions involving	
	single unit and multiple units.	
5.	Recycle, Bypass, Purge and Industrial Applications: Calculations	7
	for a cyclic processes involving recycle/ purge/ bypass, material	
	balances involving gases, vapors, liquids and solids and use of real	
	gas relationships, material balance involving gases, vapors, liquids &	
	solids and uses of real gas relationships, vapor-liquid equilibrium	
	and concepts of humidity & saturation, analysis of systems with	
	bypass, recycle and purge, analysis of processes involving	
	condensation, crystallization and vaporization.	

6.	Energy Balance: Conservation of energy with reference to general energy balance with and without chemical reactions, chemical engineering problems involving reversible processes and mechanical energy balance.	4
7.	Applications of Energy Balance: Calculations of heat of change of phase (solid – liquid & liqid – vapor), heat of reaction, heat of combustion, heat of solutions and mixing, determination of temperatures for adiabatic and non-adiabatic reactions, use of psychometric and enthalpy- concentration diagrams.	6
8.	Simultaneous Material and Energy Balances: Degrees of freedom analysis for multicomponent systems, combined steady state material and energy balances for units with multiple sub-systems.	3
9.	Unsteady State Material and Energy Balances: Transient materials and energy balances involving with and without chemical reactions.	2
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Himmelblau D.M. and Riggs J. B.," Principles and Calculations in Chemical Engineering", 8 th Ed., Prentice Hall of India.	2012
2.	Felder R.M. and Rousseau R.W., "Elementary Principles of Chemical Processes", 3 rd Ed., John Wiley.	2005
3.	Bhatt B.I. and Vora S.M., "Stoichiometry", 5 th Ed., Tata McGraw-Hill	2010
4.	Narayanan K.V. and Lakshmikutty B., "Stoichiometry and Process Calculations", Prentice Hall of India.	2006
5.	Hougen D.A., Watson K.M. and Ragatz R.A., "Chemical Process Principles", Part-I, 2 nd Ed., CBS Publishers.	1995

NAME OF DEPTT./CENTRE:	Department of Chemical Engineering			
1. Subject Code: CH-103	Course Title: Comp Analy	outer Programming and Numerical vsis		
2. Contact Hours: L: 3	T: 0	P: 2		
3. Examination Duration (Hrs.):	Theory 3	Practical 0		
4. Relative Weightage: CWS 15	PRS 15 MTE	30 ETE 40 PRE 0		
5. Credits: 4 6. Sen	nester: Autumn	7. Subject Area: ESC		
8. Pre-requisite: Nil				

9. Objective: To introduce object oriented programming using C++ language and numerical analysis

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Basic Computer Fundamentals: Introduction to computer systems	4
	- CPU organization, ALU, registers, memory and input-output	
	devices; Number system: binary and hexadecimal; Fixed and	
	Floating point numbers; Errors and Approximations	
2.	Basic Programming in C++: Concepts of algorithm & flow charts;	6
	Input/output, constants, variables, expressions and operators;	
	Naming conventions and styles; Conditions and selection statements;	
	Looping and control structures; File input/output, header files, string	
	processing; Preprocessor directives such as #include, #define, #ifdef,	
	#ifndef; Compiling and linking.	
3.	Modular Programming: Functions (void and value returning),	6
	parameters, scope and lifetime of variables, passing by value,	
	passing by reference, passing arguments by constant reference;	
	Design of functions and their interfaces, recursive functions;	
	Function overloading and default arguments; Library functions;	
-	Matters of style, naming conventions, comments	4
4.	Aggregate Data-types: Arrays and pointers; Structures; Dynamic	4
	data and pointers, dynamic arrays.	
5.	Object Oriented Programming: Classes and Objects; Constructors	8
	and Destructors; Operator Overloading and Type Conversions;	
	Inheritance: extending classes; Pointers; Virtual Functions;	
	Polymorphism; Manipulating Strings; Use of Pointers in linked	
	arrays.	
6.	Solution of Linear and Non-Linear Equation: Direct methods	6

	such as Gaussian elimination and Thomas algorithm for tri-diagonal systems; Iterative methods such as Jacobi method and Gauss-Seidel method; Single variable using Bisection method and Newton- Raphson method; Application of Newton-Raphson to two variables	
7.	Numerical Interpolation, Differentiation and Integration : Difference tables, forward, central and backward difference interpolation; Interpolating polynomials; Differentiation formulas; Trapezoidal rule, Simpson's rule	4
8.	Solution of Ordinary Differential Equations: Initial value problems (IVPs), Euler Method and Runge-Kutta method	4
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Balaguruswamy, E., "Object Oriented Programming with C++", Tata McGraw Hill Education, 5th Edition.	2011
2.	Lafore, R., "Object Oriented Programming with C++", Pearson, 4th Edition.	2008
3.	Dietel, H. M. and Dietel, P. J., "C++ How to Program", Prentice Hall, 8th Edition.	2011
4.	Sastry, S. S., "Introductory Methods of Numerical Analysis", PHI Learning, 5th Edition.	2012
5.	Chapra, S. C., "Applied Numerical Methods with MATLAB for Engineers and Scientists", Tata McGraw Hill Education, 3rd Edition.	2012

NAME OF DEPTT./CENTRE:	Department	of Chemical	Engineering	Ş
1. Subject Code: CHN-104	Course Title:	Fluid Dyna	mics	
2. Contact Hours: L: 3	T: 1		P: 2/2	
3. Examination Duration (Hrs.):	Theory: 3	Р	ractical: 3	
4. Relative Weightage: CWS: 15	PRS: 15	MTE: 15	ETE: 40	PRE: 15
5. Credits: 4 6. Sen	nester: Spring	7. Sı	ubject Area:	DCC
8. Pre-requisite: Nil				

9. Objective: To present the fundamental insights of fluids and their static and dynamic behaviors and fluid machineries, etc

10. Details of Course:

S.	Contents	Contact Hours
<u>No.</u> 1	Introduction: Fundamental concepts of fluids; Fluid statics, kinematics	3
_	and dynamics; Properties of fluids.	-
2	Fluid Statics: The basic equation of fluid statics; Pressure - depth	6
	relationship; Pressure forces on plane and curved surfaces; Buoyancy and	
	stability; Forces on immersed and submerged bodies; Pressure	
	measurements; Pressure in accelerated rigid body motions.	
3	Elementary Fluid Kinematics: Lagrangian and Eulerian descriptions; Flow visualization – streamline, pathline, streakline and timeline, contours and profile plots; Description and classification of fluid motions;	6
	Rotational, irrotational, inviscid and potential flows; Deformation of	
	fluids; System and control volume representation; Reynolds transport	
	theorem.	
4.	Dynamic Analysis of Flow: Conservation of mass, linear and angular momentum, and energy; Bernoulli theorem; Flow deformation relationships, Navier-Stokes equations.	6
5.	Dimensional Analysis, Similitude and Modeling: Dimensional	3
	homogeneity and analysis; Methods of finding dimensionless numbers;	
	Selection of variables, Rayleigh and Buckingham's π method; Common	
	dimensionless numbers and their physical significance; Model and	
	Prototypes; Complete and incomplete similarity.	
6.	Internal Incompressible Viscous Flow: General characteristics of pipe	7
	flow – laminar, turbulent, entrance region, fully developed; Fully	
	developed laminar/turbulent flow in pipe, duct and orifice – shear stress	

	distribution and velocity profiles; Energy correction factors; Energy and hydraulic grade lines; Major and minor losses in pipes, fittings, non- circular ducts; vena contracta; Friction factor, pipe roughness; Moody chart.	
7.	Flow Measurements: Flow rate and velocity measurements – Pitot tube, orifice meter, venturimeter, rotameter, notches and weirs, etc.	2
8.	Fluid Handling Machinery: Classification; Positive-displacement pumps and compressors, centrifugal pumps and compressors, Axial flow pumps and compressors, compressor efficiency. Characteristics of pumps; Selection of pumps.	6
9.	Agitation and Mixing: Agitated vessels; Blending and mixing; Suspension of solid particles; Dispersion operations; Agitator selection and scale up.	3
Total		42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Nevers N.D., "Fluid Mechanics For Chemical Engineers", 3 rd Ed.,	2005
	McGraw Hill Higher Education.	
2.	Cengel Y.A. and Cimbala J.M. "Fluid Mechanics: Fundamentals and	2010
	Applications", 2 nd Ed. McGraw-Hill	
3.	Balachandran P. "Engineering Fluid Mechanics", PHI Learning Pvt Ltd.,	2012
	New Delhi	
4.	Munson B.R., Young D.F., Okiishi T.H. and Huebsch W.W.,	2010
	"Fundamentals of Fluid Mechanics", 6 th Ed., Willey	
5.	White F.M. "Fluid Mechanics", 7 th Ed. Tata McGraw-Hill	2010

NAME OF DEPTT./CENTRE:		Department of Chemical Engineering				
1. Subject Code:	CHN-106	Course Title:	Thermody	namics and C	hemical Kine	tics
2. Contact Hours:	L: 3	T: 1		P: 0		
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0		
4. Relative Weightage	e: CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0	
5. Credits: 4	6. Sen	nester: Spring	7. S	ubject Area: 1	DCC	

- 8. Pre-requisite: Nil
- 9. Objective: To provide basic knowledge of thermodynamics and chemical kinetics to chemical engineering students.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Thermodynamic system, surroundings, state, process, properties, equilibrium, heat and work.	02
2.	Properties of Pure Simple Compressible Substance: P-V-T surface, P-V, T-V and T-P diagrams. Equations of state for ideal and real gases. Virial equation of state, van der Waals and Redlich-Kwong equations of state; Use of Thermodynamic tables.	06
3.	First Law of Thermodynamics: Energy balance for closed systems. Various forms of energy balance. Specific heat, internal energy, enthalpy, and specific heat of ideal gases. Application of first law to non-flow isochoric, isobaric, isothermal, and adiabatic and polytropic processes. Conservation of mass for a control volume, mass and volume flow rates, mass balance for steady flow processes, flow work, steady flow energy equation. Application to various practical systems viz. nozzles, diffusers, etc. Transient Analysis.	05
4.	Second Law of Thermodynamics: Second law, reversible and irreversible processes, Clausius and Kelvin Planck statements. Carnot cycle, Clausius inequality, entropy as a property, principle of increase of entropy. Calculation of entropy change.	06
5.	Thermodynamic Cycles: Otto, Diesel, Rankine cycles and their applications.	03
6.	Rate Expression and Reaction Mechanism: Use of pseudo steady state approximation to get rate expression from mechanism, temperature-dependence of reaction rate-collision theory, transition state theory, thermodynamics and Arrhenius law.	04

7.	Interpretation of Kinetic Data of Batch Reactors: Constant volume and variable volume batch reactions, Integral and differential methods of analysis of data of uni, bi and tri-molecular irreversible reactions. Reversible reactions, homogeneously catalysed, auto-catalysed, series and parallel reactions. Estimation of rate constants and its temperature-dependence.	08
8.	Solid-Catalysed Fluid Reactions: Characterization of catalyst, Physical and	04
	chemical adsorption, various reaction steps, Langmuir-Hinshelwood kinetics.	
9.	Kinetics of Bio-Chemical Reactions: Kinetics of enzyme catalysed reactions, substrate and product inhibition, effect of temperature and pH on enzyme catalysed reactions.	04
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Çengel Y.A. and Boles M.A., "Thermodynamics: An Engineering Approach", 6 th Ed., McGraw Hill.	2008
2.	Smith J.M., Van Ness H.C. and Abbott M.M., "Introduction to Chemical Engineering Thermodynamics", 7 th Ed., McGraw Hill.	2005
3.	Borgnakke C. and Sonntag R.E., "Fundamentals of Thermodynamics", 7 th Ed., John Wiley and Sons.	2009
4.	Levenspiel O., "Chemical Reaction Engineering", 3 rd Ed., John Wiley.	2000
5.	Fogler H.S., "Elements of Chemical Reaction Engg.", 4 th Ed., Prentice Hall of India.	2005

NAME OF DEPTT./CENTR	E: Depart	Department of Chemistry			
1. Subject Code: CYN-002	Course	Course Title: Organic and Inorganic Chemistry			
2. Contact Hours L: 3	Т: 0	T: 0		P: 2	
3. Examination Duration (Hrs)): Theory	Theory: 3			
4. Relative Weightage : CWS	: 15 PRS: 15	MTE: 30 ETE: 40		PRE: 0	
5. Credits: 4	6. Semester: Spring	7.5	Subject Area:	BSC	

8. Pre-requisite: Nil

9. Objective: To impart basic knowledge of organic and inorganic chemistry.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Heteroatoms in Organic Chemistry: Introduction t o he terocyclic chemistry, aromaticity, reactivity and synthesis of thiophene, pyridine, furan and pyrrole.	6
2.	Stereochemistry and Reaction Mechanisms: Stereochemistry of addition at c arbon-carbon doubl e bond, addition of br omine t o c is-, and trans- butene, oxidation across the double bond through peroxides and permanganate, Diels Alder reaction [4+2] and [2+2] cycloaddition reactions. Aromatic nucleophilic substitution mechanisms (S_NAr , S_N1 and arynes), reactivity and reactions.	8
3.	Synthesis and Characterization of some important compounds such as benzocaine, saccharin, salbutamol and thyroxine. Introduction t o mass spectroscopy a nd N MR spectroscopy f or structural prediction of organic compounds.	9
4.	Novel Polymers: Stereo c hemical c ontrol of s ynthesis, molecular mass of pol ymers, polyurethanes, conducting pol ymers, dopi ng, Shirakawa ex periments, oxidation of a niline, bi opolymers, and plastics.	5
5.	Coordination Chemistry: Comparison of the stability of oc tahedral and t etrahedral complexes on the basis of crystal field stabilization energy, factors affecting the magnitude of Δ , applications of crystal field theory, variation of hydrated ionic radii and hydration enthalpy/stability of complexes, Jahn-Teller effect–definition and examples from d ⁹ and high-spin d ⁴ systems, static and dynamic Jahn-Teller effects.	7

6.	Organometallic Chemistry: Factors af fecting M -C bond f ormation, synthesis, reactions and structures including spectroscopic features of metal car bonyls, transition metal- π alkene complexes synthesis, reactions, bondi ng and s tability. A pplications of or ganometallic compounds i n c atalytic pr ocesses s uch a s h ydroformylation, hydrogenation, catalytic de carbonylation, ol efin m etathesis and enantioselective hydrogenation of alkenes.	7
	Total	42

List of Experiments:

Determination of adjum conhonets in helping/weighing gode
Determination of sodium carbonate in baking/washing soda.
Determination of Zn by EDTA- complexometric titration.
Solvent less synthesis- Wittig reaction.
Determination of the equivalent weight of an organic acid.
Identification of functional groups in an organic compound.
Characterization of an organic compound by UV-Vis and IR spectra.
Synthesis of a polymer.
Determination of λ_{max} and concentration of KMnO ₄ /K ₂ Cr ₂ O ₇ spectrophotometrically.
Determination of ligand field strength of ligands.
Synthesis of potassium trisoxalatochromate(III).
Preparation of p-nitroacetanilide and determination of me lting point, and matching with known sample.
Synthesis of an azo dye and its application in textiles.
Test of carbohydrate as osazone
•
Determination of calcium in chalk/toothpaste.

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Boprint
1.	Morrison R. T. and Boyd R.N., "Organic Chemistry", 6 th Ed., Prentice Hall of India.	Reprint 2001
2.	Clayden, J., Greeves, N., Warren, S., and Wothers, P., "Organic Chemistry" Oxford University Press	2009
3.	Lee, J.D., "Concise Inorganic Chemistry", 5 th Ed., Chapman & Hall.	2010
4.	Huheey, J. E., K eiter, E.A., K eiter, R .L. and M edhi, O .K. "Inorganic Chemistry: P rinciples of S tructure and Reactivity", 4 th Ed., P earson Education	2009
5.	March, J, Organic Chemistry: Reaction Mechanism and Structures, 6 th Ed, John Wiley & Sons	2007

NAME OF DEPTT./CENTRE:		Department of Chemical Engineering		
1. Subject Code: CHN-112		Course Title:	Energy Engineering	
2. Contact Hours: L: 3	Т	ſ: 1	P: 0	
3. Examination Duration (Hrs.):		Theory:3 Pra		actical:0
4. Relative Weight: CV	VS:25 PR	S:0 MTE:	25 ETE:50	PRE:0
5. Credits: 4	6. Seme	ster: Autumi	n/Spring	7. Subject Area: ESC

8. Pre-requisite: Nil

9. Objective: To introduce different resources of energy, their exploitation and energy audit & conservation for modern society

10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Introduction: Energy resources spectrum, renewable and non	6
	renewable energy sources, consumption pattern in various sectors,	
	efficiency of energy resources, load demand and economics	
2.	Coal: Classification, properties, proximate and ultimate analyses,	6
	heating value, combustion, carbonization, liquefaction and	
	gasification, electricity generation from coal	
3.	Petroleum: Origin and processing, various type of fuels,	5
	properties and handling	
4.	Gaseous fuel: CNG, LNG and LPG	2
5.	Solar energy: Solar insolation, flat plate and focusing collectors,	6
	solar space heating and cooling, solar pond, solar cells and storage	
6.	Biomass energy : Biomass types, characterization, pyrolysis,	6
	gasification, biochemical conversion routes, biogas, fuel alcohol,	
	biodiesel	
7.	Other sources: Hydrogen as a future fuel, fuel cells and	4
	environmental implications of these fuels	
8.	Energy audit: Mapping of distribution of energy supply and	4
	demand and identification of energy intensive areas.	
9.	Energy conservation measures: Waste heat recovery, use of low	3
	grade streams, vapour recompression, improvement in heat	
	exchanger efficiency, pinch technology for optimum heat	
	utilization	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Twidel, J. and Tony W., Renewable Energy Resources, Second	2006
	Edition, Taylor & Francis	
2	Kreith F., Goswami D. Y., Energy Management and Conservation,	2008
	CRC Press	
3.	Sukhatme S., J Nayak J., Solar Energy: Principles of Thermal	2008
	Collection and Storage, 3/ed, Tata McGraw-Hill Publishing	
	Company Ltd	
4.	Harker J.H. and Backhusrt J.R., Fuel and Energy, Academic Press	1981
	Inc	
5.	Miller Bruce G., Coal Energy Systems, Elsevier Academic Press,	2005
	Paris	

NAME OF DEPTT./CE	Department of Chemical Engineering				
1. Subject Code: CHN-321		Course Title:	Biochemical Engineering		ıg
2. Contact Hours: L: 3		T: 1	P: 0		
3. Examination Duration (Hrs.):		Theory:3	Practical :0		
4. Relative Weight	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits : 4	mester: Autum	n 7. Su	ıbject Area : I	DEC	

8. Pre-requisite: Nil

- **9.** Objective: To introduce microbiology, enzymes, unit operations in biochemical processes and design of bioreactors.
- 10. Detail of Course:

S.No	Contents	Contact Hours
1	Introduction: Aspects of microbiology, cell theory, structure of	8
	cells, classification of microorganisms, influence of	
	environmental parameters on microorganisms; Chemical	
	composition of the cell, carbohydrates, proteins, enzymes and	
	chemicals of life	4
2	Metabolism and Energetics: Assimilatory and dissimilatory processes, metabolism of the cells, metabolic pathways.	4
3	Enzymes and microbial kinetics: Mono and multi substrate enzyme kinetics, modulation and regulation of enzyme activity, enzyme reactions in heterogeneous systems, fermentation	10
	kinetics, monod model and monod chemostate, Cell-growth-cycle	
	phase for batch cultivation, modelling of batch growth, product synthesis kinetics, overall kinetics, thermal death kinetics of cells and spores, batch and continuous sterilization.	
4	Unit Operations in Biochemical Processes: Agitation and aeration in microbial system, gas liquid microbial cell mass transfer, determination of oxygen rates, k_L and k_{La} in batch and continuous bioreactor, scale up of bioreactor. Heat balance and heat transfer correlations for biotechnical systems, filtration and drying. Immobilization of cells and enzymes.	10
5	Analysis and Design Bioreactors: Classification and characterization of different bioreactors, bioreactor: batch and continuous- tubular, CSTR and tower reactors. Aerobic and anaerobic fermentation, process design and operation of typical aerobic and anaerobic fermentation processes, manufacture of	10

microbial product e.g. antibiotics, alcohol/wine etc. Use of immobilized enzymes and whole cells for industrial processes.	
Total	42

S. No.	Name of Books/Authors	Year of Publication
1.	Bailey J.E and Ollis D.F., "Biochemical Engineering	1987
	Fundamentals", 2 nd Ed., McGraw Hill.	
2.	Doble M. and Gummadi S.N., "Biochemical Engineering",	2007
	Prentice Hall.	
3.	Schuler M. L. and Kargi F., "Bio Process Engineering", 2 nd Ed.,	2002
	Prentice Hall.	
4.	Aiba, S., Humphrey A. E., and N. F. Millis, "Biochemical	1973
	Engineering".	
5.	Clark D. S. and Blanch H. W., "Biochemical Engineering", CRC	1997
	press	

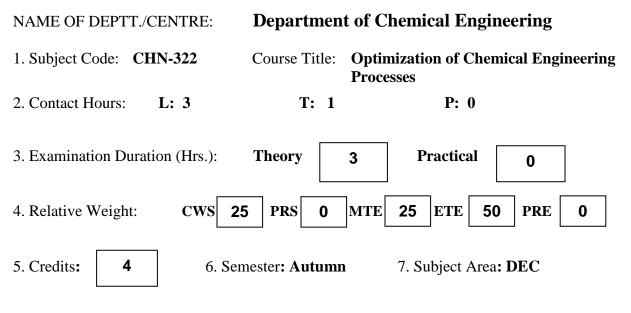
NAME OF DEPTT./CEN	Department of Chemical Engineering					
1. Subject Code: CHN-3	323	Course 7			plications i	n Chemical
2. Contact Hours: L: 3		T: 1	Eng P:	gineering 0		
3. Examination Duration ((Hrs.):	Theory	Pra	ctical		
4. Relative Weight:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0	
5. Credits:4	6. Sen	nester: Sp	oring 7	. Subject A	rea: DEC	

8. Pre-requisite: Nil

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Review of solution methods of non linear single variable equations, polynomials (determination of quadratic factors), linear set of simultaneous equations, ill conditioned matrix, and set of nonlinear equations using Newton's and globally convergent methods	8
2.	Solution of homogeneous set of linear equations using eigen values and eigen vectors with application to chemical engineering problems.	3
3.	Review of numerical differentiation and numerical integration methods, quadratures and their applications to numerical integration.	4
4.	Review of single step and multiple step methods to solve initial value ordinary differential equations problems, estimation of error and its propogation in single step and multiple step methods, step size selection and adaptable step size Runga-Kutta methods, stiff ODE's and Gear's class of methods.	8
5.	Boundary value problems (BVP) - shooting methods for linear system, finite difference methods, regular perturbation method, method of weighted residuals and orthogonal collection methods to solve first and higher order BVP in ODE's application to chemical engineering systems, concept of finite element.	10
6.	Review of finite difference techniques to solve partial difference equations (PDE's), similarity transformation, method of weighted residuals, orthogonal collocation to solve PDEs with their application to chemical engineering systems.	9
	Total	42

^{9.} Objective: To provide knowledge of advanced numerical methods and their applications to chemical engineering problems.

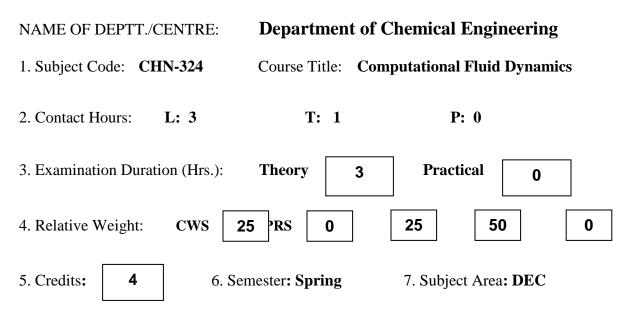

S. No.	Name of Books / Authors	Year of Publication
1.	Finlayson B. A., "Introduction to Chemical Engineering	2006
	Computing", 7 th Ed., Wiley Interscience publication.	
2.	Gerald C. F. and Wheatly P. O.; "Applied Numerical Analysis",	2003
	7 th Ed., Addison Wesley.	
3.	Rice R.G. and Do D. D., "Applied Mathematics for Chemical	1995
	Engineers", Wiley.	
4.	Beers K. J., "Numerical Methods for Chemical Engineering:	2006
	Applications in Matlab", Cambridge University Press.	
5.	Constantinides A. and Mostoufi N., "Numerical Methods for	1999
	Chemical Engineers with MATLAB Applications", Prentice Hall.	
6.	Cutlip M. B. and Shacham M, "Problem Solving in Chemical and	2008
	Biochemical Engineering with POLYMATH, EXCELL and	
	MATLAB", 2 nd Ed., Prentice Hall.	

NAME OF DEPTT./CEN	Depart	tment of	Chemical Eng	ineering	
1. Subject Code: CHN-	325	Course	e Title:	Process Inte	gration
2. Contact Hours: L: 3		T: 1		P: 0	
3. Examination Duration	(Hrs.):The	eory:3		Practical:	0
4. Relative Weight:	CWS:25	PRS:0	MTE:25	5 ETE:50	PRE:0
5. Credits:	6. Ser	nester: S	Spring	7. Sut	oject Area: DEC

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the concept of pinch technology in integration of unit operations in process industries.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Process Integration and its Building Blocks: Definition of	6
	Process Integration (PI), School of thoughts, Areas of	
	application and Techniques available for PI, Onion diagram.	
2.	Pinch Technology - An Overview: Introduction, Basic	7
	concept, How it is different than energy auditing, Role of	
	thermodynamic laws, Problem addressed by Pinch	
	technology.	
3.	Key Steps of Pinch Technology: Data extraction, Targeting,	5
	Designing, Optimization-Supertargteing.	
4.	Basic Elements of Pinch Technology: Grid diagram,	5
	Composite curve, Problem table algorithm, Grand composite	
	curve.	
5.	Targeting of Heat Exchanger Network (HEN): Energy	5
	targeting, Area targeting, Number of units targeting, Shell	
	targeting, cost targeting.	
6.	Designing of HEN: Pinch design methods, Heuristic rules,	6
	Stream splitting, Design of maximum energy recovery (MER),	
	Design of multiple utilities and pinches, Design for threshold	
	problem, Loops and Paths.	
7.	Heat Integration of Equipments: Heat engine, Heat pump,	4
	Distillation column, Reactor, Evaporator, Drier, Refrigeration	
	systems.	
8.	Heat and Power Integration: Co-generation, Steam turbine,	3
	Gas turbine.	
	Total	42

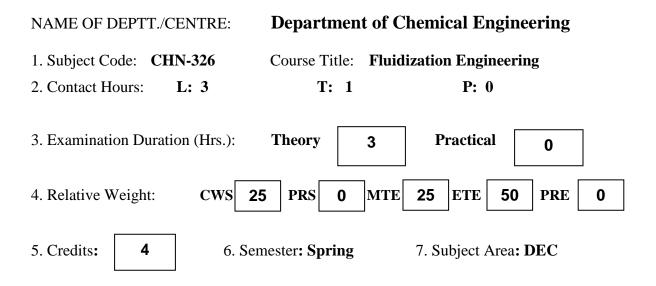
S. No.	Name of Books / Authors	Year of Publication
1.	Kemp I. C., "Pinch Analysis and Process Integration: A user	2007
	Guide on Process Integration for the Efficient Use of Energy",	
	2 nd Ed., Butterworth-Heinemann.	
2.	Smith R, "Chemical Process Design and Integration", 2 nd	2005
	Ed., Wiley.	
3.	Shenoy U. V., "Heat Exchanger Network Synthesis", Gulf	1995
	Publishing Company.	
4.	El Halwagi M. M., "Process Integration", 7th Ed., Academic	2006
	Press.	



- 8. Pre-requisite: Nil
- 9. Objective: To provide basic knowledge of optimization methods used in Chemical Engineering.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Optimization and calculus based classical	5
	optimization techniques.	
2.	One Dimensional Minimization Methods: Elimination methods-	6
	equally spaced points method, Fibonacci method and golden section	
	method; Interpolation methods-quadratic interpolation and cubic	
	interpolation, Newton and quasi-Newton methods.	
3.	Linear Programming: Graphical representation, simplex and	7
	revised simplex methods, duality and transportation problems.	
4.	Multivariable Non-Linear Programming: Unconstrained-	9
	univariate method, Powell's method, simplex method, rotating	
	coordinate method, steepest descent method, Fletcher Reeves	
	method, Newton's methods Marquardt's method and variable metric	
	(DFP and BFGS) methods; Constrained- complex method, feasible	
	directions method, GRG method, penalty function methods and	
	augmented Lagrange multiplier method.	
5.	Dynamic Programming: Multistage processes- acyclic and cyclic,	4
	sub-optimization, principle of optimality and applications.	

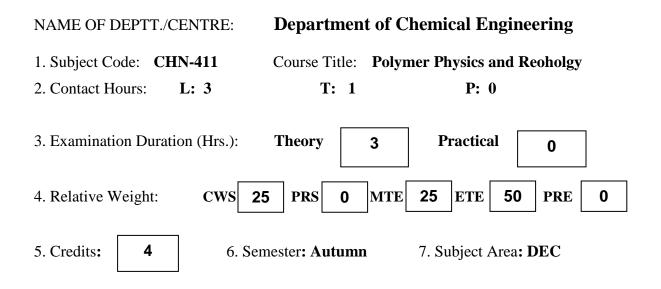
6.	Geometric Programming (GP): Differential calculus and	6
	Arithmetic- Geometric inequality approach to unconstrained GP;	
	Constrained GP minimization; GP with mixed inequality constraints	
	and Complementary GP.	
7.	Emerging Optimization Techniques: Genetic algorithm, simulated	5
	annealing, particle swarm and ant colony optimization.	
	Total	42


S. No.	Name of Books / Authors	Year of
		Publication
1.	Rao S. S., "Engineering optimization: Theory and Practice", 4 th	2009
	<u>Ed., Wiley</u>	
2.	Edgar T. F., Himmelblau D. M. and Lasdon L. S., "Optimization of	2001
	Chemical Processes", 2nd Ed., McGraw Hill.	
3.	Ravindran A., Ragsdell K. M. and Reklaitis G. V., "Methods and	2006
	Application' 2 nd Ed., Wiley	
4.	Venkataraman P., "Applied Optimization with MATLAB	2009
	Programming'',2 nd Ed., Wiley	
5.	Beveridge G.S.G. and Schechter R.S., "Optimization: Theory and	1970
	Practice'', McGraw Hill	

- 8. Pre-requisite: Nil
- 9.Objectives: To provide an understanding of physical models to study hydrodynamics in engineering systems.
- 10.Details of Course:

S.	Contents	Contact
No.		Hours
1.	Basic Concepts of Fluid Flow: Philosophy of computational fluid	5
	dynamics (CFD), review of equations governing fluid flow and heat	
	transfer, simplified flow models such as incompressible, inviscid,	
	potential and creeping flow, flow classification.	
2.	Grid Generation: Structured and unstructured grids, choice of suitable	3
	grid, grid transformation of equations, some modern developments in grid	
	generation in solving the engineering problems.	
3.	Finite Difference Method (FDM): Discretization of ODE and PDE,	15
	approximation for first, second and mixed derivatives, implementation of	
	boundary conditions, discretization errors, applications to the engineering	
	problems.	
4.	Finite Volume Method: Discretization methods, approximations of	9
	surface integrals and volume integrals, interpolation and differential	
	practices, implementation of boundary conditions, application to the	
	engineering problems.	
5.	Case studies: Case studies using FDM and FVM: Flow and heat transfer	10
	in pipes and channels, square cavity flows, reacting flow, reactive flow,	
	multiphase flow, Heat Transfer in Rotary Kiln Reactors, Fluid mixing,	
	etc. Essence of Finite element method (FEM).	
	Total	42

S.	Authors / Name of Books / Publisher	Year of
No.		Publication
1.	Fletcher C.A.J. "Computational Techniques for Fluid Dynamics, Vol. 1:	1998
	Fundamental and General Techniques", Springer-Verlag.	
2.	Fletcher C.A.J. "Computational Techniques for Fluid Dynamics, Vol. 2:	1998
	Specific Techniques for Different Flow Categories", Springer-Verlag.	
3.	Anderson. J.D., "Computational Fluid Dynamics", McGraw Hill.	1995
4.	Ghoshdastidar P.S., "Computer Simulation of Flow and Heat Transfer",	1998
	Tata McGraw Hill.	
5.	Patankar S.V., "Numerical Heat Transfer and Fluid Flow", Taylor and	2004
	Francis.	

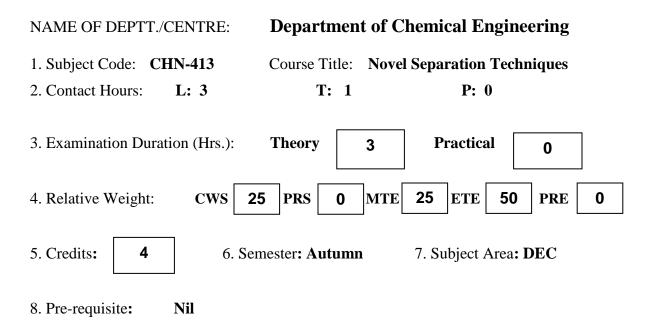


- 8. Pre-requisite: Nil
- 9. Objective: To provide knowledge about the principle of fluidization engineering and its applications in process industries.
- 10. Details of Course:

S.No.	Торіс	Contact Hours
1.	Introduction: Importance of fluidization in process industry, comparison of	4
	fluidized beds with other modes of contacting, advantages and	
	disadvantages, industrial applications. Terminology for fluid-particle	
	systems	
2.	Mechanics of flow around single particles: Flow around single particle,	4
	force balance, Review of packed beds- force balance and Ergun equation,	
	Fixed bed of particles of mono and mixed sizes, and varying shapes.	
3.	Mechanics of homogenous fluidization: Homogenous fluidized beds,	7
	minimum fluidization velocity-measurement, prediction and correlations,	
	stability aspects- qualitative and quantitative-wave propagation.	
4.	Heterogeneous fluidization: Geldart classification and mapping of regimes,	13
	bubbling bed (heterogeneous fluidized) bed models, Davidson model for a	
	bubble in a fluidized bed, and its implications, turbulent and fast	
	fluidization-mechanics, flow regimes and design equations. Entrainment and	
	elutriation, pneumatic transport, Free boards behavior, slugging, spouted	
	beds, dilute and dense phase transport-circulating fluidized beds.	
5.	Complexities in fluidized bed operation: Mixed particle system-mixed	9
	sized particles, Particles of different densities and shapes, particle to particle	
	and particle to gas heat transfer. Mass transfer in fluidized systems, mixing in	
	fluidized systems-measurements and mixing models, reactions in fluidized	
	beds and models, FCC reactor introduction.	

6.	Modern techniques of analysis: Modern experimental techniques-flow	5
	visualization and quantitative measurements, modern simulation techniques-	
	CFD models.	
	Total	42

S. No.	Name of Books / Authors	Year of
		Publication
1.	Kunii D. and Levenspiel O., "Fluidization Engineering", 2 nd Ed.,	1991
	Butterworth-Heinemann.	
2.	Davidson D. and Harrison J. F., "Fluidization Engineering", 2 nd Ed.,	1992
	Academic Press.	
3.	Yang W. C., "Handbook of Fluidization and Fluid Particle Systems",	2003
	3 rd Ed., CRC.	
4.	Rhodes, M., Introduction to Particle Technology, 2 nd Ed., Wiley.	2008
5.	Jackson, R., The Dynamics of Fluidized Particles, Cambridge	2000
	University Press.	

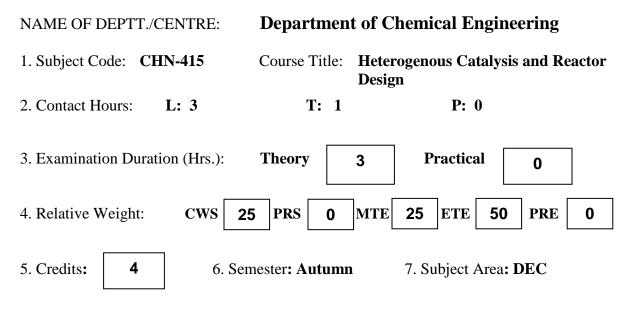


- 8. Pre-requisite: Nil
- 9. Objective: To understand the static and dynamic properties of polymers in solutions, melts, and gels.
- 10. Details of Course:

S.	Contents	Contact Hours
No.		
1.	Introduction: Polymer structure, properties and universality; The	2
	basic approach of polymer physics.	
2.	Mathematical and Statistical Preliminaries: Probability	4
	distribution (Gausian, Poisson), Binomial and multinomial	
	distributions, Large N limit, Stirling's approximation, Discrete and	
	continuous Fourier Transform.	
3.	Brief Recap of Thermodynamics and Statistical Mechanics: The	4
	laws of thermodynamics; Internal energy, free energy and entropy.	
	Introduction to statistical mechanics.	
4.	Properties of an Isolated Polymer Chain: Conformations, bond	8
	rotation and polymer size: the random walk model (Ideal chain),	
	effect of short range interactions (freely-rotating chain, hindered	
	rotation etc.), Stiffness measures: concept of statistical segment	
	length (persistence length/ Kuhn length), Radius of gyration, The	
	Gaussian chain model, Probability distribution for polymer	
	conformation: Self-avoiding chains and the excluded-volume effect;	
	Real polymeric systems; Molecular weight distributions and	
	polydispersity.	
5.	Statistical Thermodynamics of Polymer solutions: Lattice model	8
	for a binary fluid mixture; Flory-Huggins theory for polymer	

6.	solutions; Osmotic pressure; Flory Chi parameter and Theta temperature; Phase behavior of polymer solution and blends; Good solvents, Poor solvents and Theta solvents; Excluded volume effect revisited; Coil-Globule transition; Concentration regimes; Chain size in concentrated solutions and melts. Continuum Aspects of Rheology: Introduction to various rheological response functions: viscosity, modulus and compliance; Normal stress differences; Stress relaxation and Creep response; Dynamic response functions (storage and loss moduli); Linear vs. Non-linear response; Intrinsic viscosity of polymer solutions; steady shear and elongational flows; Introduction to Rheometry; Phenomenological models to illustrate viscoelastic effects; Some commonly used continuum constitutive relations for polymer solutions; Differential and Integral representations.	8
7.	Molecular Theories of Dynamics and Rheology of Polymer Solutions: Polymer chains as an entropic spring; Theory of rubber elasticity; General theory of Brownian motion; Microscopic expression for stress tensor; Dilute solutions: The bead-spring model for a polymer; Rouse theory; Hydrodynamic interactions and the Zimm model; Concentrated polymer solutions and melts; Entanglement and reputation model.	8
	Total	42

S.	Name of Books / Authors	Publication
No.		year
1.	Rubinstein M. and Colby R. H., Polymer Physics, Oxford.	2004
2.	Doi M., Introduction to Polymer Physics, Oxford.	1996
3.	Teraoka I., Polymer Solutions: An Introduction to Physical Properties, Wiley.	2002
4.	Larson R. G., The Structure and Rheology of Complex Fluids, Oxford.	1998
5.	Doi M. and Edwards S. F., The Theory of Polymer Dynamics.	1998



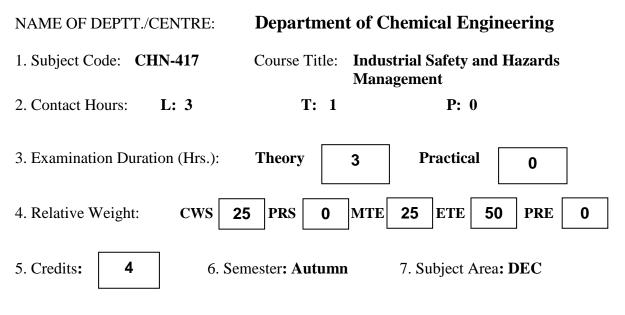
9. Objective: To provide knowledge of various advanced separation techniques.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Separation processes in chemical and biochemical industries, categorization of separation processes, equilibrium and rate governed processes.	8
2.	Bubble and Foam Fractionation: Nature of bubbles and foams, stability of foams, foam fractionation techniques, batch, continuous, single stage and multistage columns.	8
3.	Membrane Separation: Physical factors in membrane separation, osmotic pressure, partition coefficient and permeability, concentration polarization, electrolyte diffusion and facilitated transport, macro-filtration, ultra-filtration, reverse osmosis and electro-dialysis, gas separation using membrane structure and production.	14
4.	Special Processes: Liquid membrane separation, critical extraction, pressure swing adsorption and freeze drying of pervaporation and permeation; Nanoseparation.	12
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Seader J. D. and Henley E. J. "Separation Process Principles", 2 nd Ed.,	2006
	Wiley-India.	
2.	King C. J., "Separation Processes", Tata McGraw Hill.	1982
3.	Basmadjian D., "Mass Transfer and Separation Processes: Principles	2007
	and Applications", 2 nd Ed., CRC.	
4.	Khoury F. M., "Multistage Separation Processes", 3 rd Ed., CRC.	2004
5.	Wankat P. C., "Separation Process Engineering", 2 nd Ed., Prentice	2006
	Hall.	

8. Pre-requisite: Nil


9. Objective: To provide the knowledge of Heterogeneous Catalysis & Reactor Design.

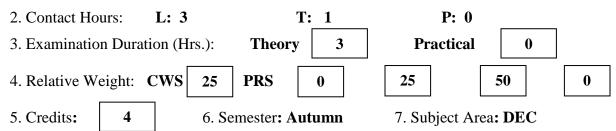
10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Introduction: Definitions, catalytic properties, classification of catalysts, steps in catalytic reaction, adsorption isotherm, chemisorptions, synthesizing rate law, mechanism and rate limiting steps, deducing a rate law from the experimental data, finding a mechanism consistent with experimental observation, evaluation of rate law parameter,	6
2.	Solid catalysis: Catalyst synthesis, impregnation, sol-gel, catalyst characterization by BET, TPR, XTD, TPD, chemisorptions, FTIR, XPS etc., catalyst promoters and inhibitors, catalyst poisoning, types of catalyst deactivation, kinetics of catalytic deactivation, temperature-time trajectories, moving bed reactors, straight through transport reactors.	8
3.	Rate equations for fluid solid catalytic reactions: Rates of adsorption,	8
	desorption, surface reaction, rate equations in terms of fluid phase	
	concentration at the catalyst surface, qualitative analysis of rate equations,	
	quantitative interpretation of kinetics data.	
4.	Diffusion and reaction: external diffusion effects on heterogeneous reaction, diffusion and reaction in spherical pellets, internal effectiveness factor, falsified kinetics, overall effectiveness factor, estimation of diffusion-and reaction limited regimes, Wisz-Prater criterion for internal diffusion, Mears criterion for external diffusion, interpellet heat and mass transfer, mass and heat transfer with reaction, mass transfer and reaction in a packed bed, multiphase reactors, slurry reactors, trickle bed reactors.	10

5.	Modeling of chemical reactors: Approach, aspects of mass, heat and	10
	momentum balance, specific continuity equation, energy equation, momentum	
	equation, modeling of fixed bed reactor, pseudo homogeneous models,	
	heterogeneous models, modeling of fluidized bed reactors.	
	Total	42

S.	Name of Books / Authors	Year of
No.		Publication
1.	Froment G. F., Bischoff K. B., Wilde J. D., "Chemical Reactor	2011
	Analysis and Design", John Wiley & Sons, Inc, 3rd edition.	
2.	Smith J.M., "Chemical Engineering Kinetics", McGraw-Hill International	1981
	Editions, 3 rd edition.	
3.	Carberry J. J., "Chemical and Catalytic Reaction Engineering",	2001
	Courier Dover Publications, N.Y.	
4.	Lee H. H., "Heterogeneous Reactor Design", Butterworth -	1984
	Heinemann.	
5.	Ramchandran P. A. and Chaudhari R. V., "Three Phase Catalytic	1983
	Reactors", Gordon And Breach.	

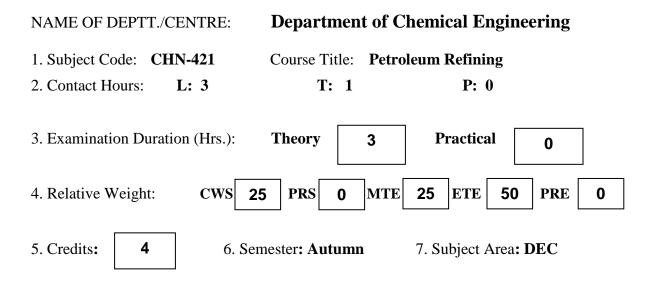
- 8. Pre-requisite: Nil
- 9. Objective: To provide a comprehensive coverage of safety and hazards aspects in industries and the management of hazards.
- 10. Details of Course:


S.No.	Торіс	Contact Hours
1.	Introduction: Industrial processes and hazards potential, mechanical	9
	electrical, thermal and process hazards. Safety and hazards regulations,	
	industrial hygiene and the Factories Act, and Environment protection Acts and rules.	
2.	Toxicology: Hazards identification-toxicity, fire, static charge, noise and	6
	dust concentration. Material safety data sheet, hazards indices-Dow and	
	Mond indices, HAZOP and HAZAN.	
3.	Reliability Engineering and Hazards Assessment: Probabilistic failure	10
	distribution, failure of standard and complex systems, failure data analysis	
	and failure modeling. Event data, fault tree and event tree analysis, scenario	
	development and consequence modeling, risk criteria.	
4.	Fire and Explosion: Shock wave propagation, vapor cloud explosion (VCE) and boiling liquid expanding vapor explosion (BLEVE),	7
	mechanical and chemical explosion, multiphase reactions, transport effects	
	and global rates.	
5.	Relief Systems: Preventive and protective management from fires and	7
	explosion-inerting, static electricity passivation, ventilation, and sprinkling,	
	proofing, relief systems-relief valves, flares, scrubbers.	
6.	Cases Studies: Flixborough and Bhopal accidents.	3
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Crowl D. A. and Louvar J. F., "Chemical Process Safety:	2001
	Fundamentals with Applications", 2 nd Ed., Prentice Hall.	
2.	Mannan S., "Lee's Loss Prevention in the Process Industries", Vol. I,	2004
	2 nd Ed., Butterworth Heinemann.	
3.	Mannan S., "Lee's Loss Prevention in the Process Industries", Vol. II,	2004
	2 nd Ed., Butterworth Heinemann.	
4.	Mannan S., "Lee's Loss Prevention in the Process Industries", Vol.III,	2004
	2 nd Ed., Butterworth Heinemann.	
5.	Tweeddale M., "Managing Risk and Reliability of Process Plant",	2003
	Gulf Professional Publishing	

NAME OF DEPTT./CENTRE:

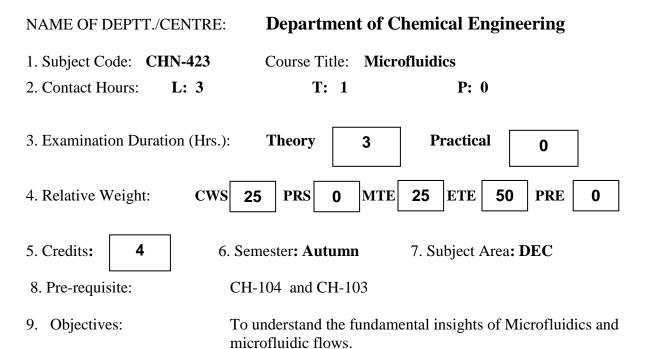
Department of Chemical Engineering


- 1. Subject Code: CHN-419
- Course Title: Probability and System's Reliability

- 8. Pre-requisite: Nil
- 9. Objective: To demonstrate quantitative evaluation of system's reliability, maintainability, availability and safety to support decision making.

S. No.	Contents	Contact Hours
1.	Introduction: Interpretation of random data, mean and variance,	4
	probability distributions: normal, binomial, Poisson, Weibull	
	distribution, etc.; Interpretation of failure data; Equal likelihood and	
	Boolean algebra, probability of union, joint and marginal probability,	
	conditional probability, distribution function.	
2.	Monte Carlo Simulation: Pseudo random number; Frequency	5
	distribution; Simple programming for simulation of random event;	
	Basics of Monte Carlo simulation and its applications.	
3.	Failure Models: Reliability functions and hazard rate, failure	8
	distribution and bathtub curve, failure data for estimation of mean	
	time to failure (MTTF), MTBF, MTTR, mean time to restore,	
	applications of exponential, binomial, multinomial and Poisson's	
	distributions.	
4.	Reliability of complex systems: Application of failure distribution	7
	to series and parallel components; k-out-of-n parallel and standby	
	units; Reliability and availability formulation.	
5.	Markov analysis: Load sharing systems; Standby systems and	5
	three-state devices; Reparability of single equipment system.	
6.	Failure Analysis and Confidence Limit: Data source and data	8
	bank; Confidence limit on failure frequency; Representation of event	
	and failure data, fault tree and event tree analysis; Scenario	
	development and consequence modeling, Risk criteria.	
7.	Application of Reliability Engineering: Reliability predictions;	5
	Reliability in design and lifecycle costing; Maintenance activity and	
	policymaking.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/
		Reprint
1.	Ebeling C. E., "An Introduction to Reliability and Maintainability	2008
	Engineering" Tata McGraw-Hill.	
2.	Mannan S., and O'Connor M. K. (Eds.), "Reliability Engineering" in	2004
	Less' Loss Prevention in the Process Industries, Vol-1, 3 rd Ed.,	
	Butterworth-Heinemann.	
3.	Walpole R. E., Myers R. H., Myers S. L., Ye K., "Probability &	2012
	Statistics for Engineers & Scientists", 9th Ed., Prentice Hall	
4.	Nikolaidis E., Ghiocel D. M., and Singhal S,, "Engineering Design	2005
	Reliability Handbook", CRC Press.	
5.	Tweeddale M., "Managing Risk and Reliability of Process Plant",	2003
	Gulf Professional Publishing	


8. Pre-requisite: Nil

9. Objective: To introduce petroleum refining processes.

S. No.	Contents	Contact Hours
1	Introduction: Indian and Global Petroleum Industries: an overview.,	3
	emerging crude oil quality and fuel norms, natural gas, shale gas and	
	gas hydrates, changing scenario in crude oil and natural gas availability.	
2.	Origin, Occurrence and Composition of Petroleum: Origin and	3
	occurrence of petroleum crude, drilling of crude oil and natural gas,	
	composition of crude oil and natural gas, classification and physical	
	properties of petroleum, evaluation of crude oil and petroleum products.	
3	Evaluation of crude oil and petroleum products:. Short term and Long	4
	term evaluation Composition of crude oil, TBP Assay, ASTM	
	distillation, Evaluation crude oil base and other properties, Product	
	quality analysis and fuel norms.	
3.	Crude Oil Distillation Processes: Pretreatment of crude, atmospheric	5
	and vacuum distillation process., effects of crude characteristics and	
	operating variables in Crude oil distillation. Processing of high TAN	
	crude oil.	
4	Thermal Conversion Process: Thermal Cracking Reactions, Thermal	6
	Cracking, Visbreaking, Coking Processing, Delayed, Fluid And Flexi	
	Coking, Petroleum Coke.	
5	Catalytic Conversion Process: Fluid Catalytic Cracking (FCC),	8
	Hydrocracking, Catalytic Reforming, Alkylation, Isomerization and	
	Polymerization.	
6.	Lubricating Oil, Wax and Bitumen: Lube refini8ng concept,	5

	Dewaxing, deasphalting, lube hydro-finishing, bitumen and asphalt processing.	
7.	Finishing and Sweetening processes : Desulfurization and hydro- desulfurisation of petroleum products., Sweetening Processes, Desulphurisation of sour water, sulphur recovery.	4
8	Future refining trend s: Biofuel, gas to liquid technology, carbon foot prints in petroleum refining, concept of Petrochemical refinery, gas refinery and Biorefinery.	4
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Nelson W. L., "Petroleum Refinery Engineering" 4 th Ed, McGraw Hill.	1987
2.	Wauquier J. P., "Petroleum Refining 2 Separation Processes", Vol:1- 5, IFP, Technip Ed.	1998
3.	Meyers R. A., "Hand book of Petroleum Refining Processes", 3 rd Ed., The McGraw-Hill Publication Data.	2004
4.	Dawe R. A., "Modern Petroleum Technology- Part I", by Institute of Petroleum (IP), John Wiley.	2002
5.	Prakash Surinder "Refining Processes Hand book" Elsevier	2003
6	Hobson,G.D." Modern Petroleum technology Volume I & II" Wiley	1984
7	Bhaskar rao, B.K. "Modern Oetroleum refining processes" Oxford &IBH Publishing Co Pvt.Ltd.	2005

S.	Contents	Contact
No.		Hours
1	Introduction: Microfluidics; Relationships among microfluidics,	3
	nanotechnology and MEMS; Scientific and commercial aspects; Milestones	
	of microfluidics – Device and technology developments; Microfluidics and	
	chemical engineering; Astonishing microfluidics system in nature;	
	Different aspects of microfluidics; Scaling of micromechamical devices	
2	Fundamental Physics: Ranges of forces of microscopic origin;	4
	Microscopic scales intervening in liquids and gases; Physics of	
	miniaturization; Miniaturization of electrostatic, electromagnetic,	
	mechanical, thermal and chemical analysis systems; New flow regimes in	
	microfluidics; Continuum hypothesis – molecular magnitude, mixed flow	
	regimes and experimental evidences; Modeling of microfluidic flows;	
	Simulation approaches of microfluidic systems	
3	Hydrodynamics of Microfluidic Systems: Hypothesis of hydrodynamics;	5
	Hydrodynamics of gases in mircosystems; Slip flow and models – general	
	slip conditions, comparison of slip models; Microhydrodynamics;	
	Microfluidics involving inertial effects; Interfacial phenomena;	
	Microfluidics of drops, bubbles and emulsions	
4.	Shear-Driven Microfluidics: Couette flow- slip, transition and free	5
	molecular flow regimes; Velocity and shear stress models; Oscillatory	
	Couette flow – steady and unsteady flow; Grooved channel flow	
5.	Pressure-Driven Microfluidics: Slip flow regimes – isothermal and	5
	adiabatic compressible flows; Entry flows and effects of roughness;	
	Transitional and free-molecular regimes – Burnett equations; Unified flow	

model;	
6. Thermal Effects in Microfluidics: Heat conduction in gases, liquids and solids; Ghost effect; Thermal creep (transpiration); Gas flow at moderate Knudson numbers	4
7. Electrokinetic flows in Microfluidics: Electrokinetic effects; Electrical double layer, Potential distribution; Flow characterization and governing equations; Electroosmotic flows – Channel flow, time-periodic flow, EDL/bulk flow interface velocity matching conditions, slip conditions, drag models, Joule heating, applications; Electrophoresis – Classification and governing equations, Taylor dispersion, charged particles in pipe; Dielectrophoresis and its applications	8
8. Surface Tension-Driven Flows: Basic concepts; General form of Young's equations; Governing equations for thin films; Dynamics of capillary spreading; Thermocapillary pumping; Electrocapillary	3
 9. Computational fluid dynamics (CFD) Analysis and Application of some Microfluidic Devices: Basic aspects of computational tools; Applications of CFD methods on various microfluidic flow problems of micromanipulations and separations using electric fields, surface tension effects, etc. 	5
Total	42

S.	Name of Books/Authors/Publications	Publication
No.		Year
1.	Tabeling P., "Introduction to Microfluidics", Oxford University Press.	2010
2.	Kandlikar S., Garimella S., Li D., Colin S. and King M.R. "Heat	2006
	Transfer and Fluid Flow in Minichannels and Microchannels",	
	Elseveir.	
3.	Nguyen NT. and Wereley S. "Fundamental and Applications of	2006
	Microfluidics", 2 nd Ed. Artech House, London.	
4.	Kirby B.J. "Micro- and Nanoscale Fluid Mechanics: Transport in	2010
	Microfluidic Devices" Cambridge University Press,	
5.	Gad-el-Hak, M. "The MEMS Handbook: Volume 1 – MEMS	2006
	Introduction and Fundamentals" 2 nd Ed., CRC Press.	
6.	Karniadakis G., Beskok A. and Aluru N. "Microflow and Nanoflow:	2005
	Fundamentals and Simulations" Springer.	

NAME OF DEPTT./CENTRE:

Department of Chemical Engineering

Course Title: Nanotechnology in Chemical 1. Subject Code: CHN-425 Engineering L: 3 **P:** 0 2. Contact Hours: **T:** 1 Theory 3. Examination Duration (Hrs.): 3 **Practical** 0 MTE PRE CWS PRS 50 4. Relative Weight: 25 0 25 ETE 0 5. Credits: 4 7. Subject Area: DEC 6. Semester: Autumn Nil 8. Pre-requisite:

9. Objective: To introduce selected topics in Nanotechnology to Chemical Engineers.

S. No.	Contents	Contact Hours
1.	Introduction: Nanotechnology and its historic perspective;	4
	Foundation of Nanotechnology in Chemistry, Physics and Biology;	
	Nanostructures in Nature.	
2.	Nano-structures and Nano-materials: Shape and structure of nano-	6
	materials: nano-particles, nano-wires and nano-films; Crystal	
	structure and Space lattices; Special nano-materials such as quantum	
	dots, semiconductor nano-particles, Bio-macromolecules, self	
	assembling nanostructures, nano-structured thin films and nano-	
	composites.	
3.	Nano-scale Characterization Techniques: X-Ray Diffraction;	6
	Brunauer-Emmett-Teller (BET), Scanning Tunneling Microscopy	
	(STM), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM),	
	Auger Electron Spectroscopy (AES), X-Ray Photo-electron	
	Spectroscopy (XPS), Electron Energy Loss Spectroscopy (EELS).	
4.	Nano-scale Manufacturing Techniques : Bottom-up Approach:	6
	Sol-Gel Synthesis, Hydrothermal Growth, Thin-Film Growth,	U
	Physical Vapour Deposition, Chemical Vapour Deposition; Top-	
	Down-Approach: Ball Milling, Micro-fabrication, Lithography, Ion-	
	Beam Lithography.	
5.	Properties of Nano-structures: Crystal defects, surfaces and	8
	interfaces in nanostructures, ceramic interfaces, Super-hydrophobic	
	surfaces; Thermodynamics of Nanostructures; Diffusion Kinetics;	
	Properties: Optical, Emission, Electronic transport, Photonic,	
	Refractive Index, Dielectric, Mechanical, Magnetic, Non-linear	
	optical, Catalytic and Photo-catalytic.	
6.	Chemical Engineering Aspects: Flow of Nano-fluids in Micro-	12

channel; Heat Transfer from Nano-fluids: Convective and Radiative; Surface energy, Colloidal and Catalytic Behaviour of Nano-particles: Gold Nano-particles; Nano-particulate Suspensions; Membrane Nanotechnology; Nano-engineered Catalysts and Polymers; Nano- material Filters.	
Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Rao, M. S. R. and Singh, S., "Nanoscience and Nanotechnology:	2013
	Fundamentals to Frontiers", Wiley India Pvt. Ltd., I Edition.	
2.	Ashby, D. M., Ferreira, P. and Schodek, D. L., "Nanomaterials,	2009
	Nanotechnologies and Design: an Introduction to Engineers and	
	Architects", Butterworth-Heinemann. I Edition.	
3.	"Handbook of Nanotechnology", Eds: Bhushan, B., Springer, 3rd	2010
	Edition.	
4.	"Advances in Numerical Heat Transfer: Nanoparticle Heat Transfer	2013
	and Fluid Flow", Vol.4, Eds: Minkowwycz, W. J., Sparrow, E. M.	
	and Abraham, J. P., CRC Press.	
5.	Ferry, D. K., Goodnick, S. M. and Bird, J., "Transport in	2009
l	Nanostructure", Cambridge University Press, 2nd Edition.	

NAME OF DEPTT./CENTRE:

Department of Chemical Engineering

Course Title: Clean Technology in Process 1. Subject Code: CHN-427 Industries **P:** 0 2. Contact Hours: L: 3 T: 1 3. Examination Duration (Hrs.): Theory 3 **Practical** 0 MTE CWS PRS PRE 4. Relative Weight: 25 0 25 ETE 50 0 5. Credits: 4 6. Semester: Autumn 7. Subject Area: DEC 8. Pre-requisite: Nil

9. Objective: To expose the students to newer clean technologies for chemical processes.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Environmental impact of chemicals and chemical production, life cycle assessment, waste minimization techniques,	3
	sustainable development.	
2.	Evaluation of Conventional Technologies: Evaluation of present process technologies for ammonia, sulphuric acid, caustic soda, pulp and paper, plastics and polymers synthesis. Analysis of raw materials, intermediates, final products, by-products and wastes.	8
3	Alternate Technologies: Alternative raw materials, low temperature and low pressure and low energy consuming routes for the manufacture of caustic soda, leather, plastics, pulp and paper and rayon.	8
4	Minimization of water and heat consumption: Process Integration and water pinch technology for minimizing water and heat consumption; data extraction, minimum fresh water target with and without reuse: limiting water profile, concentration-composite curve, concentration-interval diagram, block diagram, grid diagram, mass- content diagram, network design, network evolution: lop identification and loop breaking.	9
5	Process Modification and energy production from waste: Process modification waste utilization and energy production from solid waste, recycling and reuse of water, solid waste management.	8
6	Advanced Technologies: Development of biodegradable and end- products of polymers and plastics, CO_2 capture, sequestration and utilization.	6
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication
1	Jacob A. Moulijn, Michiel Makkee, Annelies E. van Diepen,	2013
	"Chemical Process Technology", John Wiley and Sons Ltd.	
2	George T. Austin, "Shreve's Chemical Process Industries", Tata	2012
	McGraw Hill Education	
3	Gerard Kiely, " Environmental Engineering'', Tata McGraw-Hill	2007
	Education	
4	J. Mann and Y.A. Liu, "Industrial Water Reuse and Wastewater	1999
	Minimization", McGraw-Hill Professional", Ist Edn.	
5	Mahmoud M. El-Halwagi, Sustainable Design Through Process	2011
	Integration: Fundamentals and Application to Industrial Pollution	
	Prevention, Resource Conservation, and Profitability Enhancement,	
	Elsevier Science & Technology	
6	Roberto Solaro, Emo Chiellini, Biodegradable Polymers and Plastics,	2003
	Springer	

NAME OF DEPTT./CENTRE: Department of Chemical Engineering

Course Title: Waste-to-Energy 1. Subject Code: CHN-429 2. Contact Hours: L: 3 **P:** 0 T: 1 Theory 3 **Practical** 3. Examination Duration (Hrs.): 0 PRS MTE ETE PRE CWS 25 50 4. Relative Weight: 25 0 0 5. Credits: 4 7. Subject Area: DEC 6. Semester: Autumn 8. Pre-requisite: Nil

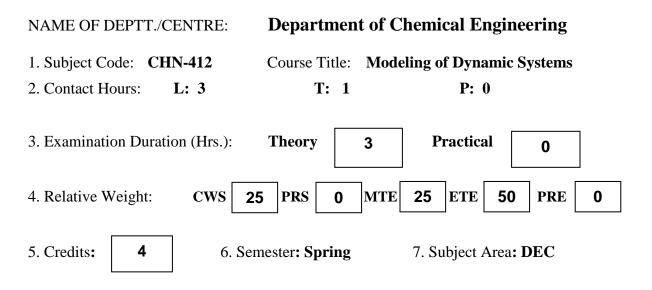
9. Objective: To deal with the various types of wastes available and technological options of their exploitation for obtaining useful energy.

Sl.	Contents	Contact
No.		Hours
1.	Introduction : Introduction to energy from waste, characterization and classification of wastes, availability of agro based, forest, industrial, municipal solid waste in India vis-a-vis world, proximate & ultimate analyses,	8
	heating value determination of solid liquid and gaseous fuels.	
2.	Waste to energy options I : Incineration, pyrolysis, gasification, hydrogen production, storage and utilization, anaerobic digestion, composting: gas generation and collection in landfills,	7
3.	Waste to energy options II : Industrial liquid effluents and their energy potential, anaerobic reactor configuration for fuel gas production, separation of methane and compression.	7
4.	Densification: Densification of agro and forest wastes, technological options, combustion characteristics of densified fuels, usage in boilers, brick kilns and lime kilns.	6
5.	Power generation: Steam and gas turbine based power generation, cogeneration, IC engines, IGCC and IPCC concepts, supercritical boilers.	6
6.	Biodiesel: Biodiesel production from waste/discarded oils, characterization of biodiesel, usage in CI engines with and without retrofitting.	6
7.	Case studies: Two industrial case studies where waste materials are used to supplement energy needs.	2
	Total	42

S.	Name of Books / Authors/ Publishers	Year of
No.		Publication/
		Reprint
1.	EL-Halwagi, M.M., "Biogas Technology- Transfer and Diffusion",	1984
	Elsevier Applied Science.	
2	Hall, D.O. and Overeed, R.P.," Biomass - Renewable Energy", John Willy	1987
	and Sons.	
3.	Harker, J.H. and Backhusrt, J.R., "Fuel and Energy", Academic Press Inc.	1981
4.	Rogoff, M.J. and Screve, F., "Waste-to-Energy: Technologies and Project	2011
	Implementation", Elsevier Store.	
5.	Young G.C., "Municipal Solid Waste to Energy Conversion processes",	2010
	John Wiley and Sons.	

NAME OF DEPTT./CENTRE:

Department of Chemical Engineering

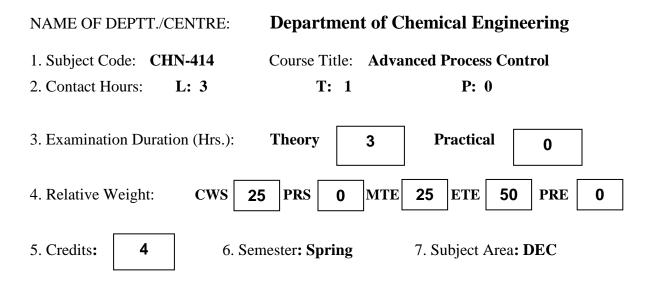

1. Subject Code: CHN-431		N-431	С	ourse Ti	tle: I	Fuel	Cell I	Fundai	nenta	als	
2. Contact Hours: L: 3				T:	1			P: 0			
3. Examinatio	n Duratio	on (Hrs.):	Т	heory	3		Pr	actical		0	
4. Relative W	eight:	CWS	25	PRS	0 N	/ITE	25	ETE	50	PRE	0
5. Credits:	4	6. S	Semes	ter: Aut	umn		7. Sul	bject Ar	ea: DI	EC	

- 8. Pre-requisite: Nil
- 9. Objective: To provide the comprehensive knowledge of Fuel cells fundamentals and applications.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Fuel cell definition, Fuel cells versus batteries, type of fuel cell, basic fuel cell operation, fuel cell performance, advantages and disadvantages of fuel cell, overview of fuel cell system, fuel cell stack, thermal management subsystem, fuel delivery and processing subsystem, hydrogen storage, generation and delivery.	8
2.	Working principle and application: Phosphoric acid fuel cell (PAFC), polymer electrolyte membrane fuel cell (PEMFC), alkaline fuel cell (AFC), molten carbon fuel cell (MCFC), solid-oxide fuel cell (SOFC), performance characterization of fuel cell system.	4
3.	Fuel cell thermodynamics: Thermodynamic potential, heat potential of a fuel, enthalpy of reaction, temperature dependency of enthalpy, working potential of fuel, relationship between Gibbs free energy and electrical work, relationship between Gibbs free energy and voltage, standard electrode potential, reversible voltage variation of reversible voltage with temperature, pressure and concentration, real and ideal fuel cell efficiency.	8
4.	Reaction kinetics in fuel cell: Electrode kinetics, electrochemical reaction, heterogeneous electrochemical process, current rate, current amount and current density, activation energy in current transfer reaction, net rate of reaction calculation, potential and rate: Butler-Volmer equation, how to improve kinetic performance, catalyst electrode design.	7
5.	Transport in fuel cell system: Ion transport in an electrolyte, electron transport, gas-phase mass transport, diffusive transport in electrode, convective transport in flow structures.	4
6.	Fuel cell characterization: Overview of characterization techniques, basic fuel cell test station, current voltage measurement, Ex Situ characterization techniques, porosity, BET, gas permeability, fuel processing subsystem, steam reforming, partial oxidation, auto-thermal reforming, gasification, water-gas	9

	shift reactors, carbon Monoxide clean up, thermal management.		
7.	Environmental impact: Life cycle assessment, emission, climate change,	2	
	greenhouse effect.		
	Total	42	

S.	Name of Books / Authors	Year of
No.		Publication
1.	Ohayre R.P., Cha Suk-Won, Colella W. G., Prinz F. B., "Fuel Cell	2009
	Fundamentals", John Wiley & Sons, Inc.	
2.	Larminie J., Dicks A., Fuel Cell System Explained", John Wiley & Sons	2003
3.	Mench M. M., "Fuel Cell Engines", John Wiley & Sons, Inc.	2008
4.	Zhao, T.S.; Kreuer, K.D., "Advances in fuel cells", Elsevier, 2007.	2007
5.	Linden, D., "Handbook of Batteries and Fuel Cells", McGraw-Hill.	1984

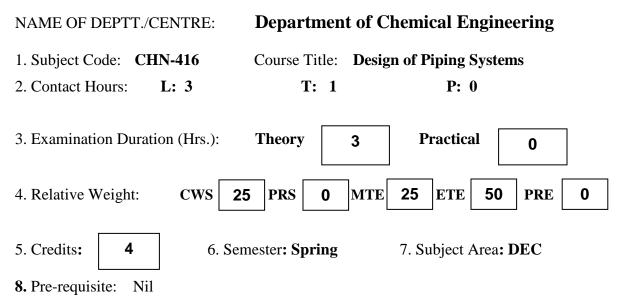


- 8. Pre-requisite: Nil
- 9. Objective: To provide the knowledge of modeling of chemical engineering equipment under dynamic conditions.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Review: Modeling fundamentals, formulation of dynamic models,	4
	material, energy and momentum balances.	
2.	Numerical Methods: Use of Runge-Kutta and Gear's methods for	7
	solution of staged separation problems, finite difference	
	approximation of partial differential equations and their solutions.	
3.	Process Dynamics Fundamentals: Review of first order and second	5
	order dynamics for different inputs and applications to chemical	
	engineering systems.	
4.	Modeling of Separation Processes: Dynamic modeling of batch	11
	extraction, flash distillation and equilibrium stage concept, modeling	
	of multistage systems for extraction, absorption, and distillation	
	columns involving multicomponents, use of two-point implicit	
	method for solution of staged separation problems such as	
	evaporator system, continuous distillation column, batch-distillation	
	column.	
5.	Modeling of Reactor Systems: Dynamic modeling of batch reactor,	11
	semi batch reactor, stirred tank reactor and plug flow reactor with	
	and without heat transfer, modeling of one dimensional and two	
	dimensional fixed bed reactor, fluidized bed reactor and	
	bioreactor.	
6.	Modeling of Heat Transfer Systems: Dynamics of the metal jacket	4

wall, heat exchanger dynamics.	
Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Holland C.D. and Liapis A. I., "Computer Methods for Solving	1983
	Dynamic Separation Problems", McGraw Hill.	
2.	Ingham J., Dunn I. J., Heinzle E., Prenosil J. E. and Snape J. B.,	2007
	"Chemical Engineering Dynamics", 3 rd Ed., Wiley.	
3.	Munsif H. P., "Dynamic Modeling of a Multicomponents, Highly	1995
	Nonideal Distillation Column", AIChE.	
4.	Bequette B. W., "Process Dynamics: Modeling, Analysis and	1998
	Simulation", Prentice Hall.	
5.	Esfandiari R.S., Lu Bei, "Modeling and Analysis of Dynamic Systems", 2 nd Ed., CRC Press.	2010

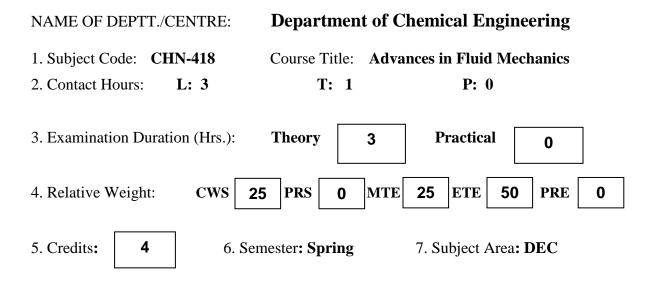


8. Pre-requisite: Nil

9. Objective: To provide the advanced knowledge of process control.

S. No.	Contents	Contact Hours
1.	Feed Back Control: Review of open loop and closed dynamics,	7
	stability using root-locus, and frequency response method, time-	
	integral performance criteria of controllers and tuning methods.	
2.	Advanced Control Systems: Control of systems with inverse	11
	response, dead time compensator, cascade control, selective control,	
	split-range control, feed forward and ratio control, internal model,	
	adaptive and inferential control.	
3.	Multivariable Control Systems: Alternative control configurations,	7
	interaction and decoupling of loops, relative gain-array method,	
	control for complete plants	
4.	State Space Methods: State variables, description of physical	5
	systems, transition and transfer function matrices, use in	
	multivariable control for interacting systems.	
4.	Digital Control Systems: Review of Z transform, elements of	12
	digital control loop, sampling and reconstruction of signals,	
	conversion of continuous to discrete-time models, discrete time	
	response and stability, design of controllers and control algorithms.	
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Coughanowr D.R. and LeBlanc S. "Process System Analysis and	2008
	Control", 3 rd Ed., McGraw Hill.	
2.	Stephanopoulos G. "Chemical Process Control – An Introduction to	1990
	Theory and Practice", Prentice-Hall of India.	
3.	Seborg D.E., Edgar T. F. and Mellichamp D. A., "Process Dynamics	2004
	Control", 2 nd Ed., John Wiley	
4.	Bequette B. W., "Process Control: Modeling, Design and Simulation",	2003
	Prentice Hall of India	
5.	Ogunnaike B. A. & Ray W. H., "Process Dynamics Modeling &	1994
	Control", Oxford University Press	

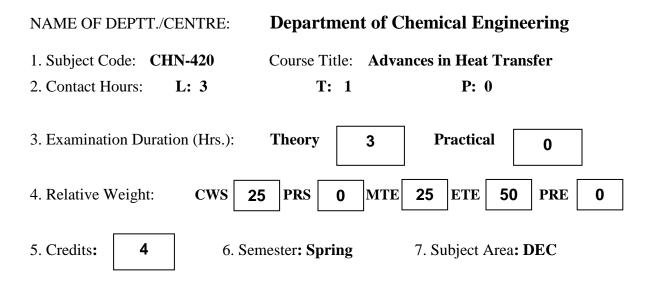


- 9. Objective: To provide knowledge of design and engineering problems of piping in process industries.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Flow of Fluids: Frictional loss in pipe and ducts, equivalent	9
	resistance of fittings, valves and bends, carrying capacity of pipes,	
	network; pressure drop and diameter calculations of pipe carrying	
	steam, water, oil and gases, optimum pipe line diameter calculations	
	and optimum pipe network design.	
2.	Vapor Liquid Piping: Flow pattern, piping design for two-phase	4
	flow; design of piping for reboiler and condenser systems.	
3.	Hydraulic Transport: Design of homogenous and heterogeneous	4
	slurry transport line; correlations for various flow regimes.	
4.	Pneumatic Transport: Conveying systems, solid gas flow pattern in	8
	vertical, horizontal and inclined pipe lines; concept of saltation and	
	choking velocities, pressure drop calculations in different pipe lines	
	carrying gas solid mixture; Design of feeding systems for pneumatic	
	transport of solids.	
5.	Pipes and Fittings: Standard sizes, wall thickness, tolerances, design of	2
	flanges and other fittings.	
6.	Strength and Failure of Materials: Stable and unstable deformation,	8
	plasticity, plastic instability, design assumptions, stress evaluation and	
	design limits, codes and standards. Local components of pipe bends, branch	
_	connections and bolted flange connections.	
7.	Simplified Methods for Flexibility Analysis: Thermal expansion loops, code rules, approximate solutions and flexibility analysis by model tests.	7
	code rules, approximate solutions and nexionity analysis by model tests.	

Approaches to reducing expansion effects, expansions joints.	
Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Deutsch D. J., "Process Piping Systems", Chemical Engineering,	1980
	McGraw Hill.	
2.	Marcus R. D., Leung L. S. Klinzing G. E. and Rizk F., "Pneumatic	1990
	Conveying of Solids", Chapman and Hall.	
3.	Nayyar M. L., "Piping Handbook", 7 th Ed., McGraw Hill.	2000
4.	Boterman R. and Smith P., "Advanced Piping Design", Gulf	2008
	Publishing Company.	
5.	Smith P., "The Fundamentals of Piping Design: Drafting and Design	2007
	Methods for Process Applications", Gulf Publishing Company.	

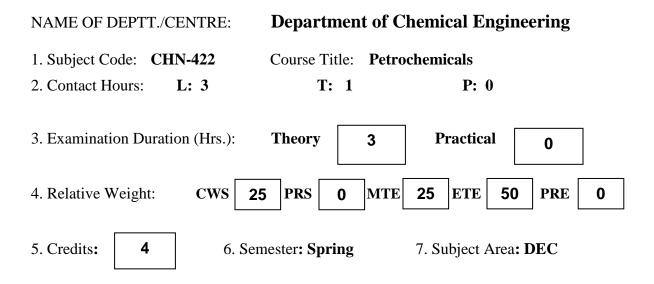


- 8. Pre-requisite: Nil
- 9. Objective: To emphasize on physical concepts and mathematical formulation of typical fluid mechanics problems.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Definition and properties of Fluids, Continuum hypothesis, Elementary concepts in tensor analysis and index notation	5
2.	Fluid kinematics: Lagrangian and Eulerian viewpoints, substantial derivative, decomposition of motion, vorticity, elementary motions in linear shear flow	3
3.	Basic conservation laws: Reynolds transport theorem, Integral and differential forms of governing equations: mass, momentum and energy conservation equations, Navier-Stokes equations, Non-Newtonian liquids, No slip condition	5
4.	Laminar flow examples: steady flow between parallel plates, pipe flow, flow between concentric cylinders, flow due to oscillating plate; Hele-Shaw flows, start-up flows.	6
5.	Irrotational flows: Motivation, Inviscid flows: Euler equation, Bernoulli's Equation, Velocity potential, application of complex variables and stream function, Source and Sink; Vortex flow, Doublet, Superposition of basic plane potential flows,	4
6.	Boundary layer theory : Boundary layer approximation, different measures of boundary layer thickness, flow past a flat plate, Von Karman momentum equation, Flow separation, Entry flow into a duct, low past circular cylinder and sphere, secondary flows	6
7.	Flow Instability: Concept of small-disturbance stability, method of	3

	normal modes, Squire's theorem, Orr-Somerfield equation, some results of parallel viscous flows	
8.	Turbulence : Characteristics of turbulent flows, averages, correlations and spectra, averaged equations of motion, kinetic energy budget, turbulence production and cascade	5
9.	Special topics: Introduction to compressible flows/geo-physical fluid dynamics/bio-fluid mechanics .	5
	Total	42

S.	Name of Books / Authors	Publication
No.		year
1.	Kundu P. K. and Cohen I.M., "Fluid Mechanics, 4th Ed., Academic	2008
	Press.	
2.	Panton R. L., "Incompressible flows", 3 rd Ed., Wiley.	2005
3.	Robert F. W., McDonald A. T., Introduction to Fluid Mechanics,	1995
	Fourth Edition, John Wiley & Sons	
4.	Muralidhar K. and Biswas G., Advanced Engineering Fluid	2005
	Mechanics, 2 nd Edition, Narosa	
5.	Frank M. White, Fluid Mechanics, Tata McGraw-Hill, New Delhi,	2008
	Sixth Edition	


8. Pre-requisite: Nil

9. Objective: To equip the students with the knowledge of Advance Heat transfer processes.

S.No.	Content	Contact
		Hours
1.	Heat Transfer during phase change: Different types of boiling	12
	phenomena(Nucleate, Sub-cooled, Pool and Film boiling. Boiling outside a	
	tube & tube bundle and flow boiling inside tube under forced convection;	
	Film-wise and drop-wise condensation, condensation outside a tube and tube	
	bundle and inside a tube, flow condensation inside tube under forced	
	convection, Augmentation of heat transfer coefficient during boiling and	
	condensation.	
2.	Heat Pipes: Constant Conductance Heat Pipes (CCHPs), Variable	06
	Conductance Heat Pipes (VCHPs), Pressure Controlled Heat Pipes (PCHPs),	
	Diode Heat Pipes , Rotating Heat Pipes, Capillary pumped loop heat pipe,	
	Micro Heat Pipes, Heat Pipe Heat Exchanger	
4.	Heat Conduction: 1-Dimensional Planar, Radial steady state conduction	06
	with thermal energy generation, Heat transfer from extended surfaces and fin	
	optimization, Multidimensional steady state and transient heat conduction,	
	Advanced Electronics cooling	
5.	Heat Convection: Introduction to convection, thermal boundary layer and	09
	its analogies, Forced convection inside tubes, correlation for laminar and	
	turbulent forced convection; Forced convection for external flow over	
	plates, cylinders, tube bundles. Heat Transfer in nano-fluids. Jet	
	impingement Heat Transfer, Combined free and forced convection. Heat	
	transfer in packed and fluidized beds.	
6.	Heat Radiation: Introduction to thermal radiation, surface radiation	09
	properties, Wien's displacement law, Stefan-Boltzmann Law, Krichhoff's	

law, Gray Surfaces View Factor, Black body Radiation Exchange, Radiation Exchange in n Enclosure, Multimode Heat Transfer	
Total	42

S.No.	Name of Authors/Books/Publishers	Year of publication
1.	Kreith, F. and Bohn, M.S., "Principles of Heat Transfer", 6th ED., Thomson Learning	2007
2.	Kays, W.M., Crawford, M.E. and Weigand , B., "Convective Heat & Mass Transfer", 4th Ed., MacGraw Hill	2004
3.	Siegel, R., and Howell, J.K., "Thermal Radiation Heat Transfer", Taylor & Francis	2002
4.	F.P. Incropera & D.P.DeWitt, "Fundamentals of Heat & Mass Transfer", 6th Ed., Wiley	2007
5.	Ryan McGlen, Peter Kew and David Reay, "Heat Pipes, Fifth Edition: Theory, Design and Applications", 5th Ed., Butterworth-Heinemann	2006

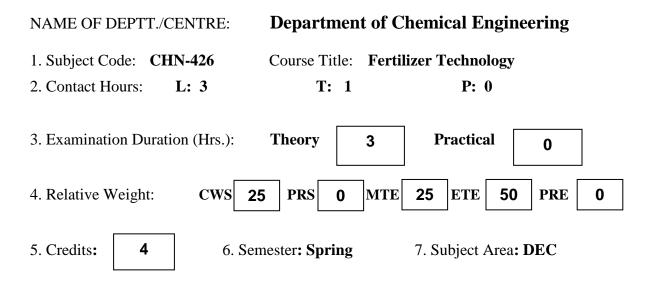
- 8. Pre-requisite: Nil
- 9. Objective: To provide in-depth knowledge to petrochemicals manufacture.

S. No.	Contents	Contact Hours
1.	Introduction: Introduction to petroleum and petrochemical industries, structure of petrochemical industry, product profile of petrochemicals, profile of Indian petrochemical industries, basic building blocks for petrochemical production.	4
2.	Raw Materials: Raw materials for organic chemicals-coal, biomass, petroleum and natural gas, Natural gas, NGL,, shale gas, coal bed methane, gas hydrate. Evaluation of crude oil and Petrochemical feed stocks- Naphtha, Kerosene, and Pyrolysis gasoline.	4
3.	Methane and Synthesis Gas Derivatives: Steam reforming and partial oxidation, gasification, product profile of synthesis gas, methanol, formaldehyde, chlorinated methane.	4
4.	Production of Olefins: Steam cracking of naphtha and natural gas. Advances in steam cracking, emerging Technologies for production of olefins	4
5.	Treatment & Up-gradation of C₄ and C₅ Cuts: Up gradation of C ₄ and C ₅ streams from crackers, MTBE, TAME. Recovery of butadiene and isoprene, cyclppentadiene	3
6.	Aromatics Production: Catalytic reforming, aromatic separation, aromatic conversion processes, Cyclar process.	4
7.	Ethylene , Propylene and their derivatives: Sources of ethylene and propylene, product profile of Ethylene and propylene, ethylene oxide, ethylene glycol, vinyl chloride, acetaldehyde, propylene oxide, glycol and isopropyl alcohol, acrylonitrile, cumene. C4 and c5 derivatives: Butadiene, Butane and butenes, Isobutylene,	6

	1,4-Butanediol, Chloroprene, Isoprene.	
8.	Aromatic Derivatives: Phenol, a niline, phthalic anhydride, caprolactum, terephthalic acid, DMT, maleic anhydride, linear alkyl benzene, cyclohexane,	5
9.	Polymers, Elastomers and Synthetic fibre : Polymer, elastomers and synthetic fiber: Polyolefins, PVC, Poly butadiene and Styrene butadiene rubber, caprolactam and nylon, polyester, acrylic fibre, polyurethane	8
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Chaval A. and Lefebvre G., "Petrochemical Processes" Part-I, 2 nd Ed., Technip.	1986
2.	Chaval A. and Lefebvre G., "Petrochemical Processes" Part-II, 2 nd Ed., Technip.	1986
3	Wiseman, P. "Petrochemicals" Ellis Horward.	1986
4.	Chaskar rao, B.K." "Petrochemicals" 2 nd Ed., Khanna Publishers.	1998
5	Mall I. D., "Petrochemical Process Technology", 1 st Ed., Macmillan India Ltd.	2007

Department of Chemical Engineering NAME OF DEPTT./CENTRE: 1. Subject Code: CHN-424 Course Title: Industrial Pollution Abatement T: 1 **P:** 0 2. Contact Hours: L: 3 3. Examination Duration (Hrs.): Theory **Practical** 3 0 4. Relative Weight: CWS PRS MTE ETE 50 PRE 25 0 25 0 7. Subject Area: DEC 5. Credits: 4 6. Semester: Spring


8. Pre-requisite: Nil

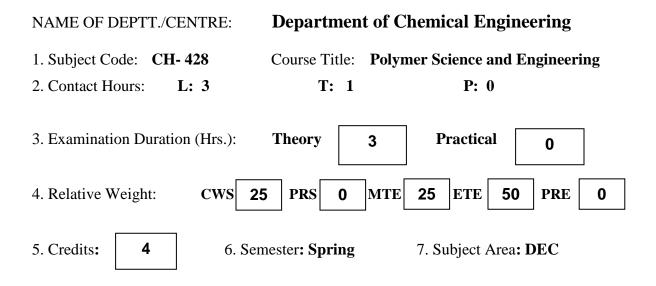
9. Objective: To impart knowledge about various industrial pollutants and their control techniques.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Environment and environmental pollution from	7
	chemical process industries, characterization of emission and	
	effluents, environmental Laws and rules, standards for ambient air,	
	noise emission and effluents.	
2.	Pollution Prevention: Process modification, alternative raw	10
	material, recovery of by/co-products from industrial	
	emissions/effluents, recycle and reuse of waste, energy recovery and	
	waste utilization. Material and energy balance for pollution	
	minimization. Water use minimization, Fugitive emission/effluents	
	and leakages and their control-housekeeping and maintenance.	
3.	Air Pollution Control: Particulate emission control by mechanical	8
	separation and electrostatic precipitation, wet gas scrubbing, gaseous	
	emission control by absorption and adsorption; Design of cyclones,	
	ESP, fabric filters and absorbers.	
4.	Water Pollution Control: Physical treatment, pre-treatment, solids	6
	removal by setting and sedimentation, filtration centrifugation,	
	coagulation and flocculation.	
5.	Biological Treatment: Anaerobic and aerobic treatment	6
	biochemical kinetics, trickling filter, activated sludge and lagoons,	
	aeration systems, sludge separation and drying.	
6.	Solids Disposal: Solids waste disposal – composting, landfill,	5
	briquetting / gasification and incineration.	
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Tchobanoglous G., Burton F. L. and Stensel H.D., "Waste Water	2003
	Engineering: Treatment and Reuse", 4 th Ed., Tata McGraw Hill	
2.	Vallero D., "Fundamentals of Air Pollution", 4 th Ed., Academic Press.	2007
3.	Eckenfelder W. W., "Industrial Water Pollution Control", 2 nd Ed.,	1999
	McGraw Hill.	
4.	Kreith F. and Tchobanoglous G., "Handbook of Solid Waste	2002
	Management", 2 nd Ed., Mc Graw Hill.	
5.	Pichtel J., "Waste Management Practices: Municipal, Hazardous and	2005
	Industrial", CRC.	

8. Pre-requisite: Nil


9. Objective: To impart in-depth knowledge of fertilizer technology.

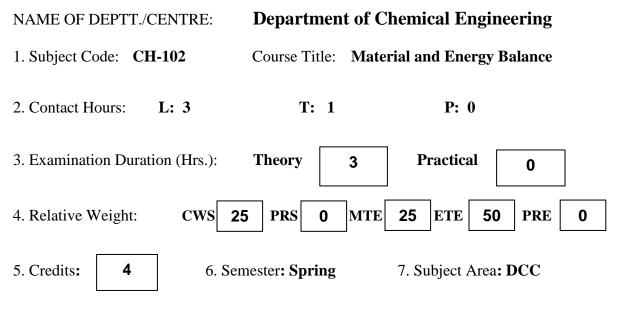
10. Details	of Course:
-------------	------------

S. No.	Contents	Contact Hours
1.	Introduction: Macro- and micro-nutrients, fertilizer grades, development of fertilizer industry, different types of fertilizers, their demand and production in India. Global fertilizer industry . physical and chemical properties of fertilizers.	5
2	Raw material: Coal, natural gas, naphtha, Rock phosphate, potash, sulphur as fertilizer feed stock, their availability, future trend. Energy resources.	4
3.	 Nitrogenous Fertilizers: Synthesis gas production by steam reforming. partial oxidation, gasification of coal, pretreatment, in primary reformer, shift converters, CO₂ removal and final gas purification. design considerations and developments. Ammonia Synthesis: Different types of reactors, their design consideration, operation and comparison of various processes. Advances in ammonia synthesis, design considerations and developments. 	9
4.	Urea and other Nitrogenous Fertilizers: Various processes for urea synthesis and major variables, synthesis of urea, calcium ammonium nitrate, ammonium sulphate, ammonium chloride, major operating variables. Prilling and granulation technology	6
5.	Phosphatic Fertilizers: Raw material and limitation in their use, uncertainties in their availability and their impact on the existing plants and future planning;, sulphuric acid, phosphoric acid, single and triple	8

	super-phosphates	
6.	Potash Fertilizers: Availability of potash, methods of production of	6
	potassium chloride and potassium sulphate.	
	Complex N-P-K Fertilizers: Mono- and di-ammonium phosphates,	
	nitro phosphate urea ammonium phosphate, mixed fertilizers,	
	granulation techniques.	
	Biofetriliser, Slow release fertilizers	
7	Energy & environment: Energy consumption and energy conservation	4
	measures., Fertilizer plant emission and effluents and standards,	
	pollution control strategies. In nitrogenous and phosphatic fertilizer	
	industry.	
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1	Sauchelli, V., "Fertilizer nitrogen. Its chemistry and technology, Reinhold Publishing	1984
2.	Mortvedt J. J., "Fertilizer Technology and Applications", Meister publication company.	1999
3.	United Nations and Industrial Development Organization, "Process Technologies for Phosphate Fertilizers", University Press of Pacific.	2003
4.	United Nations and Industrial Development Organization, "Process Technologies for Nitrogen Fertilizers", University Press of Pacific.	2003
5	Sundram, K.P "Handbook of fertilizer technology" The fertilizer association of India 6 th Ed.	2001

8. Pre-requisite: Nil

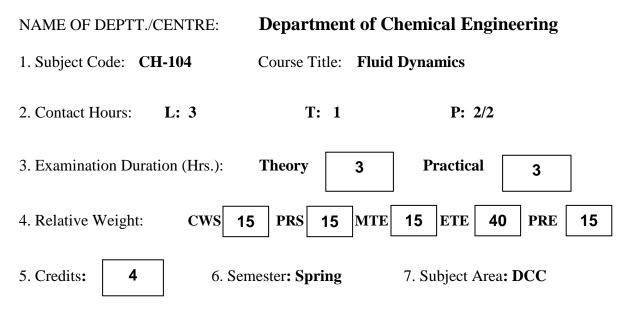

9. Objective: The objective of the course is to present in-depth study of polymer science and engineering.

S. No.	Contents	Contact Hours
1.	Chemistry of Polymerisation Reaction: Functionality,	10
	polymerization reactions, polycondensation, addition free radical and	
	chain polymerization, copolymerization, block and graft	
	polymerizations, stereo specific polymerization.	
2.	Polymerisation Kinetics: Kinetics of radial, chain and ionic	6
	polymerization and co-polymerisation systems.	
3.	Molecular Weight Estimation: Average molecular weight, number	8
	average and weight average, theoretical distributions, methods for	
	the estimation of molecular weight.	
4.	Polymerisation Processes: Bulk, solution, emulsion and suspension	10
	polymerization. Thermoplastic composites, fibre reinforcement	
	fillers, surface treatment, reinforced thermoset composites-resins,	
	fibers additives, fabrication methods.	
5.	Rheology: Simple rheological equations, simple linear viscoelastic	8
	models-Maxwell, Voigt, materials response time, temperature	
	dependence of viscosity.	
	Total	42

S.	Name of Book / Authors / Publisher	Year of
No.		Publication
1	Kumar A. and Gupta R., "Fundamentals of Polymer Engineering", CRC.	2003
2	Fried J., "Fundamentals of Polymer Science", Prentice Hall.	2004
3.	Williams, D.J., "Polymer Science & Engg." Prentice Hall.	1971
4	Billmayer Jr., W., "Textbook of Polymer Science" Wiley Tappers.	1984
5.	Rodriguez F.," Principles of Polymer Systems", 5th Ed. CRC Press.	2003

Courses for Minor Specialization

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE



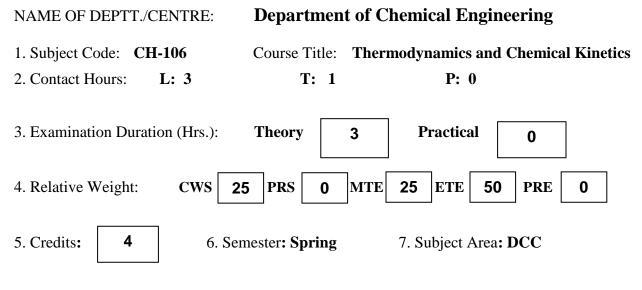
- 8. Pre-requisite: Nil
- 9. Objective: To provide basic knowledge of principles of material and energy balances applied to chemical engineering systems.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Units and dimension in chemical engineering, units	5
	conversion of dimensional equations, stoichiometric and	
	composition relations, concept of degrees of freedom and linear	
	independence of a set of equations.	
2.	Material Balance: Concept of material balance, open and closed	4
	systems, steady state and unsteady state, multiple component system,	
	selection of a basis, problem solving strategy.	
3.	Material Balance without Chemical Reaction for Single and	5
	Multiple Units: Conservation of mass/atom, material balance for	
	systems without chemical reactions involving single unit and	
	multiple units.	
4.	Material Balance with Chemical Reaction for Single and	6
	Multiple Units: Concept of excess reactant, extent of reaction,	
	material balance for systems with chemical reactions involving	
	single unit and multiple units.	
5.	Recycle, Bypass, Purge and Industrial Applications: Calculations	7
	for a cyclic processes involving recycle/ purge/ bypass, material	
	balances involving gases, vapors, liquids and solids and use of real	

	gas relationships, material balance involving gases, vapors, liquids & solids and uses of real gas relationships, vapor-liquid equilibrium and concepts of humidity & saturation, analysis of systems with bypass, recycle and purge, analysis of processes involving condensation, crystallization and vaporization.	
6.	Energy Balance: Conservation of energy with reference to general energy balance with and without chemical reactions, chemical engineering problems involving reversible processes and mechanical energy balance.	4
7.	Applications of Energy Balance: Calculations of heat of change of phase (solid – liquid & liqid – vapor), heat of reaction, heat of combustion, heat of solutions and mixing, determination of temperatures for adiabatic and non-adiabatic reactions, use of psychometric and enthalpy- concentration diagrams.	6
8.	Simultaneous Material and Energy Balances: Degrees of freedom analysis for multicomponent systems, combined steady state material and energy balances for units with multiple sub-systems.	3
9.	Unsteady State Material and Energy Balances: Transient materials and energy balances involving with and without chemical reactions.	2
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Himmelblau D.M. and Riggs J. B.," Principles and Calculations in	2012
	Chemical Engineering", 8 th Ed., Prentice Hall of India.	
2.	Felder R.M. and Rousseau R.W., "Elementary Principles of Chemical	2005
	Processes", 3 rd Ed, John Wiley.	
3.	Bhatt B.I. and Vora S.M., "Stoichiometry", 5 th Ed., Tata McGraw-Hill	2010
4.	Narayanan K.V. and Lakshmikutty B., "Stoichiometry and Process	2006
	Calculations", Prentice Hall of India.	
5.	Hougen D.A., Watson K.M. and Ragatz R.A., "Chemical Process	1995
	Principles", Part-I, 2 nd Ed., CBS Publishers.	

- 8. Pre-requisite: Nil
- 9. Objective: To present the fundamental insights of fluids and their static and dynamic behaviors and fluid machineries, etc
- 10. Details of Course:


S. No.	Contents	Contact Hours
1	Introduction: Fundamental concepts of fluids; Fluid statics, kinematics and dynamics; Properties of fluids.	3
2	Fluid Statics: The basic equation of fluid statics; Pressure - depth relationship; Pressure forces on plane and curved surfaces; Buoyancy and stability; Forces on immersed and submerged bodies; Pressure measurements; Pressure in accelerated rigid body motions.	6
3	Elementary Fluid Kinematics: Lagrangian and Eulerian descriptions; Flow visualization – streamline, pathline, streakline and timeline, contours and profile plots; Description and classification of fluid motions; Rotational, irrotational, inviscid and potential flows; Deformation of fluids; System and control volume representation; Reynolds transport theorem.	6
4.	Dynamic Analysis of Flow: Conservation of mass, linear and angular momentum, and energy; Bernoulli theorem; Flow deformation relationships, Navier-Stokes equations.	6
5.	Dimensional Analysis, Similitude and Modeling: Dimensional homogeneity and analysis; Methods of finding dimensionless numbers; Selection of variables, Rayleigh and Buckingham's π method; Common dimensionless numbers and their physical significance; Model and	3

	Prototypes; Complete and incomplete similarity.	
6.	Internal Incompressible Viscous Flow: General characteristics of pipe	7
	flow – laminar, turbulent, entrance region, fully developed; Fully	
	developed laminar/turbulent flow in pipe, duct and orifice – shear stress	
	distribution and velocity profiles; Energy correction factors; Energy and	
	hydraulic grade lines; Major and minor losses in pipes, fittings, non-	
	circular ducts; vena contracta; Friction factor, pipe roughness; Moody	
	chart.	
7.	Flow Measurements: Flow rate and velocity measurements – Pitot tube,	2
	orifice meter, venturimeter, rotameter, notches and weirs, etc.	
8.	Fluid Handling Machinery: Classification; Positive-displacement pumps	6
	and compressors, centrifugal pumps and compressors, Axial flow pumps	
	and compressors, compressor efficiency. Characteristics of pumps;	
	Selection of pumps.	
9.	Agitation and Mixing: Agitated vessels; Blending and mixing;	3
	Suspension of solid particles; Dispersion operations; Agitator selection and	
	scale up.	
Total		42

11. List of Practicals:

- 1. Stokes law/Viscosity measurement
- 2. Friction losses in pipes
- 3. Friction losses in fittings
- 4. Flow meters (Orificemeter, Venturimeter, Rotameter)
- 5. Pitot tube
- 6. Notches/Weirs
- 7. Bernauli's experiemnt
- 8. Reynold's experiemnt
- 9. Flow through porous media/Darcy's law validation
- 10. Centrifugal pump characteristics in series and parallel arrangements
- 11. Reciprocating pump characteristics

S. No.	Name of Books/Authors/Publications	Publication
		Year
1.	Nevers N.D., "Fluid Mechanics For Chemical Engineers", 3 rd Ed., McGraw	2005
	Hill Higher Education.	
2.	Cengel Y.A. and Cimbala J.M. "Fluid Mechanics: Fundamentals and	2010
	Applications", 2 nd Ed. McGraw-Hill	
3.	Balachandran P. "Engineering Fluid Mechanics", PHI Learning Pvt Ltd.,	2012
	New Delhi	
4.	Munson B.R., Young D.F., Okiishi T.H. and Huebsch W.W., "Fundamentals	2010
	of Fluid Mechanics", 6 th Ed., Willey	
5.	White F.M. "Fluid Mechanics", 7 th Ed. Tata McGraw-Hill	2010



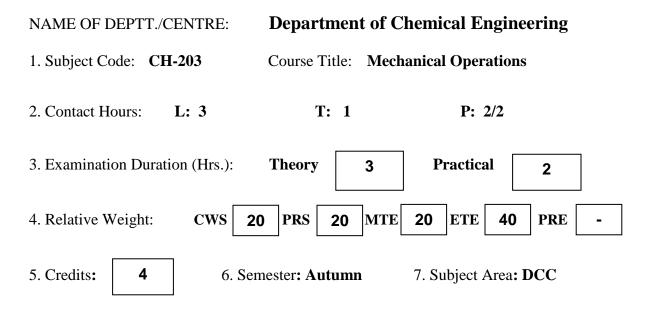
- 8. Pre-requisite: Nil
- 9. Objective: To provide basic knowledge of thermodynamics and chemical kinetics to chemical engineering students.
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Introduction: Thermodynamic system, surroundings, state, process, properties, equilibrium, heat and work.	02
2.	Properties of Pure Simple Compressible Substance: P-V-T surface, P-V, T-V and T-	06
	P diagrams. Equations of state for ideal and real gases. Virial equation of state, van der	
	Waals and Redlich-Kwong equations of state; Use of Thermodynamic tables.	
3.	 First Law of Thermodynamics: Energy balance for closed systems. Various forms of energy balance. Specific heat, internal energy, enthalpy, and specific heat of ideal gases. Application of first law to non-flow isochoric, isobaric, isothermal, and adiabatic and polytropic processes. Conservation of mass for a control volume, mass and volume flow rates, mass balance for steady flow processes, flow work, steady flow energy equation. Application to various practical systems viz. nozzles, diffusers, etc. Transient Analysis. Second Law of Thermodynamics: Second law, reversible and irreversible processes, 	05
	Clausius and Kelvin Planck statements. Carnot cycle, Clausius inequality, entropy as a	
5.	property, principle of increase of entropy. Calculation of entropy change.	03
5. 6.	Thermodynamic Cycles: Otto, Diesel, Rankine cycles and their applications. Rate Expression and Reaction Mechanism: Use of pseudo steady state approximation	03
υ.	to get rate expression from mechanism, temperature-dependence of reaction rate-	04
	collision theory, transition state theory, thermodynamics and Arrhenius law.	
7.	Interpretation of Kinetic Data of Batch Reactors: Constant volume and variable	08
· •	volume batch reactions, Integral and differential methods of analysis of data of uni, bi	00

	and tri-molecular irreversible reactions. Reversible reactions, homogeneously catalysed, auto-catalysed, series and parallel reactions. Estimation of rate constants and its temperature-dependence.	
8.	Solid-Catalysed Fluid Reactions: Characterization of catalyst, Physical and chemical	04
	adsorption, various reaction steps, Langmuir-Hinshelwood kinetics.	
9.	Kinetics of Bio-Chemical Reactions: Kinetics of enzyme catalysed reactions, substrate	04
	and product inhibition, effect of temperature and pH on enzyme catalysed reactions.	
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Çengel Y.A. and Boles M.A., "Thermodynamics: An Engineering	2008
	Approach", 6 th Ed., McGraw Hill.	
2.	Smith J.M., Van Ness H.C. and Abbott M.M., "Introduction to	2005
	Chemical Engineering Thermodynamics", 7 th Ed., McGraw Hill.	
3.	Borgnakke C. and Sonntag R.E., "Fundamentals of	2009
	Thermodynamics", 7 th Ed., John Wiley and Sons.	
4.	Levenspiel O., "Chemical Reaction Engineering", 3 rd Ed., John Wiley.	2000
5.	Fogler H.S., "Elements of Chemical Reaction Engg.", 4th Ed., Prentice	2005
	Hall of India.	

- 8. Pre-requisite: Nil
- 9. Objective: To provide basic knowledge about heat transfer and its processes used in Chemical Process Industries
- 10. Details of Course:


S. No.	Contents	Contact Hour
1.	Introduction: Heat transfer modes, their rate equations.	2
2.	Radiation : Mechanism of radiation and its laws, black and grey body behavior, shape factors- determination using equations and charts, relationship between shape factors, heat transfer between non-black bodies, concept of surface- and space- resistance with concept of insulated and large surfaces, use of radiation shields, radiation through absorbing and transmitting gases.	7
3.	Conduction : Use of extended surfaces, two-dimensional steady state conduction, Thermal insulation- materials for cold and hot applications and thickness calculations, introduction to transient conduction, Biot number, use of Heisler charts.	6
4.	Convection : Concept and significance of boundary layer, boundary layer similarity and analogy, convection coefficients, free and forced convection, empirical correlations- internal and external flows.	6
5.	Heat Exchangers : Types and selection, overall heat transfer coefficient, parallel and counter current flow, LMTD, F_T	4

	correction factor, analysis and design using effectiveness-NTU method.	
6.	Boiling : Characteristics, nucleate pool- and forced convection- boiling, boiling mechanism and curve, heat transfer correlations, heat pipes.	4
7.	Condensation : Mechanism and types of condensation of vapor with and without non-condensable gases, Nusselt equation for film wise condensation on vertical surfaces and its extension to inclined and horizontal surfaces and tubes, condensation number, film condensation inside horizontal tube.	5
8.	Evaporator : Classification and use of evaporators in process industries, effect of boiling point rise and hydrostatic head on evaporator performance, liquor flow sequences, calculations for multiple effect evaporator system.	4
9.	Crystallization : Mechanism, crystallization from mixed solutes, particle size distribution of crystals and parameters effecting it, some major types of crystallizers, crystallizer calculations.	4
	Total	42

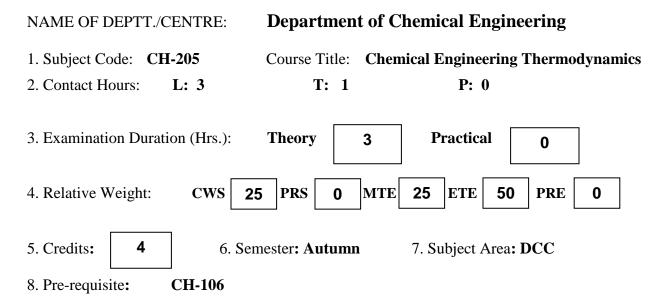
11. List of Practicals:

- 1. Open Pan Evaporators with/without Agitator
- 2. Coil Tank Evaporator with/without Agitator
- 3. Hair Pin Heat Exchanger
- 4. Shell and Tube Heat Exchanger
- 5. Floating Head Heat Exchanger
- 6. Fin Tube Heat Exchanger
- 7. Heat Transfer in Natural Convection
- 8. Heat Transfer in Forced Convection
- 9. Two Phase Heat Transfer
- 10. Temperature Distribution in Metallic Rods
- 11. Drop-wise and Film-wise Condensation
- 12. Emissivity Measurement
- 13. Stefan Boltzmann's Apparatus
- 14. Single Effect Evaporator
- 15. Clasius Clayperon Equation
- 16. Gibbs Duhem Equation

S. No.	Name of Authors/ Books/ Publisher	Year of Publication
1.	Holman J.P., "Heat Transfer", 10 th Ed., McGraw Hill	2009
2.	Bergman T.L., Lavine A.S., Incropera F.P. and DeWitt D.P., "Introduction to Heat Transfer", 6 th Ed., Wiley	2011
3.	Cengel Y.A. and Ghajar A.J., "Heat and Mass Transfer: Fundamentals and Applications", 4 th Ed., McGraw Hill	2010
4.	Kreith F., Manglik R.M. and Bohn M., "Principles of Heat Transfer", 7 th Ed., Cengage Learning	2010
5.	Hewitt G.F., Shires G.L. and Bott T.R., "Process Heat Transfer", Begell House.	1994

8. Pre-requisite: Nil

- 9. Objective: To impart Knowledge on particle size analysis, size reduction, separation of solid particles from fluids and flow through porous media.
- 10. Details of Course:

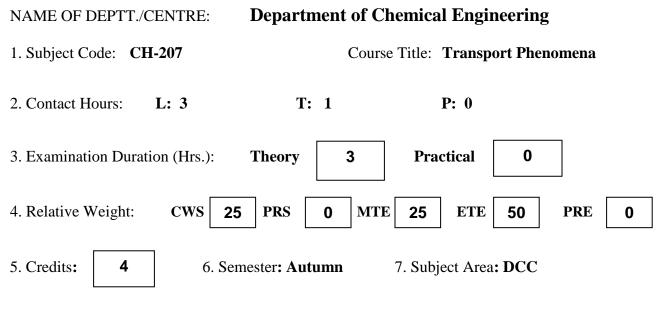

S. No.	Contents	Contact Hours
1.	Particles Size Analysis: Sieve analysis, size distribution, size	4
	averaging and equivalence, size estimation in sub-sieve range, effectiveness of screen.	
2.	Size Reduction: Theory of crushing and grinding, laws of crushing and grinding, crushing and grinding equipment and their selection.	4
3.	Storage of Solids: Angle of slide and repose, design of bins, silos, and hoppers, Jansen's equation.	4
4.	Particle Mechanics: Motion of particle in fluid, effect of particle shape, Stoke's law, hindered settling, jigging and classification.	4
5.	Sedimentation and Flotation: Gravity and centrifugal sedimentation, design of sedimentation tank and continuous thickeners, mechanism of flotation, flotation agents and flotation equipment.	6
6.	Flow Through Packed Beds: Characteristics of packings, flow of a single fluid through a packed bed, problem of channeling and wetting, counter current gas- liquid flow through packed beds, loading and flooding characteristics, industrial applications.	6
7.	Fluidization: Fluidization characteristics, aggregative and particulate fluidization, voidage and minimum fluidization velocity, voidage correlation, liquid-solid and gas-solid fluidization	5

	characteristics, industrial applications of fluidization.	
8.	Filtration: Flow through filter cake and medium, washing and	5
	drying of cake, filter aids, selection of filtration equipment, constant	
	rate and constant pressure filtration.	
9.	Conveying of Solids: Pneumatic and hydraulic conveying of solids,	4
	general characteristics and flow relations, mechanical conveyers.	
	Total	42

11. List of Practicals:

- 1. Plate and frame filter press
- 2. Rotary drum filter
- 3. Flow through packed Bed
- 4. Flow through Fluidized bed
- 5. Batch Sedimentation
- 6. Crushing and grinding experiments through ball mill, pulvliser and Jaw crusher
- 7. Particle size analysis
- 8. Elutration
- 9. Continuous thickener

S.No.	Name of Authors/ Books/Publishers	Year of Publication
1.	Backhurst, J. R. and Harker J. H.,"Coulson and Richardson Chemical	2002
	Engineering", Vol. II",5 th Ed., Butterworth-Heinemann.	
2.	Brown G.G. and Associates,"Unit Operations", CBS Publishers.	1995
3.	McCabe W.L., Smith J.C and Harriott P., "Unit Operations of	2005
	Chemical Engineering", 7 th Ed., McGraw Hill.	
4.	Geankoplis C.J., Transport Processes and Separation Process	2003
	Principles, 4 th Ed.,Prentice Hall.	
5.	Narayanan C.M. & Bhattacharya B.C., "Mechanical Operation for	1992
	Chemical Engineers –Incorporating Computer Aided Analysis",	
	Khanna Publishers.	

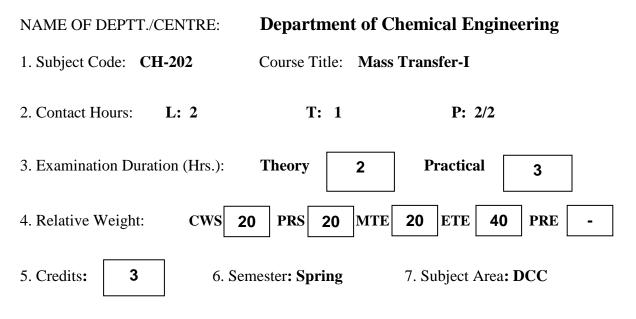


- 9. Objective: To apply the laws of thermodynamics in solving problems related to flow processes and phase equilibrium of heterogeneous and reacting systems.
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Review: Laws of thermodynamics, PVT behavior of fluids - Gibb's phase rule,	2
	cubic equations of state and generalized correlations.	
2.	Thermodynamic Properties of Homogeneous Fluids: Fundamental property	7
	relations, Maxwell's relations, Residual properties and their estimation, two phase	
	systems, thermodynamic diagrams and tables, generalized property correlation for	
	gases.	
3.	Thermodynamic Properties of Mixtures or Solutions: Property relationships for	7
	systems of variable composition; chemical potential, partial molar properties,	
	fugacity and fugacity coefficients - pure species and species in a mixture, fugacity	
	in ideal solutions, activity coefficients, excess properties.	
4.	Applications of Solution Thermodynamics: VLE-qualitative behavior, Duhem's	8
	theorem, simple models for VLE (Raoult's law, modified Raoult's law, etc.). Liquid	
	properties from VLE. Activity coefficients from experimental data - Margules, Van-	
	Laar, and Wilson equations. Property changes of mixing, heat effects in mixing	
	processes.	
5.	Phase Equilibria: Importance of phase equilibria in process industries, equilibrium	6
	and stability, vapour-liquid equilibria (VLE) for miscible, partially miscible and	
	immiscible systems, their phase diagrams, azeotropes. VLE calculations at low and	
	high pressures, analysis of multi-component, multiphase systems.	
6.	Chemical Reaction Equilibria: Reaction coordinate, application of equilibrium	6
	criteria to chemical reactions, standard Gibbs energy change and the equilibrium	
	constant, effect of temperature on equilibrium constant, evaluation of equilibrium	

	constant and composition. Calculation of equilibrium compositions for single	
	reactions; Phase rule and Duhem's theorem for reacting systems.	
7.	Thermodynamic Analysis of Processes: Work and free energy, availability,	6
	analysis of mixing, separation processes, heat exchange, lost work calculations.	
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1	Smith J.M., Van Ness H.C. and Abbott M.M., "Introduction to Chemical Engineering Thermodynamics", 7 th Ed., McGraw Hill.	2005
2	Sandler S.I. "Chemical, Biochemical and Engineering Thermodynamics", 4 th Ed., John Wiley.	2006
3	Kyle B.G., "Chemical and Process Thermodynamics", 3 rd ed., Prentice Hall.	1999
4	Narayanan, K.V., "Chemical Engineering Thermodynamics", Prentice Hall.	2007
5.	Koretsky M.D., "Engineering and Chemical thermodynamics", John Wiley.	2004


- 8. Pre-requisite: CH-104
- 9. Objective: To provide knowledge of momentum, heat and mass transport in Chemical engineering systems.

10. Details of Course:

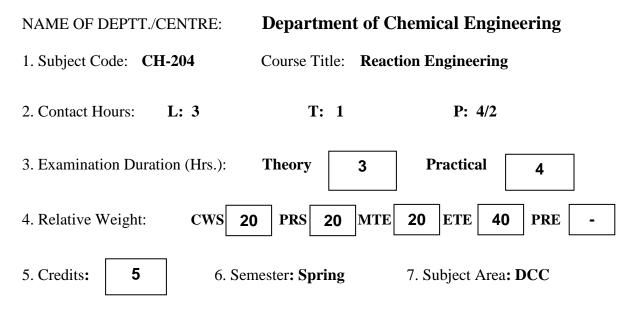
S.	Contents	Contact Hours
No.		
1.	Molecular Transport Phenomena: Molecular transport of momentum,	8
	heat and mass, law of molecular transport, Newton's law of viscosity,	
	Fourier's law of conduction and Fick's law of diffusion. Transport	
	coefficients- viscosity, thermal conductivity and mass diffusivity.	
	Estimation of transport coefficients and temperature/pressure dependence.	
2.	Non-Newtonian Fluids: Time independent, time-dependent and	4
	viscoelastic fluids, constitutive equations and rheological characteristics.	
3.	Equations of Change Under Laminar Flow Conditions: Equation of continuity, motion, mechanical energy, energy and mass transport. Simple	8
	shell balance method for momentum, heat, and mass transport, velocity	
	distribution in circular conduits and parallel plates. Generalized form of	
	equations and simplifications.	
4.	Turbulence Phenomena: Basic theory of turbulence, time averaging,	7
	intensity and correlation coefficients, isotropic turbulence. Equations of	
	continuity, motion and energy for turbulent condition. Reynolds stresses.	
	Phenomenological theories of turbulence, velocity profile in circular	
	conduits. Temperature distribution in turbulent flow.	

5.	Methods of Analysis of Transport Problems: General integral balance using macroscopic concepts, integral balance for mass, momentum, energy and mechanical energy.	5
6.	Convective Transport: Free and forced convective heat transfer and mass	4
	transfer.	
7.	Transport Past Immersed Bodies: Laminar and turbulent boundary layers,	6
	Momentum, heat and mass transfer during boundary layer flow past a flat	
	plate and flow over a sphere. Drag coefficient correlations.	
	Total	42

S. No.	Name of Books / Authors	Year of Publication
1.	Bird R.B., Stewart W.E. and Lightfoot E.N., "Transport Phenomena",	2002
	2 nd Ed., John Wiley & Sons, Inc.	
2.	Geankoplis C.J., "Transport Processes and Separation Process	2003
	Principles includes Unit Operations", 4 th Ed., Prentice-Hall of India.	
3.	Cussler E.L., "Diffusion: Mass Transfer in Fluid Systems", 2 nd Ed.,	1997
	Cambridge University Press.	
4.	Deen W. M., "Analysis of Transport Phenomena", Oxford University	1998
	Press	
5.	Brodkey R. S. and Hershey H. C., "Basic Concepts of Transport	2001
	Phenomena", Vol. 1 and 2, Brodkey Publishing.	

^{8.} Pre-requisite: CH-102

- 9. Objective: To provide the basic knowledge of equilibrium mass transfer operations used in process industries.
- 10. Details of Course:


S. No.	Contents	Contact Hours
1.	Introduction: Types and classification of separation processes and	2
	methods: distillation, absorption, extraction, drying, humidification,	
	leaching, adsorption, membrane separation.	
2.	Staged Contact Operation: Ideal stage concept; single and multi- staged operations in co-, cross- and counter- current modes for gas- liquid, liquid-liquid, and fluid-solid systems; Systems under different reflux and operating conditions, multiple stream systems, minimum ratio of gas to liquid, solvent to feed; analytical calculation of stages for simple counter current flow; Kremser-Brown-Souder equation; analytical and graphical calculation of stages at total and minimum reflux conditions. Overall tray efficiency, Murphree tray efficiency, and point efficiency.	9
3.	Vapor–liquid Separation Processes: Single stage equilibrium contact vapor liquid system; Equilibrium or flash distillation, batch or differential distillation, steam distillation; Distillation with reflux; Multistage distillation; McCabe–Thiele and Ponchon–Savarit methods; Calculation for number of theoretical stages, total and minimum reflux ratio using McCabe–Thiele method, q-line location, special cases for rectification using McCabe–Thiele method; Distillation efficiencies of tray towers.	9

4.	Liquid-liquid and Liquid-solid Separation Processes: Equipment for	8
	extraction and leaching processes; Single-stage liquid-liquid	
	extraction and leaching; Single stage liquid -liquid extraction; Design	
	of perforated plate extraction towers. Continuous multistage	
	countercurrent extraction and leaching processes, countercurrent-stage	
	extraction with immiscible liquids.	
	Total	28

12. List of Practicals:

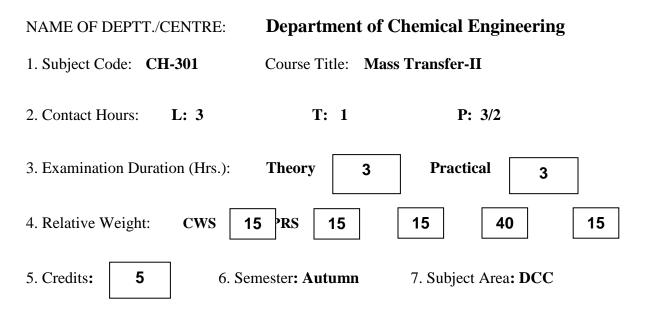
- 1. Batch Distillation
- 2. Steam Distillation
- 3. Liquid-liquid Extraction
- 4. Solid-liquid Leaching
- 5. Distillation in Packed Bed
- 6. Vapour-liquid Equilibrium
- 7. Partial Molar volume
- 8. Sieve Plate Distillation

S. No.	Name of Books / Authors	Year of
		Publication
1.	Basmadjian D., "Mass Transfer and Separation Processes: Principles	2007
	and Applications", CRC Press.	
2.	Treybal R.E., "Mass Transfer Operation", 3 rd Ed., McGraw Hill.	1980
3.	Brown G. G. and Associates, "Unit Operations", CBS Publishers.	1995
4.	McCabe W.L., Smith J.C. and Harriott P., "Unit Operations of	2001
	Chemical Engineering", 6 th Ed., McGraw Hill.	
5.	Foust A. S., Wenzel L. A., Clump C. W., Maus L. and Andersen L.	2008
	B., "Principles of Unit Operations", 2 nd Ed., Wiley-India.	

8. Pre-requisite: CH-102 and CH-106

9. Objective: To provide the comprehensive knowledge of reaction engineering and chemical reactors.

10. Details of Course:


S.	Contents	Contact
No.		Hours
1.	Introduction : Review of rate equations	2
2.	Ideal Reactors: Design equations for ideal reactors, namely batch, CSTR, plug Flow	4
3.	Design for Single Reaction: Design equation for single reaction systems using batch- and semi batch- reactors, CSTR, PFR and recycle reactor, auto catalytic reactions, reactor choice for single reaction.	7
4.	Design for Multiple Reactions: Parallel and series reactions, quantitative treatment of product distribution and of reactor size for different types of ideal reactors, selectivity and yield factors, reactor choice for multiple reactions.	6
5.	Non-isothermal Operation and Stability of Reactors: Non-isothermal design of ideal reactors, hot spot in tubular reactor, auto-thermal process, steady state multiplicity optimal temperature progression for first order reversible reaction.	5
6.	Non-ideal Flow: Residence time distribution (RTD) theory, role of RTD in determining reactor behavior, age distribution (E) of fluid, experimental methods for finding E, relationship between E and F curve, models for non ideal flow – single parameter and multi parameter models (axial dispersion, tanks in series), performance estimation of reactor using reactor models.	8
7.	Solid and Catalytic Reactions: Solid reactions-shrinking core model, catalytic reactions-homogeneous and heterogeneous, steps in solid catalyzed reaction, rate limiting steps, effect of external resistance, effect of diffusion on reaction, Thiele	10

	modulus and effectiveness factor, performance equations for catalytic reactors (packed bed, fluidized bed), product distribution in multiple reactions, basic equations for trickle bed and moving bed reactors.	
Γ	Total	42

11.List of Practicals:

- 1. Isothermal Batch Reactor
- 2. Isothermal Semi-batch Reactor
- 3. Isothermal Stirred Tank Reactor
- 4. Cascade of Continuous Stirred Tank Reactor (CSTR)
- 5. Plug Flow Reactor (PFR)
- 6. R.T.D. Studies in a Packed Bed Reactor
- 7. Decomposition of CaCO₃

S.	Name of Books / Authors	Year of
No.		Publication
1.	Fogler H.S., "Elements of Chemical Reaction Engg." 4 th Ed., Prentice Hall	2010
	of India.	
2.	Levenspiel O., "Chemical Reaction Engineering", 3 rd Ed., Wiley-INDIA	2008
3.	Butt, J.B., "Reaction Kinetics and Reactor Design" 2 nd Ed., CRC Press	2000
4.	Froment G.F., Bischoff K.B., De Wilde J.D., "Chemical Reactor Analysis	2011
	and Design", 3 rd Ed., John Wiley & Sons, Inc.	
5.	Doraiswamy, L.K. and Uner, D., "Chemical Reaction Engineering: Beyond	2013
	the Fundamentals", CRC Press	

8. Pre-requisite: CH-202 and CH-207

- 9. Objective: To provide the basic knowledge of diffusional mass transfer operations used in process industries.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Diffusion Phenomena and Interphase Mass Transport: Molecular	8
	diffusion in fluids and solids, Knudsen diffusion, multicomponent	
	diffusion and effective diffusivity; Mass transfer coefficients-	
	individual and overall, mass transfer theories-film, penetration and	
	surface renewal.	
2.	Continuous Contact Operation: Application of diffusion	8
	phenomena in distillation, absorption and extraction; Concept of	
	NTU and HTU, evaluation of NTU for dilute and concentrated	
	systems, approximate expressions for NTU. Typical procedure for	
	solution of absorption, extraction and distillation in packed columns.	
3.	Simultaneous Heat and Mass Transfer: Humidification and	8
	drying- introduction and concepts; Design of cooling towers and	
	dehumidification systems, determination of NTU; Drying-	
	mechanism, drying applications and equipment; Batch and	
	continuous drying; Calculations for batch and continuous dryers.	
4.	Fluid-solid Separation Processes: Adsorption and ion exchange:	8
	Adsorbents and ion-exchange materials; Equilibrium relations for	
	adsorbents and ion exchange materials; Batch adsorption; Fixed bed	

	adsorption, break-through curve; Design of adsorbers and ion exchangers.	
5.	Membrane Separation Processes: Types and classification of membrane processes; Liquid and gas permeation processes; Complete mixing and cross-flow models for gas separation by membranes; Counter- and co- current flow for gas separation using membranes; Applications of membrane separation processes.	6
6.	Mass Transfer with Chemical Reaction: Enhancement of mass transfer due to chemical reaction; Gas-liquid reactions in agitated tanks; Determination of interfacial area and mass transfer coefficient.	4
	Total	42

11.List of Practicals:

- 1. Diffusion of Vapors in Air
- 2. Batch Drier
- 3. Rotary Drier
- Cooling Tower
 Wetted-wall Column
- 6. Absorption in Sieve Plate Column
- 7. Fluidized Bed Drier
- 8. Batch Adsorption Isotherm
- 9. Batch Adsorption Kinetics
- 10. Adsorption Breakthrough Curve Modeling

S. No.	Name of Books / Authors	Year of Publication
1.	Basmadjian D., "Mass Transfer and Separation Processes: Principles	2007
	and Applications", CRC Press.	
2.	Treybal R.E., "Mass Transfer Operation", 3 rd Ed., McGraw Hill.	1980
3.	Brown G. G. and Associates, "Unit Operations", CBS Publishers.	1995
4.	McCabe W.L., Smith J.C. and Harriott P., "Unit Operations of	2001
	Chemical Engineering", 6 th Ed., McGraw Hill.	
5.	Wankat P. C., "Separation Process Engineering", 2 nd Ed., Prentice	2006
	Hall.	

NAME OF DEPTT./CENTRE:		Department of Electrical Engineering			
1. Subject Code: EEN-112		Course Title	tle: Electrical Science		
2. Contact Hours: L: 3		T: 1	1 P: 2/2		
3. Examination Duration (Hrs.):		Theory: 3	Practical: 0		
4. Relative Weight: CWS: 15		PRS: 15	MTE: 30	ETE: 40	PRE: 0
5. Credits: 4 6. Ser		nester: Both	7.	Subject Area	: ESC

8. Pre-requisite: NIL

- 9. Objective: To introduce the students to the fundamentals of Electrical Engineering concepts of network analysis, principles of electrical machines, basics of electrical measurement and measuring instruments.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Energy Resources and Utilization: Conventional and non-	5
	conventional energy resources; Introduction to electrical energy	
	generation from different resources, transmission, distribution and	
	utilization.	
2.	Network Fundamentals: Types of Sources and elements,	5
	Kirchoff's Laws, Mesh and Node Analysis of D.C. Networks,	
	Network Theorems: Thevenin's Theorem, Norton's Theorem,	
	Superposition Theorem, Maximum Power Theorem, Star-Delta	
	Transformation.	
3.	A.C. Fundamentals: Concept of phasor, impedance and	4
	admittance; Mesh and Node analysis of AC networks; Network	
	theorems in AC networks; Active and reactive power in AC circuits;	
	Resonance in series AC circuits; Power factor correction.	
4.	Three-phase A.C. Circuits: Analysis of 3-phase balanced start-	2
	delta circuits, Power in 3-phase Circuits.	
5.	Measurement of Electrical Quantities: Measurement of Voltage,	5
	Current, and Power; Measurement of 3 phase power; Energy meters.	
6.	Single Phase Transformer: Introduction to magnetic circuit	5
	concepts, Basic constructional features, operating principle, phasor	
	diagram, equivalent circuit, voltage regulation; Eddy current and	
	Hysteresis losses, efficiency; Open circuit and Short Circuit tests.	

7.	D.C. Machines : Principle of operation, constructional features; Emf and torque equations; Types of excitation; Generator characteristics; Starting and speed control of D.C. motors.	5
8.	AC Machines : Three-phase Induction Motor - Operating principle, constructional features, torque-speed characteristics, starting and speed control; Single-phase Induction Motor - Operating principle, constructional features, torque-speed characteristics, starting methods.	5
9.	Industrial Applications and Control: Various industrial loads, traction, heating, lighting; Concept of power electronic control of AC and DC motors.	6
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Mukhopadhyaya P., Pant A.K., Kumar V. and Chittore D.S., "Elements of Electrical Science", M/s Nem Chand & Brothers.	1997
2.	Vincent Del Toro, "Electrical Engineering Fundamentals", Prentice Hall of India.	2002
3.	Dubey G. K., "Fundamentals of Electric Drives", 2 nd Ed., Narosa Publishing House.	2007
4.	Alexander C.K., Sadiku M.N.O., "Fundamentals of Electric Circuits", McGraw Hill, 5 th Edition.	2012
5.	Chapman, Stephen, J., "Electric Machinery Fundamentals", McGraw Hill Book Company.	1985
6.	Hughes Edward, "Electrical & Electronic Technology", Pearson Publishing, 8 th edition.	2002

NAME OF DEPTT./CENTRE:			Departn	Department of Mathematics			
1.	Subject Code: MAN-	002	Cours	e Title:	Mathematical M	ethods	
2.	Contact Hours:	L: 3	T: 1		P: 0		
3.	Examination Duration	(Hrs.): Theo	ry:3	Practi	cal : 0		
4.	Relative Weightage:	CWS: 25	PRS: 0	MTE :	25 ETE : 50	PRE: 0	
5.	Credits: 4	6. Se	emester: Sp	ring	7. Subject Ar	rea: BSC	

- 8. Pre-requisite: Nil
- 9. Objective: To provide knowledge of essential mathematical tools applied in solving ordinary and partial differential equations, initial and boundary value problems.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Ordinary Differential Equations: Solution of linear differential equations	10
	with constant coefficients. Euler-Cauchy equations, Solution of second order	
	differential equations by changing dependent and independent variables.	
	Method of variation of parameters, Introduction to series solution method.	
2.	Partial Differential Equations: Formation of first and second order partial	6
	differential equations. Solution of first order partial differential equations:	
	Lagrange's equation, Four standard forms of non-linear first order equations.	
3.	Laplace Transform: Laplace and inverse Laplace transform of some	10
	standard functions, Shifting theorems, Laplace transform of derivatives and	
	integrals. Convolution theorem, Initial and final value theorem. Laplace	
	transform of periodic functions, error functions, Heaviside unit step function	
	and Dirac delta function. Applications of Laplace transform.	
4.	Z - Transform: Z – transform and inverse Z-transform of elementary	5
	functions, Shifting theorems, Convolution theorem, Initial and final value	
	theorem. Application of Z- transform to solve difference equations.	
5.	Fourier series: Trigonometric Fourier series and its convergence. Fourier	5
	series of even and odd functions. Fourier half-range series. Parseval's	
	identity. Complex form of Fourier series.	
6.	Fourier Transforms: Fourier integrals, Fourier sine and cosine integrals.	6
	Fourier transform, Fourier sine and cosine transforms and their elementary	
	properties. Convolution theorem. Application of Fourier transforms to BVP.	
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Kreyszig, E., "Advanced Engineering Mathematics", Johan Wiley & Sons	2011
2.	Jain, R. K. and Iyenger, S. R. K., "Advanced Engineering Mathematics", Narosa Publishing House	2009
3.	Amarnath, T., "An Elementary Course in Partial Differential Equations", Narosa Publishing House (II Edition)	2012
4.	Hildebrand F. B., "Methods of Applied Mathematics", Courier Dover Publications	1992
5.	Rao, K. S., "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd. (II Edition)	2010
6.	Sneddon, I. N., " Elements of Partial Differential Equations", McGraw-Hill Book Company	1988
7.	Simmons, G. F. and Krantz, S. G., Differential Equations: Theory, Technique and Practice", Tata McGraw-Hill Edition	2007

NAME OF DEPTT./	Depar	Department of Chemical Engineering			
1. Subject Code: CHN-201		Course Title: Heat Transfer			
2. Contact Hours: L: 3		T: 1 P: 2/2		/2	
3. Examination Duration (Hrs.):		Theory:3		Practical: 3	
4. Relative Weight: CWS:20		PRS:20	MTE :20	ETE:40	PRE:-
5. Credits: 4 6. 5		Semester: A	utumn	7. Subject A	rea: DCC

- 8. Pre-requisite: Nil
- 9. Objective: To provide basic knowledge about heat transfer and its processes used in Chemical Process Industries

10. Details of Course:

S. No.	Contents	Contact Hour
1.	Introduction : Heat transfer modes, their rate equations.	1
2.	Radiation : Mechanism of radiation and its laws, black and grey body behavior, shape factors- determination using equations and charts, relationship between shape factors, heat transfer between non-black bodies, concept of surface- and space- resistance with concept of insulated and large surfaces, use of radiation shields, radiation through absorbing and transmitting gases.	8
3.	Conduction : Use of extended surfaces, two-dimensional steady state conduction, Thermal insulation- materials for cold and hot applications and thickness calculations, introduction to transient conduction, Biot number, use of Heisler charts.	6
4.	Convection : Concept and significance of boundary layer, boundary layer similarity and analogy, convection coefficients, free and forced convection, empirical correlations- internal and external flows.	6
5.	Heat Exchangers : Types and selection, overall heat transfer coefficient, parallel and counter current flow, LMTD, F_T correction factor, analysis and design using effectiveness-NTU method.	4
6.	Boiling : Characteristics, nucleate pool- and forced convection- boiling, boiling mechanism and curve, heat transfer correlations, heat pipes.	4
7.	Condensation : Mechanism and types of condensation of vapor with and without non-condensable gases, Nusselt equation for film wise condensation on vertical surfaces and its extension to inclined and horizontal surfaces and tubes, condensation number,	5

	film condensation inside horizontal tube.	
8.	Evaporator : Classification and use of evaporators in process industries, effect of boiling point rise and hydrostatic head on evaporator performance, liquor flow sequences, calculations for multiple effect evaporator system.	4
9.	Crystallization : Mechanism, crystallization from mixed solutes, particle size distribution of crystals and parameters effecting it, some major types of crystallizers, crystallizer calculations.	4
	Total	42

S. No.	Name of Authors/ Books/ Publisher	Year of Publication
1.	Holman J.P., "Heat Transfer", 10 th Ed., McGraw Hill	2009
2.	Bergman T.L., Lavine A.S., Incropera F.P. and DeWitt D.P., "Introduction to Heat Transfer", 6 th Ed., Wiley	2011
3.	Cengel Y.A. and Ghajar A.J., "Heat and Mass Transfer: Fundamentals and Applications", 4 th Ed., McGraw Hill	2010
4.	Kreith F., Manglik R.M. and Bohn M., "Principles of Heat Transfer", 7 th Ed., Cengage Learning	2010

NAME OF DEPTT.	Depa	rtment o	f Chemical E	ngineering		
1. Subject Code: CHN-203		Course Title: Mee		Mechanical	chanical Operations	
2. Contact Hours:	L: 3		T: 1		P: 2/2	
3. Examination Duration (Hrs.):		Theory:3		Pra	Practical:2	
4. Relative Weight:	CWS:20	PRS:20	MTE:2	0 ETE:40	PRE:0	
5. Credits :4 6.		Semester:	Autumn	7. Sub	ject Area: DCC	

8. Pre-requisite: Nil

9. Objective: To impart Knowledge on particle size analysis, size reduction, separation of solid particles from fluids and flow through porous media.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Particles Size Analysis: Sieve analysis, size distribution, size	4
	averaging and equivalence, size estimation in sub-sieve range,	
	effectiveness of screen.	
2.	Size Reduction: Theory of crushing and grinding, laws of crushing	4
	and grinding, crushing and grinding equipment and their selection.	
3.	Storage of Solids: Angle of slide and repose, design of bins, silos,	4
	and hoppers, Jansen's equation.	
4.	Particle Mechanics: Motion of particle in fluid, effect of particle	4
	shape, Stoke's law, hindered settling, jigging and classification.	
5.	Sedimentation and Flotation: Gravity and centrifugal	6
	sedimentation, design of sedimentation tank and continuous	
	thickeners, mechanism of flotation, flotation agents and flotation	
	equipment.	
6.	Flow Through Packed Beds: Characteristics of packings, flow of a	6
	single fluid through a packed bed, problem of channeling and	
	wetting, counter current gas- liquid flow through packed beds,	
	loading and flooding characteristics, industrial applications.	
7.	Fluidization: Fluidization characteristics, aggregative and	5
	particulate fluidization, voidage and minimum fluidization velocity,	
	viodage correlation, liquid-solid and gas-solid fluidization	
	characteristics, industrial applications of fluidization.	
8.	Filtration: Flow through filter cake and medium, washing and	5
	drying of cake, filter aids, selection of filtration equipment, constant	
	rate and constant pressure filtration.	
9.	Conveying of Solids: Pneumatic and hydraulic conveying of solids,	4
	general characteristics and flow relations, mechanical conveyers.	
	Total	42

S.No.	Name of Authors/ Books/Publishers	Year of Publication
1.	Backhurst and Harker ,"Coulson and Richardson Chemical	2002
	Engineering", Vol. II",5 th Ed., Butterworth-Heinemann.	
2.	Brown G.G. and Associates,"Unit Operations", CBS Publishers.	1995
3.	McCabe W.L., Smith J.C and Harriott P., "Unit Operations of	2005
	Chemical Engineering", 7 th Ed., McGraw Hill.	
4.	Geankoplis C.J., Transport Processes and Separation Process	2003
	Principles, 4 th Ed.,Prentice Hall.	

Department of Chemical Engineering

		- 1		8	8
1. Subject Code: C	HN-205	Course	e Title: C	hemical Engineerin	g Thermodynamics
2. Contact Hours:	L: 3		T: 1	P: 0	
3. Examination Dura	tion (Hrs.):	Theor	·y: 3	Practical:0	
4. Relative Weight:	CWS:25	PRS:0	MTE:25	5 ETE:50	PRE:0
5. Credits: 4	6. 5	Semester: A	Autumn	7. Subject Area	: DCC
8. Pre-requisite:	CHN-106				

9. Objective: To apply the laws of thermodynamics in solving problems related to flow processes and phase equilibrium of heterogeneous and reacting systems.

10. Details of Course:

NAME OF DEPTT./CENTRE:

S. No.	Contents	Contact Hours
1.	Review: Laws of thermodynamics, PVT behavior of fluids – Gibb's phase	2
	rule, cubic equations of state and generalized correlations.	
2.	Thermodynamic Properties of Homogeneous Fluids: Fundamental	7
	property relations, Maxwell's relations, Residual properties and their	
	estimation, two phase systems, thermodynamic diagrams and tables,	
	generalized property correlation for gases.	
3.	Thermodynamic Properties of Mixtures or Solutions: Property	7
	relationships for systems of variable composition; chemical potential,	
	partial molar properties, fugacity and fugacity coefficients – pure species	
	and species in a mixture, fugacity in ideal solutions, activity coefficients,	
	excess properties.	0
4.	Applications of Solution Thermodynamics: VLE-qualitative behavior,	8
	Duhem's theorem, simple models for VLE (Raoult's law, modified	
	Raoult's law, etc.). Liquid properties from VLE. Activity coefficients	
	from experimental data – Margules, Van-Laar, and Wilson equations.	
5.	Property changes of mixing, heat effects in mixing processes. Phase Equilibria: Importance of phase equilibria in process industries,	6
5.	equilibrium and stability, vapour-liquid equilibria (VLE) for miscible,	0
	partially miscible and immiscible systems, their phase diagrams,	
	azeotropes. VLE calculations at low and high pressures, analysis of multi-	
	component, multiphase systems.	
6.	Chemical Reaction Equilibria: Reaction coordinate, application of	6
	equilibrium criteria to chemical reactions, standard Gibbs energy change	-
	and the equilibrium constant, effect of temperature on equilibrium	
	constant, evaluation of equilibrium constant and composition. Calculation	
	of equilibrium compositions for single reactions; Phase rule and Duhem's	
	theorem for reacting systems.	
7.	Thermodynamic Analysis of Processes: Work and free energy,	6
	availability, analysis of mixing, separation processes, heat exchange, lost	
	work calculations.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1	Smith J.M., Van Ness H.C. and Abbott M.M., "Introduction to Chemical	2005
	Engineering Thermodynamics", 7 th Ed., McGraw Hill.	
2	Sandler S.I. "Chemical, Biochemical and Engineering Thermodynamics",	2006
	4 th Ed., John Wiley.	
3	Kyle B.G., "Chemical and Process Thermodynamics", 3 rd ed., Prentice Hall.	1999
4	Narayanan, K.V., "Chemical Engineering Thermodynamics", Prentice Hall.	2007

NAME OF DEPTT./CENTRE:	Department o	f Chemical Engineering	
1. Subject Code: CHN-207	Course Title:	Transport Phenomena	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory: 3	Practical:0	
4. Relative Weight: CWS:25	PRS:0 MTE:25	ETE:50 PRE:0	
5. Credits:4 6. S	emester: Autumn	7. Subject Area: DCC	
8. Pre-requisite: CHN-104			

9. Objective: To provide knowledge of momentum, heat and mass transport in Chemical engineering systems.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Molecular Transport Phenomena: Molecular transport of momentum, heat and mass, law of molecular transport, Newton's law of viscosity, Fourier's law of conduction and Fick's law of diffusion. Transport coefficients- viscosity, thermal conductivity and mass diffusivity. Estimation of transport coefficients and temperature/pressure dependence.	8
2.	Non-Newtonian Fluids: Time independent, time-dependent and viscoelastic fluids, constitutive equations and rheological characteristics.	4
3.	Equations of Change Under Laminar Flow Conditions: Equation of continuity, motion, mechanical energy, energy and mass transport. Simple shell balance method for momentum, heat, and mass transport, velocity distribution in circular conduits and parallel plates. Generalized form of equations and simplifications.	8
4.	Turbulence Phenomena: Basic theory of turbulence, time averaging, intensity and correlation coefficients, isotropic turbulence. Equations of continuity, motion and energy for turbulent condition. Reynolds stresses. Phenomenological theories of turbulence, velocity profile in circular conduits. Temperature distribution in turbulent flow.	7
5.	Methods of Analysis of Transport Problems: General integral balance using macroscopic concepts, integral balance for mass, momentum, energy and mechanical energy.	5
6.	Convective Transport: Free and forced convective heat transfer and mass transfer.	4
7.	Transport Past Immersed Bodies : Laminar and turbulent boundary layers, Momentum, heat and mass transfer during boundary layer flow past a flat plate and flow over a sphere. Drag coefficient correlations.	6
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Bird R.B., Stewart W.E. and Lightfoot E.N., "Transport Phenomena", 2 nd	
	Ed., John Wiley & Sons, Inc.	
2.	Geankoplis C.J., "Transport Processes ans Separation Process Principles	2003
	includes Unit Operations", 4 th Ed., Prentice-Hall of India.	
3.	Cussler E.L., "Diffusion: Mass Transfer in Fluid Systems", 2 nd Ed.,	1997
	Cambridge University Press.	

NAME OF DEPTT./CENTRE:	Department of C	hemical Engineering	
1. Subject Code: CHN-202	Course Title: Ma	ass Transfer-I	
2. Contact Hours: L: 2	T: 1	P: 2/2	
3. Examination Duration (Hrs.)	: Theory :2	Practical :3	
4. Relative Weight: CWS: 20	PRS:20 MTE:20	ETE:40 PRE:00	
5. Credits :3 6	. Semester: Spring	7. Subject Area: DCC	

- 8. Pre-requisite: CHN-102
- 9. Objective: To provide the basic knowledge of equilibrium mass transfer operations used in process industries.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Types and classification of separation processes and	2
	methods: distillation, absorption, extraction, drying, humidification,	
	leaching, adsorption, membrane separation.	0
2.	Staged Contact Operation: Ideal stage concept; single and multi- staged operations in co-, cross- and counter- current modes for gas- liquid, liquid-liquid, and fluid-solid systems; Systems under different reflux and operating conditions, multiple stream systems, minimum ratio of gas to liquid, solvent to feed; analytical calculation of stages for simple counter current flow; Kremser-Brown-Souder equation; analytical and graphical calculation of stages at total and minimum reflux conditions. Overall tray efficiency, Murphree tray efficiency,	9
3.	and point efficiency. Vapor–liquid Separation Processes: Single stage equilibrium contact vapor liquid system; Equilibrium or flash distillation, batch or differential distillation, steam distillation; Distillation with reflux; Multistage distillation; McCabe–Thiele and Ponchon–Savarit methods; Calculation for number of theoretical stages, total and minimum reflux ratio using McCabe–Thiele method, q-line location, special cases for rectification using McCabe–Thiele method; Distillation efficiencies of tray towers.	9
4.	Liquid–liquid and Liquid–solid Separation Processes: Equipment for extraction and leaching processes; Single-stage liquid–liquid extraction and leaching; Single stage liquid -liquid extraction; Design of perforated plate extraction towers. Continuous multistage countercurrent extraction and leaching processes, countercurrent-stage extraction with immiscible liquids.	8
	Total	28

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Basmadjian D., "Mass Transfer and Separation Processes: Principles	2007
	and Applications", CRC Press.	
2.	Treybal R.E., "Mass Transfer Operation", 3 rd Ed., McGraw Hill.	1980
3.	Brown G. G. and Associates, "Unit Operations", CBS Publishers.	1995
4.	McCabe W.L., Smith J.C. and Harriott P., "Unit Operations of	2001
	Chemical Engineering", 6 th Ed., McGraw Hill.	

NAME OF DEPTT./CENTRE:		Department of Chemical Engineering			
1. Subject Code: C	HN-204	Course	e Title: Rea	ction Engin	eering
2. Contact Hours:	L: 3		T: 1	P	: 4/2
3. Examination Duration (Hrs.):		Theory:3		Practical:4	
4. Relative Weight:	CWS:20	PRS:20	MTE:20	ETE:40	PRE:00
5. Credits : 5 6.		Semester: Spring		7. Subjec	t Area: DCC
8. Pre-requisite:	CHN-102	and CHN	-106		

9. Objective: To provide the comprehensive knowledge of reaction engineering and chemical reactors.

10. Details of Course:

S.No.	Contents	Contact Hours
1.	Introduction : Review of rate equations	2
2.	Ideal Reactors: Design equations for ideal reactors, namely batch, CSTR, plug Flow	4
3.	Design for Single Reaction: Design equation for single reaction systems using batch- and semi batch- reactors, CSTR, PFR and recycle reactor, auto catalytic reactions, reactor choice for single reaction.	7
4.	Design for Multiple Reactions: Parallel and series reactions, quantitative treatment of product distribution and of reactor size for different types of ideal reactors, selectivity and yield factors, reactor choice for multiple reactions.	6
5.	Non-isothermal Operation and Stability of Reactors: Non-isothermal design of ideal reactors, hot spot in tubular reactor, auto-thermal process, steady state multiplicity optimal temperature progression for first order reversible reaction.	5
6.	Non-ideal Flow: Residence time distribution (RTD) theory, role of RTD in determining reactor behavior, age distribution (E) of fluid, experimental methods for finding E, relationship between E and F curve, models for non ideal flow – single parameter and multi parameter models (axial dispersion, tanks in series), performance estimation of reactor using reactor models.	8
7.	Solid and Catalytic Reactions: Solid reactions-shrinking core model, catalytic reactions-homogeneous and heterogeneous, steps in solid catalyzed reaction, rate limiting steps, effect of external resistance, effect of diffusion on reaction, Thiele modulus and effectiveness factor, performance equations for catalytic reactors (packed bed, fluidized bed), product distribution in multiple reactions, basic equations for trickle bed and moving bed reactors.	10
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Fogler H.S., "Elements of Chemical Reaction Engg." 4 th Ed., Prentice Hall	2010
	of India.	
2.	Levenspiel O., "Chemical Reaction Enginering", 3 rd Ed., Wiley-INDIA	2008
3.	Butt, J.B., "Reaction Kinetics and Reactor Design" 2 nd Ed., CRC Press	2000
4.	Froment G.F., Bischoff K.B., De Wilde J.D., "Chemical Reactor Analysis	2011
	and Design", 3 rd Ed., John Wiley & Sons, Inc.	
5.	Doraiswamy, L.K. and Uner, D., "Chemical Reaction Engineering: Beyond	2013
	the Fundamentals", CRC Press	

NAME OF DEPTT./CENTRE:		Department of Chemical Engineering			
1. Subject Code: C	HN-206	Cours	se Title:	Chemical Technology	7
2. Contact Hours:	L: 3		T: 0	P: 0	
3. Examination Dura	tion (Hrs.):	Theo	ry:3	Practical: 0	
4. Relative Weight:	CWS:25	PRS:0	MTE:2	25 ETE:50	PRE:0
5. Credits:3	6. 5	Semester:	Spring	7. Subject Area	: DCC

- 8. Pre-requisite: Nil
- 9. Objective: To study process technology, availability of raw materials, production trends, preparation of flow sheets, engineering and environmental problems of various chemical industries.

10. Details of Course:

S. No.	Particulars	Contact Hours
1.	Introduction: Overview of chemical process industries	2
2.	Coal and Industrial Gases: Coal and coal chemicals, syn gas, nitrogen,	6
	oxygen, hydrogen and carbon dioxide.	
3.	Nitrogeneous and Phosphatic Fertlisers: Ammonia, nitric acid,	7
	nitrogenous fertilisers, sulphuric acid, phosphoric acid, phosphatic	
	fertilisers and mixed fertilisers.	
4.	Chlor-Alkali Industries: Common salt, caustic soda, chlorine,	3
	hydrochloric acid and soda ash.	
5.	Pulp and Paper: Raw materials, pulping processes, recovery of chemicals,	3
	stock preparation and paper making.	
6.	Petroleum Industry: Origin, occurrence and characteristics of crude oil,	7
	crude oil distillation, residue upgradation and secondary conversion	
	processes.	
7.	Petrochemicals: Olefin and aromatic production, methanol, formaldehyde,	8
	ethylene oxide, ethylene glycol, acetaldehyde, acetic acid, propylene oxide,	
	propylene glycol, acrylonitrile, maleic anhydride, butadiene, nitrobenzene,	
	styrene, linear alkyl benzene, phenol and bis- phenol.	
8.	Polymer and Synthetic Fibre: Introduction to polymers, polyethylene,	6
	polypropylene, polyvinyl chloride, styrene butadiene rubber,	
	polybutadiene, polyester, polyamide, acrylic fibre and viscose rayon.	
	Total	42

S. No.	Name of Book / Authors / Publisher	Year of Publication
1.	Austin G. T., "Shreve's Chemical Process Industries", Fifth edition, Tata	1984
	McGraw Hill, NY.	
2	Kent J.A., "Riegel's Handbook of Industrial Chemistry," CBS	1997
	Publishers.	
3.	Gopala Rao M. & Marshall Sittig, "Dryden's Outlines of Chemical	2002
	Technology for the 21 st Century", Affiliated East –West Press, New	
	Delhi.	
4.	Mall I. D., "Petrochemical Process Technology", Macmillan India Ltd.,	2007
	New Delhi.	

NAME OF DEPAR	IMENT:	Department of Chemical Engineering			
1. Subject Code: C	Subject Code: CHN-291 Course Title:		Title:	Equipment Design*	
2. Contact Hours:	L: 3	Т:	0	P: 2	
3. Examination Duration (Hrs.):		Theory:4		Practical:0	
4. Relative Weight:	CWS:15	PRS:25	MTE:20	ETE:40	PRE:0
5. Credits:4	6. Ser	nester : Spri	ng	7. Subject Area: DC	С

8. Pre-requisite: Nil

9. Objective: To impart knowledge about mechanical design of chemical process equipments.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Mechanics of Materials: Stress, strain, biaxial stress, stress-strain	08
	relationship for elastic bodies, theories of failure, thermal stresses,	
	membrane stresses in shells of revolution, thin and thick cylinder.	
2.	Pressure Vessel: Selection of type of vessels, material of	13
	construction selection and design considerations. Introduction of	
	codes for pressure vessel design, classification of pressure vessels as	
	per codes. Design of cylindrical and spherical shells under internal	
	and external pressure; Pipe thickness calculation under internal and	
	external pressure; Selection and design of closures and heads, design	
	of jacketed portion of vessels. Compensation of openings. Design of	
	high pressure monoblock and multilayer vessels. Inspection and	
	testing of pressure vessels.	
3.	Flanges: Selection of gaskets, selection of standard flanges,	05
	optimum selection of bolts for flanges, design of flanges.	
4.	Tall Tower Design: Design of shell, skirt, bearing-plate and anchor	06
	bolts for tall tower used at high wind and seismic conditions.	
5.	Supports: Design of lug and leg supports. Design of saddle supports	04
	including bearing plates and anchor bolts.	
6.	Storage Tanks: Introduction to Indian standards codes, filling and	06
	breathing losses; classification of storage tanks; optimum length to	
	diameter ratio, design of liquid and gas storage tanks with and	
	without floating roof.	
	Total	42

* Note: This is an OPEN BOOK EXAMINATION. The students are allowed to consult IS Codes, Text books, Reference books and bound lecture notes certified by the examiner concerned

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Brownell L. E. and Young H. E., "Process Equipment Design", John Wiley.	2004
2.	Bhattacharya B. C., "Introduction of Chemical Equipment Design", CBS Publisher.	2003
3.	I.S.:2825-1969, "Code for Unfired Pressure Vessels".	1969
4.	I.S.:803-1974, "Code of Practice for Design, Fabrication and Erection of Vertical Mild Steel Cylindrical Welded Oil Storage Tanks".	1984
5.	Moss D. R., "Pressure Vessel Design Manual", 3 rd Ed., Gulf	2004
6.	Megyesy E.F., "Pressure Vessel Handbook", 12 th Ed., Pressure Vessel Publishing.	2001

NAME OF DEPTT.	/CENTRE:	Depar	Department of Chemical Engineering		
1. Subject Code: C	HN-301	Course	e Title:	Mass Transfe	er-II
2. Contact Hours:	L: 3		T: 1		P: 3/2
3. Examination Dura	ation (Hrs.):	Theor	y:3	Pra	ctical :3
4. Relative Weight:	CWS:20	PRS: 20	MTE:2	20 ETE:40	PRE:0
5. Credits: 5	6. S	emester: A	Autumn	7. Sub	ject Area: DCC

8. Pre-requisite: CHN-202 and CHN-207

9. Objective: To provide the basic knowledge of diffusional mass transfer operations used in process industries.

S. No.	Contents	Contact Hours
1.	Diffusion Phenomena and Interphase Mass Transport: Molecular	8
	diffusion in fluids and solids, Knudsen diffusion, multicomponent	
	diffusion and effective diffusivity; Mass transfer coefficients-	
	individual and overall, mass transfer theories-film, penetration and	
	surface renewal.	
2.	Continuous Contact Operation: Application of diffusion	8
	phenomena in distillation, absorption and extraction; Concept of	
	NTU and HTU, evaluation of NTU for dilute and concentrated	
	systems, approximate expressions for NTU. Typical procedure for	
	solution of absorption, extraction and distillation in packed columns.	
3.	Simultaneous Heat and Mass Transfer: Humidification and	8
	drying- introduction and concepts; Design of cooling towers and	
	dehumidification systems, determination of NTU; Drying-	
	mechanism, drying applications and equipment; Batch and	
	continuous drying; Calculations for batch and continuous dryers.	8
4.	Fluid–solid Separation Processes: Adsorption and ion exchange: Adsorbents and ion-exchange materials; Equilibrium relations for	ð
	adsorbents and ion-exchange materials; Batch adsorption; Fixed bed	
	adsorption, break-through curve; Design of adsorbers and ion	
	exchangers.	
5.	Membrane Separation Processes: Types and classification of	6
	membrane processes; Liquid and gas permeation processes; Complete	
	mixing and cross-flow models for gas separation by membranes;	
	Counter- and co- current flow for gas separation using membranes;	
	Applications of membrane separation processes.	
6.	Mass Transfer with Chemical Reaction: Enhancement of mass	4
	transfer due to chemical reaction; Gas-liquid reactions in agitated	
	tanks; Determination of interfacial area and mass transfer coefficient.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Basmadjian D., "Mass Transfer and Separation Processes: Principles	2007
	and Applications", CRC Press.	
2.	Treybal R.E., "Mass Transfer Operation", 3 rd Ed., McGraw Hill.	1980
3.	Brown G. G. and Associates, "Unit Operations", CBS Publishers.	1995
4.	McCabe W.L., Smith J.C. and Harriott P., "Unit Operations of	2001
	Chemical Engineering", 6 th Ed., McGraw Hill.	

NAME OF DEPTT.	CENTRE:	Depar	Department of Chemical Engineering		
1. Subject Code: C	HN-303	Course	e Title:	Process Dynamic	cs & Control
2. Contact Hours:	L: 3		T: 1	Р:	2/2
3. Examination Dura	ation (Hrs.):	Theor	y: 3	Practic	cal:3
4. Relative Weight:	CWS: 20	PRS: 20	MTE: 2	20 ETE: 40	PRE: 0
5. Credits: 4	6. 5	Semester:	Autumn	7. Subject	Area: DCC
8. Pre-requisite:	CHN-102	and CHN	-207		

9. Objective: To acquaint the students about the dynamics and control strategies chemical process systems.

S. No.	Contents	Contact Hours
1.	Introduction: The concept of process dynamics and control, review	5
	of Laplace transform methods, Laplace transform of disturbances	
	and building functions, dynamic model building of simple systems.	
2.	Linear Open Loop System: Physical examples of first order	8
	systems and their response for step, impulse and sinusoidal inputs,	
	linearization of non linear models, response of first order system in	
	series, examples of second order systems and their response,	
	estimation of system parameters.	
3.	Linear Closed Loop System: The control system and its elements,	8
	closed loop transfer functions, transient response of simple control	
	systems, concept of stability and use of Routh – Hurwitz test for	
	stability.	
4.	Controllers: Modes of control action, control system and its closed-	3
	loop transfer function.	
5.	Root Locus Method : Root locus treatment, response from root	4
	locus and its application to control system design.	
6.	Frequency Response: Introduction to frequency response, Bode	5
	diagrams of simple systems, Bode stability criterion, control system	
	design by frequency response, use of gain and phase margins.	
7.	Process Application : Controller tuning rules, control of complex	5
	chemical processes and equipment, control valve sizing, introduction	
	to real time computer control of process equipment.	
8.	Advanced Control Methods : Introduction to state-space method,	4
	feed forward and ratio control, inferential control, control using	
	digital computers-an introduction.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Coughanowr D.R. and LeBlanc S. "Process System Analysis and	2008
	Control", 3 rd Ed., McGraw Hill.	
2.	Stephanopoulos G. "Chemical Process Control – An Introduction to	1990
	Theory and Practice", Prentice-Hall of India.	
3.	Seborg D. E., Edgar T. F. and Mellichamp D. A., "Process Dynamics	2004
	Control", 2 nd Ed., John Wiley.	
4.	Bequette B. W., "Process Control - Modeling, Design and	2003
	Simulation", Prentice-Hall of India.	

NAME OF DEPTT./	CENTRE:	Department of Chemical Engineering		
1. Subject Code: C	HN-305	Course Title:	Process Equipn	ent Design*
2. Contact Hours:	L: 3	T: 0	P	: 2
3. Examination Dura	tion (Hrs.):	Theory: 4	Practi	cal: 0
4. Relative Weight:	CWS: 15	PRS: 25 MTE:	20 ETE: 40	PRE: 0
5. Credits:4	6. S	emester: Autumn	n 7. Subjec	t Area : DCC

8. Pre-requisite: CHN-201, CHN-202 and CHN-208

9. Objective: To provide knowledge about process design principles of heat and mass transfer equipment involved in chemical plants.

S. No.	Contents	Contact Hours
1.	Shell-Tube Heat Exchangers: Basic design procedure of heat	11
	transfer equipment, overall heat transfer coefficient and fouling	
	factors, shell & tube heat exchangers – construction details, selection	
	algorithm, design codes, mean temperature difference, general	
	design considerations, tube-side heat transfer coefficient and	
	pressure drop, shell-side heat transfer coefficient and pressure drop,	
	various design methods, CAD of shell & tube heat exchangers,	
	mechanical and fabricational aspects. Drawing of heat exchangers.	
2.	Condensers: Design of condensers for single vapors, heat transfer	7
	coefficient correlations for condensation inside and outside of tubes	
	of the vertical and horizontal condensers, design of desuperheater-	
	cum-condenser and condenser-cum-sub-cooler, condensation of	
	mixtures, pressure drop in condensers.	
3.	Reboilers, Vaporizers and Evaporators: Pool boiling, convective	5
	boiling, selection of reboilers, & vaporizers, design of reboilers,	
	vaporizers and evaporators, drawing of evaporators.	
4.	Distillation Column: Basic design consideration of distillation	9
	column, degree of freedom analysis, various design methods of	
	distillation column, general design consideration of multicomponent	
	distillation, plate efficiency, tray hydraulics of sieve and valve –	
	trays. Drawing of distillation column.	
5.	Packed Columns: Type of packing, packed bed height, column	6
	diameter, column internals, design methods, Design of liquid-liquid	
	extraction equipment.	
6.	Miscellaneous Equipment: Design of Crystalizers, Agitated vessels	4
	and selection of agitators, design of gas-liquid separators and mixing	
	equipment.	42
		42

* Note: This is an OPEN BOOK EXAMINATION. The students are allowed to consult IS Codes, Text books, Reference books and bound lecture notes certified by the examiner concerned

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Towler G. and Sinnott R. K., "Chemical Engineering Design:	2012
	Principles, Practice and Economics of Plant and Process Design", 2 nd	
	Ed., Butterworth-Heinemann.	
2.	Seader J. D. and Henley E. J., "Separation Process Principles", 2 nd	2006
	Ed., Wiley-India.	
3.	I.S.; 4503-1967, Indian Standard Specification for Shell & Tube Type	1983
	Heat Exchangers.	
4.	Hewitt G.F., Shires G. L. and Bott T. R., "Process Heat Transfer",	1994
	Begell House.	

NAME OF DEPARTME	ENT: Dep	Department of Chemical Engineering				
1. Subject Code: CHN-	210 Cou	rse Title: 1	Industrial Instrument	ation		
2. Contact Hours: L:	: 2	T: 0	P: 0			
3. Examination Duration	(Hrs.): The	ory: 2	Practical:0			
4. Relative Weight: CW	S:25 PRS :0	MTE:25	ETE:50	PRE:0		
5. Credits:2	6. Semester: Spring		7. Subject Area:	DCC		

8. Pre-requisite: Nil

9. Objective: To impart knowledge about the instruments used in chemical industries and their principles.

S. No.	Contents	Contact Hours
1.	Introduction: Measurement and its classification by physical	2
	characteristics, direct and inferential measurement, on and off line	
	measurement.	
2.	Static and Dynamic Characteristics of Instruments: Types of	6
	errors and uncertainties in instrumentations; Static performance	
	parameters- accuracy, repeatability, precision, threshold, sensitivity,	
	resolution, linearity, range and span, hysteresis, dead band, drift,	
	backlash, etc.; Dynamic characteristics of instruments- response to	
	periodic, transient, and random signal inputs; Compensation.	
3.	Sensor and Transducers: Classification, principles and	4
	applications.	
4.	Building Blocks of an Instrument: Transducer, amplifier, signal	4
	conditioner, signal isolation, signal transmitter, display, data	
	acquisition modules, I/O devices, signal convertors, interfaces.	
5.	Process Instrumentation: Working principles, merits and demerits	9
	of transducers/instruments employed for the measurement of flow,	
	level, force, pressure, temperature, density, viscosity, humidity, pH	
	value, turbidity, etc.	
6.	Miscellaneous Instruments: Indicating, transmitting and recording	3
	type instruments. Instrumentation symbols and P&ID diagrams.	
	P&ID diagram for equipments like distillation column, heat	
	exchange, etc.	
	Total	28

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Dunn W.C., "Fundamentals of Industrial Instrumentation and Process	2009
	Control", Tata McGraw Hill.	
2.	Nakra B. C. and Chaudhry K. K., "Instrumentation, Measurement and	2004
	Analysis", II Ed., Tata McGraw Hill.	
3.	Andrew W. G., "Applied Instrumentation in the Process Industries",	1993
	Vol. I, 1 st – 3 rd Ed., Gulf Publishing Company.	
4.	Johnson C., "Process Control Instrumentation Technology", 8th Ed.,	2005
	Prentice Hall	
5.	Liptek, B.G., "Instrument Engineers' Handbook: Process Control and	2006
	Optimization", Volume II, Taylor and Francis, CRC press.	

NAME OF DEPTT.	Department of Chemical Engineering				g	
1. Subject Code: CHN-302		Course Title: Engineering Analysis and P Modeling		and Process		
2. Contact Hours:	L: 3		T: 1		P: 0	
3. Examination Duration (Hrs.):		Theory :3			Practical: 0	
4. Relative Weight:	CWS:25	PRS:0	MTE:	25 ET	ГЕ:50	PRE:0
5. Credits:4	6. Semester: Spring		7.	Subject Area:	DCC	
8. Pre-requisite:	CH-202	and CH-2	07			

9. Objective: To provide the basic concepts of modeling and simulation of separation processes and reacting systems

S. No.	Contents	Contact Hours
1.	Introduction : Introduction to process modeling and simulation,	3
	tools of simulation, approaches for simulation, planning of	
	calculation in a plant simulation.	
2.	Parameter Estimation: Parameter estimation techniques in	3
	theoretical as well as numerical models.	
3.	Models: Models, need of models and their classification, models	10
	based on transport phenomena principles, alternate classification of	
	models, population balance, stochastic, and empirical models, unit	
	models.	
4.	Models of Heat Transfer Equipment: Development of detailed	4
	mathematical models of evaporators, use of Newton-Raphson	
	method for solving evaporator problems.	
5.	Models of Separation Processes: Separation of multicomponent	12
	mixtures by use of a single equilibrium stage, flash calculation under	
	isothermal and adiabatic conditions, tridigonal formulation of	
	component-material balances and equilibrium relationships for	
	distillation, absorption and extraction of multicomponents, Thiele	
	and Geddes method plus θ –method and K _b method, models of	
	absorbers, strippers and extractors.	
6.	Models of Reactors: Classification of fixed bed reactor models, one	6
	dimensional and two dimensional fixed bed reactor models, fluidized	
	bed reactor models, bioreactor models.	
7.	Process Simulation: Simulation of chemical process equipment,	4
	program development and numerical solution.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Denn M. M., "Process Modeling", Longman.	1986
2.	Holland C. D., "Fundamentals and Modeling of Separation Processes", Prentice Hall.	1975
3.	Luyben W. L., "Process Modeling Simulation and Control for Chemical Engineers", 2 nd Ed., McGraw Hill.	1990
4.	Najim K., "Process Modeling and Control in Chemical Engineering", CRC.	1990
5.	Aris R., "Mathematical Modeling, Vol. 1: A Chemical Engineering Perspective (Process System Engineering)", Academic Press.	1999

NAME OF DEPTT./CENTRE: Department of Chemical Engineering

1. Subject Code: CHN-304		Course Title: Proce		Process Economics an	cess Economics and Plant Design	
2. Contact Hours:	L: 3		T: 0	P: 0		
3. Examination Dura	ation (Hrs.):	Theor	ry:3	Practical:0		
4. Relative Weight:	CWS:25	PRS:0	MTE:2	25 ETE:50	PRE:0	
5. Credits :3	6. Semester: Spring		7. Subject Area	: DCC		

8. Pre-requisite: Nil

9. Objective: To provide the fundamentals of economics, scale up methods and design strategies of plants.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Time Value of Money: Interest; Compounding and Discounting	3
	Factors; Loan Payments; Cash Flow Pattern: Discrete Cash Flow,	
	Continuous Cash Flow.	
2.	Methods for Calculating Profitability: Methods that do not	6
	consider the time value of money; Methods that consider the time	
	value of money; Alternative Investments by Different Profitability	
	Methods; Effect of Inflation on Profitability Analysis; Methods of	
	Profitability Evaluation for Replacements.	
3.	Depreciation: Straight Line, Declining Balance, Double Declining	4
	Balance, sum-of-the-years-digit, Sinking Fund.	
4.	Analysis of Cost Estimates: Factors Affecting Investment and	7
	Production Costs; Capital Investment; Types of Capital Cost	
	Estimates; Methods for Estimating Capital Investment; Estimation of	
	Revenue; Estimation of Total Product Cost; Gross Profit; Net Profit	
	and Cash Flow; Contingencies.	
5.	Optimum Design and Design Strategy: Procedure with one, two	10
	and more variables; Optimum Production Rates in Plant Operation;	
	Case Studies; Linear Programming: Simplex Algorithm, Dynamic	
	Programming for Optimization; Application of Lagrange	
	Multipliers; Method of Steepest Ascent or Descent.	-
6.	Plant Location and Layout: Factors for Selection of Plant	4
	Location; Site Selection and Preparation; Plant Layout and	
	Installation.	
7.	Scale-Up: Pilot Plants and Models; Principle of Similarity;	8
	Dimensional Analysis; Empirical and Semi-empirical Model	
	Building; Regime Concept: Static Regime, Dynamic Regime;	
	Similarity Criteria and Scale Equations for Important Equipments.	42
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Peters, M. S., Timmerhaus, K. D. and West, R. E., "Plant Design and	2002
	Economics for Chemical Engineers", McGraw Hill, 5th Edition.	
2.	Towler, G. and Sinnott, R. K., "Chemical Engineering Design:	2012
	Principles, Practice and Economics of Plant and Process Design",	
	Butterworth-Heinemann, 2nd Edition.	
3.	Couper, J. R., "Process Engineering Economics (Chemical	2003
	Industries)", CRC Press, 1st Edition.	
4.	Zlokarnik, M., "Scale-up in Chemical Engineering", Wiley-VCH,	2006
	2nd Edition.	

NAME OF DEPTT./CENTRE: Department of Chemical Engineering

1. Subject Code: C	HN-306	Cour	se Title:	Process Utilities	s & Safety
2. Contact Hours:	L: 3		T: 0	P	: 0
3. Examination Dura	tion (Hrs.):	Theo	ory: 3	Practi	ical: 0
4. Relative Weight:	CWS: 25	PRS: 0	MTE: 2	5 ETE: 50	PRE: 0

- 5. Credits: 36. Semester: Spring7. Subject Area: DEC
- 8. Pre-requisite: Nil
- 9. Objective: To provide the knowledge of the requirement of process utilities and safety aspects in the process industry.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Utilities in process industries; primary and secondary utilities, and their importance.	2
2.	Heat Transfer Media: Classification, characteristic properties, selection criteria for industrial applications.	3
3.	Steam: Steam generation, modern boilers, steam handling, condensate removal; Steam traps-classification, characteristics and selection; Condensate and flash steam utilization.	4
4.	Water: Raw water and its characteristics, treatment and conditioning for use in process industries and for boiler, cooling, etc.; Recycling and reuse of water.	4
5.	Air: Use of air in process industries for conveying, drying and instrumentation; design of air receivers.	3
6.	Piping Network: Design of pipelines (sizing) and piping networks for water, steam, condensate and air.	4
7.	Process Safety: Process safety, accident and loss statistics, nature of the accident/hazardous processes; Hazardous Substance classification and Hazardous Substance Rules, 1986; Factories Act 1949.	5
8.	Toxicology: Toxic materials, dose-response relationships and predictive models for response; Threshold dose concentration and its definition. Material safety data sheet and industrial hygiene evaluation.	5
9.	Source models and Dispersion: Source models for liquids and vapors, Dispersion, Ventilation and dispersion for toxic releases.	3
10.	Fire and Explosion: Flammability characteristics, fire and explosion, Ignition sources and static electricity. Preventing fires and explosions by inerting. purging, ventilation, sprinkler systems, etc.; Prevention of static electricity hazards.	6
11.	Prevention and Control for Safety: Relief's - classification and	3
	selection for vapour/gas, liquid and run-away reaction services. Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Geiringer P. L., "Handbook of Heat Transfer Media", Reinhold Publishing Corporation.	1977
2.	Goodall P. M., "The Efficient Use of Steam", Editor: Westbury House.	1980
3.	Lorch, "Handbook of Water Purification", Editor: McGraw Hill Book Company.	1981
4.	Crowl D. A. and Louvar J. F., "Chemical Process Safety: Fundamentals with Applications", 2nd Ed., Prentice Hall.	2001

NAME OF DEPTT/CENTRE: DEPARTMENT OF CIVIL ENGINEERING

1. Subject code: **CEN-105** Course Title: Introduction to Environmental Studies

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Examination Duration (Hrs): **Theory:** 3 **Practical:** 0

4. Relative Weightage: CWS: 15 PRS: 0 MTE: 35 ETE: 50 PRE: 00

- 5. Credits: **3** 6. Semester: **Autumn** 7. Subject Area: **GSC**
- 8. Pre-requisite: Nil

9. Objective: To introduce fundamentals of environmental pollution and its control.

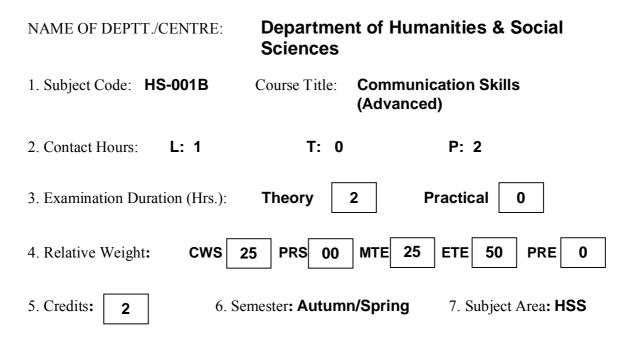
S. No.	Contents	Contact Hours
1.	Overview: Environment and Natural Processes; Development (Resource Utilization & Waste G eneration); Environmental issues; Concept of Sustainable D evelopment; Issues affecting f uture development (population, urbanization, health, water scarcity, energy, climate change, toxic chemicals, finite resources etc.); Environmental units	6
2.	Air –Water i nteraction: (Liquid ph ase-gas pha se e quilibrium) H enry's Law Constant with units, Dimensionless Henry's Law Constant	3
3.	Water –Soil I nteraction: Carbonate S ystem (Alkalinity a nd buffering capacity); Major ions in water; Natural Organic Matter (NOMs); Water quality parameters; Physical processes (Mass Balance): Spatio-temporal variation i n qua lity of r iver w ater, l ake w ater, gr ound water; Water quality standards	9
4.	Wetlands, water treatment and wastewater treatment .	6
5.	Air resources: Atmosphere; Air pollutants; Emissions and control of air pollutants; Atmospheric meteorology and dispersion; Transport of air (global, r egional, lo cal); A ir/ a tmospheric stability; P lume sha pe; Gaussian modeling; Air quality standards	9
6.	Land pollution and solid waste management	3
7.	Ecosystem: Structure and function; Energy flow in ecosystem; Material flow in ecosystem; Biodiversity and ecosystem health; Bio-amplification and bio-magnification	3
8.	Hazardous Waste: Definition; Classification; Storage and management; Site remediation; Environmental Risk: assessment, and management	3
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Davis M.L. and C ornwell D.A., "Introduction to Environmental Engineering", McGraw Hill, New York 4/e	2008
2.	Masters G . M., Joseph K . a nd N agendran R . "Introduction t o Environmental E ngineering a nd S cience", P earson E ducation, New Delhi. $2/e$	2007
3.	Peavy H. S., R owe D.R. and T chobanoglous G., "Environmental Engineering", McGraw Hill, New York	1986
4.	Mines R. O. and L ackey L. W. "" Introduction to Environmental Engineering", Prentice Hall, New Yark	2009
5.	Miheicic J. R. and Zimmerman J. B. "Environmental Engineering: Fundamentals, Sustainability, Design" John Wiley and Sons, Inc.	2010

NAME OF DEPTT./CENTRE:	Department of Huma Sciences	anities & Social
1. Subject Code: HS-001A	Course Title: Communic	cation Skills (Basic)
2. Contact Hours: L: 1	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory 2 P	ractical 0
4. Relative Weight: CWS 25	6 PRS 00 MTE 25	ETE 50 PRE 0
5. Credits: 2 6. Sem	nester: Autumn/Spring	7. Subject Area: HSS

8. Pre-requisite: NIL

9. Objective: The course intends to build the required communication skills of the students having limited communicative abilities, so that they may communicate effectively in real-life situations


S. No.	Contents	Contact Hours
1.	Understanding the Basics of Communication Skills: Listening, Speaking, Reading & Writing, Scope and Importance	01
2.	Grammar & Composition: Time and Tense, Agreement, Active-Passive, Narration, Use of Determiners, Prepositions & Phrasal Verbs	05
3.	Vocabulary Building & Writing: Word-formation, Synonyms, Antonyms, Homonyms, One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words	02
4.	Introduction to Sounds (Vowels & Consonants) Organs of Speech, Place and Manner of Articulation, Stress & Intonation, Listening Comprehension (Practical Sessions in Language Laboratory)	02

5.	Speaking, Countering Stage-fright and Related Barriers to Communication.	02
6.	Reading and Comprehension: Two lessons to be identified by the department.	02
	Total	14

List of Practicals:

- **1.** Ice-breaking Exercises
- 2. Assignments on Time and Tense, Agreement, Active-Passive
- 3. Laboratory Session on Narration, Use of Determiners, Prepositions & Phrasal Verbs, Revisionary Exercises & Quiz
- 4. Laboratory Session on Synonyms, Antonyms, Homonyms
- **5.** Assignments and Practice Sheets on One-word Substitutes, Idioms and Phrases, Collocations, Abbreviations of Scientific and Technical Words
- **6.** Laboratory Session on Practice of sounds, Intonation and Stress, Listening Comprehension
- 7. Individual presentation, debates, Extempore & Turncoats
- 8. Exercises in Composition and Comprehension
- 11. Suggested Books:

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Murphy, Raymond. <i>Intermediate English Grammar</i> , New Delhi, Cambridge University Press.	2009
2.	Quirk, Randolph & Sidney Greenbaum. A University Grammar of English, New Delhi, Pearson.	2009
3.	McCarthy, Michael & Felicity O' Dell. <i>English Vocabulary in Use</i> , New Delhi, Cambridge University Press	2010
4.	Jones, Daniel. <i>The Pronunciation of English</i> , New Delhi, Universal Book Stall.	2010
5.	Birchfield, Susan M. Fowler's Modern English Usage, New Delhi, OUP.	2004
6.	Llyod, Susan M. Roget's Thesaurus of English Words and Phrases. New Delhi: Penguin.	2010

8. Pre-requisite: **NIL**

9. Objective: The course intends to train the learners in using both verbal and non-verbal communication effectively.

S. No.	Contents	Contact Hours
1.	Advanced Communication Skills: Scope, Relevance, & Importance	01
2.	Soft Skills: Interpersonal Communication; Verbal & Non-verbal, Persuasion, Negotiation, Neuro-Linguistic Programming	03
3.	Communication and Media (Social and Popular), The Social and Political Context of Communication, Recent Developments and Current Debates in Media	04
4.	Cross-cultural and Global Issues in Communication: Race, Ethnicity, Gender & Diaspora	03
5.	Rhetoric and Public Communication, Audience Awareness, Emotionality	03
	Total	14

List of Experiments:

- 1. Discussion on the Process of Communication in Personal and Professional Life
- 2. Group Discussion, Case Studies and Role-Play
- **3.** Assignments on E-mail Etiquette, Social Networking, Blog Writing, Discussions on Current Issues
- 4. Non-Verbal Communication in Cross-Cultural Situations, Case Studies, Group Discussions and Readings on Topics Related to Race, Ethnicity, Gender and Diaspora
- **5.** Individual Presentations (Audience Awareness, Delivery and Content of Presentation)

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Rentz, Kathryn, Marie E. Flatley & Paula Lentz.	2012
	Lesikar's Business Communication CONNECTING IH A DIGITAL	
	WORLD, McGraw-Hill, Irwin	
2.	Bovee, Courtland L & John V. Thill. Business Communication	2010
	Today. New Delhi, Pearson Education	
3.	McMurrey, David A. & Joanne Buckley. <i>Handbook for Technical Writing</i> , New Delhi, Cengage Learning.	2009
4.	Jones, Daniel. The Pronunciation of English, New Delhi, Universal Book Stall.	2010
5.	Allan & Barbara Pease. <i>The Definitive Book of Body Language</i> , New York, Bantam	2004

NAME OF DEPTT./CENTRE:		Department of Humanities and Social Sciences			
1. Subject Code: HSN-002		Course Title: Ethics and Self-awareness		reness	
2. Contact Hours: L:	: 01	T:	01	P: 0	
3. Examination Duration	(Hrs.):	Theory	2	Practical	0
4.Relative Weight: CW	VS:25 P	PRS:0	MTE:25	ETE:50	PRE:0

- 5. Credit 02 6. Semester: Autumn 7. Subject Area: HSSC
- 8. Pre-requisite: NIL
- 9. Objective: To introduce the concepts pertaining to ethical and moral reasoning and action and to develop self awareness.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	Introduction : D efinition of E thics; A pproaches t o E thics: Psychological, Philosophical, Social.	1
2	Psycho-social theories of moral development : V iew of K ohlberg; Morality and Ideology, Culture and M orality, Morality in e veryday context.	3
3	Ethical Concerns : Work E thics and W ork V alues, B usiness Ethics, Human values in organizations.	3
4	Self-Awareness : Self Concept: Johari Window, Self and Culture, Self Knowledge, Self-Esteem; P erceived Self-control, S elf-serving bi as, Self-presentation, Self-growth: Transactional Analysis and Life Scripts.	4
5.	Self Development : Character s trengths and vi rtues, E motional intelligence, Social intelligence, Positive cognitive states and processes (Self-efficacy, Empathy, Gratitude, Compassion, and Forgiveness).	3
	Total	14

S.No.	Name of Authors / Books / Publishers	Year of Publication
1.	Hall, C alvin S ., L indzey, D ardner., & C ambell, John	1998
	B., "Theories of Personality", Hamilton Printing Company.	
2.	Car Alan, "Positive Psychology: The Science of Happiness and Human Strengths", Brunner-Routledge.	2004
3.	Leary M.R., "The Curse of Self: Self-awareness, Egotism and the Quality of Human Life", Oxford University Press.	2004
4.	Louis P. P., "The Moral Life: An Introductory Reader in Ethics and Literature", Oxford University Press.	2007
5.	Corey, G., S chneider C orey, M., & C allanan, P., "Issues and Ethics in the Helping Professions", Brooks/Cole.	2011
6.	Snyder, C.R., Lopez, Shane, J., & Pedrotti, J.T., "Positive Psychology" Sage, 2 nd edition.	2011

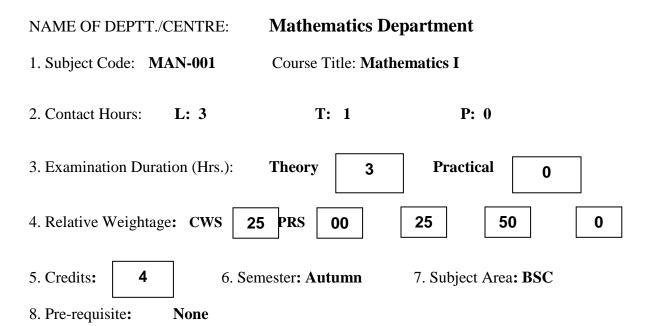
NAME OF DEPTT./CENTRE:	Department of Chem	nical Engineering	
1. Subject Code: CHN-101	Course Title: Intro	duction to Chemic	cal Engineering
2. Contact Hours: L: 2	T: 0	P: 0	
3. Examination Duration (Hrs.): The	eory 0	Practical	0
4. Relative Weightage: CWS	0 PRS 0 MTE	0 ETE	100 PRE 0
5. Credits: 2 6. S	emester: Autumn	7. Subject Area:	DCC
8. Pre-requisite: Nil			

9. Objective: To introduce the basic features and concepts of Chemical Engineering to the students.

S.No.	Contents	Contact Hours
1.	Introduction: Framework of chemical industry and its classification, production routes, concepts of synthesis and segmentation, definition of chemical engineering, historical perspective and contribution; job description and attributes of a chemical engineer, chemical engineering and its seamless integration with other sciences and engineering disciplines; Societal needs and life cycle of technology, market forces; Economic scale of production; Waste utilization and recycle, sustainable technology, process integration and intensification; Employment opportunities, knowledge resources and software tools; Frontiers & future roadmap ; Challenges of chemical engineering practice- safety, economics, ethics, regulation and IP.	7
2.	Chemical Process Industries : Evolution of chemical industries, Technological developments in major challenges; Chemical industries structure and segments of chemical industry, raw material and production pattern; Basic principles of chemical processes, unit processes and unit operations and various routes to produce chemicals; Petroleum, petrochemical and fertilizer industry integration; Cleaner and greener technologies.	7
3.	Basic Tools of Chemical Engineering: Physico-chemical and biological sciences; Mathematics and computation; Thermodynamics and kinetics, Material and Energy balances; Transport phenomena; Equilibrium and rate based processes; Reaction engineering and reactors; Various transport processes; Efficiency and economics of processes. Measuring instruments, automation and control, concept of scale-up- lab to industrial, nano to terrestrial; Dimensional analysis and semi-empiricis; Degree of freedom analysis; Concept of design, modelling and simulation.	8
4.	Applications of Various tools and Examples: Flash unit and blending system;	6

Coal combustion and gasification; Boiler and steam generation; Biomethanation and alcohol production; Petroleum fractionation and petrochemicals; Chemical vapour deposition; Nano-devices and drug delivery systems; Accidents and safety; Web-based learning and educational videos of refineries, petrochemical plants and fertilizer units; Important developments and milestones in chemical engineering.	
Total	28

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Denn Morton M., "Chemical Engineering; An Introduction", Cambridge, University Press.	2012
2.	Himmelblau D.M. and Riggs J.B., "Basic Principles and Calculations in Chemical Engineering". 7th Edition., Prentice Hall.	2003
3.	Austin G.T., "Shreve's chemical process industries", McGraw-Hill Book Company, 5 TH Edition.	1984
4.	Groggins, P.H., "Unit processes in organic synthesis", Tata McGraw Hill Education Private Limited, 5th Edition.	1995


NAME OF DEPTT./CENTRE:	Department of Chem	nical Engineering
1. Subject Code: CHN-103	Course Title: Comp Analy	outer Programming and Numerical rsis
2. Contact Hours: L: 3	T: 0	P: 2
3. Examination Duration (Hrs.):	Theory 3	Practical 0
4. Relative Weightage: CWS 15	5 PRS 15 MTE	30 ETE 40 PRE 0
5. Credits: 4 6. Sen	nester: Autumn	7. Subject Area: ESC
8. Pre-requisite: Nil		

9. Objective: To introduce object oriented programming using C++ language and numerical analysis

S. No.	Contents	Contact Hours
1.	Basic Computer Fundamentals: Introduction to computer systems	4
	- CPU organization, ALU, registers, memory and input-output	
	devices; Number system: binary and hexadecimal; Fixed and	
	Floating point numbers; Errors and Approximations	
2.	Basic Programming in C++: Concepts of algorithm & flow charts;	6
	Input/output, constants, variables, expressions and operators;	
	Naming conventions and styles; Conditions and selection statements;	
	Looping and control structures; File input/output, header files, string	
	processing; Preprocessor directives such as #include, #define, #ifdef,	
	#ifndef; Compiling and linking.	
3.	Modular Programming: Functions (void and value returning),	6
	parameters, scope and lifetime of variables, passing by value,	
	passing by reference, passing arguments by constant reference;	
	Design of functions and their interfaces, recursive functions;	
	Function overloading and default arguments; Library functions;	
-	Matters of style, naming conventions, comments	4
4.	Aggregate Data-types: Arrays and pointers; Structures; Dynamic	4
	data and pointers, dynamic arrays.	
5.	Object Oriented Programming: Classes and Objects; Constructors	8
	and Destructors; Operator Overloading and Type Conversions;	
	Inheritance: extending classes; Pointers; Virtual Functions;	
	Polymorphism; Manipulating Strings; Use of Pointers in linked	
	arrays.	
6.	Solution of Linear and Non-Linear Equation: Direct methods	6

	such as Gaussian elimination and Thomas algorithm for tri-diagonal systems; Iterative methods such as Jacobi method and Gauss-Seidel method; Single variable using Bisection method and Newton- Raphson method; Application of Newton-Raphson to two variables	
7.	Numerical Interpolation, Differentiation and Integration : Difference tables, forward, central and backward difference interpolation; Interpolating polynomials; Differentiation formulas; Trapezoidal rule, Simpson's rule	4
8.	Solution of Ordinary Differential Equations: Initial value problems (IVPs), Euler Method and Runge-Kutta method	4
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Balaguruswamy, E., "Object Oriented Programming with C++", Tata McGraw Hill Education, 5th Edition.	2011
2.	Lafore, R., "Object Oriented Programming with C++", Pearson, 4th Edition.	2008
3.	Dietel, H. M. and Dietel, P. J., "C++ How to Program", Prentice Hall, 8th Edition.	2011
4.	Sastry, S. S., "Introductory Methods of Numerical Analysis", PHI Learning, 5th Edition.	2012
5.	Chapra, S. C., "Applied Numerical Methods with MATLAB for Engineers and Scientists", Tata McGraw Hill Education, 3rd Edition.	2012

9. Objective: To provide essential knowledge of basic tools of Differential Calculus, Integral Calculus, Vector Calculus and Matrix Algebra for degree students.

10. Details of C	Course:
------------------	---------

S. No.	Contents	Contact
		Hours
1.	Matrix Algebra: Elementary operations and their use in getting the Rank, Inverse	8
	of a matrix and solution of linear simultaneous equations. Orthogonal, Symmetric,	
	Skew-symmetric, Hermitian, Skew-Hermitian, Normal & Unitary matrices and	
	their elementary properties. Eigen-values and Eigenvectors of a matrix, Cayley-	
	Hamilton theorem, Diagonalization of a matrix.	
2.	Differential Calculus: Limit, Continuity and differentiability of functions of two	12
	variables, Euler's theorem for homogeneous equations, Tangent plane and normal.	
	Change of variables, chain rule, Jacobians, Taylor's Theorem for two variables,	
	Error approximations. Extrema of functions of two or more variables,	
	Lagrange's method of undetermined multipliers	
3.	Integral Calculus:	12
	Review of curve tracing and quadric surfaces, Double and Triple integrals,	
	Change of order of integration. Change of variables. Gamma and Beta functions.	
	Dirichlet's integral. Applications of Multiple integrals such as surface area,	
	volumes, centre of gravity and moment of inertia	
4.	Vector Calculus: Differentiation of vectors, gradient, divergence, curl and their	10
	physical meaning. Identities involving gradient, divergence and curl. Line and	
	surface integrals. Green's, Gauss and Stroke's theorem and their applications.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	E. Kreyszig, Advanced Engineering Mathematics, 9th edition, John	2011
	Wiley and Sons, Inc., U.K.	
2.	R.K. Jain and S.R.K. Iyenger, Advanced Engineering Mathematics,	2005
	2nd Edition, Narosa Publishing House.	
3.	M.D. Weir, J. Hass, F.R. Giordano, Thomas' Calculus, 11th Edition,	2008
	Pearson Education.	

NAME OF DEPTT./CENTRE:	Department of Ch	nemistry		
1. Subject Code: CYN-001	Course Title: Phy	ysical Chemistry		
2. Contact Hours: L: 3	T: 0	P: 2		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weightage: CWS 10	PRS 15 MTE	E 25 ETE 50] PRE	0
5. Credits: 4 6. Sem	nester: Autumn	7. Subject Area: I	BSC	
8. Pre-requisite: Nil				

9. Objective: To provide a theoretical and experimental knowledge of fundamental physical chemistry to engineering students.

S. No.	Contents	Contact Hours
1.	Quantum Chemistry: Postulates, commuting and non-commuting operators,	7
	Schrödinger equation, particle in a one-, two- and three dimensional box and	
	their implications, H-atom - radial and angular wave functions, shapes of	
	orbitals (s, p and d), application of quantum chemistry concepts to hydrogen-	
	like atoms and their atomic spectra.	
2.	Chemical Equilibria: Description of equilibrium, feasibility of chemical	6
	reaction, Gibbs-Helmholtz equation, phase transition - Clapeyron equation,	
	Clausius- Clapeyron equation, free energy changes in reversible processes,	
	chemical potential, partial molar quantities, activity coefficient and fugacity,	
	basic concepts of statistical thermodynamics.	
3.	Reaction Dynamics: Collision theory of bimolecular reactions and its	6
	drawbacks, potential energy surfaces, transition state theory using partition	
	functions, thermodynamic formulation of transition state theory and mapping	
	of transition states using ultrafast processes.	
4.	Photochemistry: Laws of photochemistry, photophysical and photochemical	6
	processes and their quantum efficiencies, spontaneous and stimulated	
	processes. Franck-Condon principle, photosensitizers - photosynthesis and	
	solar cells.	

5.	Catalysis: Homogeneous catalysis – kinetics of acid, base and enzyme catalyzed reactions with suitable examples. Heterogeneous catalysis – surface phenomena, porosity, derivation of Langmuir adsorption isotherm, Langmuir-Hinshelwood and Rideal-Eley mechanisms, comparison of rates of homogeneous and heterogeneous reactions based on activated complex theory.	6
6.	Spectroscopy: Interaction of electromagnetic radiation with matter, instrumental spectroscopic techniques (AAS, ICP, UV-Vis and IR spectroscopy), application of spectroscopy techniques to atomic and molecular systems.	6
7.	Solid-State Chemistry: Bonding in solids, diffraction methods – scattering of X-rays from a crystal, structure factor and systematic absences, methods of synthesis of solids–ceramic, sol-gel, hydrothermal, microwave and sonochemical.	5
	Total	42

List of Experiments:

i)	Determination of iron in iron ore using potassium dichromate (internal indicator method).
ii)	Heat of neutralization of a strong base by a strong acid.
iii)	Determination of surface excess concentration of 1-butanol in aqueous solution.
iv)	To study the kinetics of a redox reaction.
v)	Blue printing using sunlight.
vi)	pH metry/ potentiometry titrations
	a) Strong acid – strong base; b) Strong acid – weak base
	c) Weak acid – strong base; d) Redox titration: Fe^{2+} or Mn^{2+}
vii)	Acid base titrations using conductivity meter.
	a) Strong acid – strong base; b) Strong acid – weak base c) Weak acid – strong base.
viii)	Spectrophotometry: Determination of [Fe (III)] by colorimetry.
ix)	Determination of hardness of water by EDTA- complexometry titration.
x)	Determination of the composition of mixtures of liquids using viscometry.

S. No.	Authors/ Title/ Publisher	Year of Publication
1.	Silbey R.J. and Alberty R.A., "Physical Chemistry", 3 rd Ed, John Wiley & Sons, Inc.	2003
2.	Atkins P. and Paula J. Physical Chemistry, 8 th Ed., Oxford University Press.	2006

3.	West A.R., Solid State Chemistry and its Applications, Wiley-India Edition	2003
4.	Levine, I. N, Quantum Chemistry, Pearson Education	2000
5.	Turro N.J., Ramamurthy V. and Scaiano J.C., Modern Molecular Photochemistry of Organic Molecules, University Science Books	2008
6.	Skoog D.A., Holler F.J. and Crouch S.R., "Principles of Instrumental Analysis", 6th Ed., Thomson Brooks	2006