NAME OF DEPTT./CENTRE:	Department of Water	er Resources Development and Managemen		
1. Subject Code: WRN-501	Course Title: System	Design Techniques		
2. Contact Hours: L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Practical 0		
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50 PRE	0	
5. Credits: 4 6. S	emester: Spring	7. Subject Area: PEC		
8. Pre-requisite: NIL				

- 9. Objective: To impart knowledge on the system design techniques and applications to water resources systems analysis, design and management.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	System concepts: Boundary, environment, input, output and	4
	constraints; Open and closed systems; System modeling, water	
	resources systems, issues in system application; Operation research	
	approach to system analysis	
2.	Linear programming: Model formulation, graphical method,	
	simplex procedure- two phase, big-M, dual simplex, primal-dual	8
	simplex, modified simplex procedures; Upper bounded solutions,	
	sensitivity analysis	
3.	Transportation problems: Basic feasible solution techniques, testing	8
	for optimal solution; Integer and mixed integer problems, assignment	
	problems, applications for efficient water resources management	
4.	Non linear programming (NLP): Separable and convex	6
	programming problems, quadratic programming, unconstrained and	
	constrained NLP problems, chance constrained programming, method	
	of calculus, search techniques	
5.	Dynamic programming: Optimality principle, deterministic and	8
	stochastic dynamic programming, application to water resources	
	problems	
6.	Decision making: Value and utility concepts, goal programming,	8
	decision theory and decision trees, decision making under risk and	
	uncertainty, theory of games; Multi criteria decision making- distance	
	based and compromise techniques	
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprint
1.	Jain, S. K. and Singh, V. P., "Water Resources Planning and	2003
	Management", Elsevier.	
2.	Loucks, D.P., Stedinger, J.R. and Haith, D.A., "Water Resources	1981
	Systems Planning and Analysis", Prentice Hall.	
3.	Ravindran, A., Philips, D.T. and Solberg, J.J., "Operation	2000
	Research- Principles and Practice", Second Edition, John Wiley.	
4.	Rao, S.S. "Optimization - Theory and Applications", Wiley	1984
	Eastern.	
5.	Sharma, J.K., "Operations Research", Macmillan.	1997
6.	Taha, H.A., "Operation Research - An Introduction", PHI.	2002
7.	Wurbs, R.A. and James, W.P., "Water Resources Engineering",	2002
	PHI.	

NAME OF DEPT	Γ./CENTRE:	Departn Manage	nent of W ment	ater Resour	ces Developm	ent and
1. Subject Code:	WRN- 502	Course T	itle: Desig	gn of Water	· Resources St	ructures
2. Contact Hours:	L: 3	Т	: 1	I	P: 0	
3. Examination Du	ration (Hrs.):	Theory	3	Pract	tical 0	
4. Relative Weight	: CWS	25 PRS	0	25	50	0
5. Credits: 4	6. 5	Semester: Au	tumn	7. Subje	ct Area: PCC	

8. Pre-requisite: NIL

- 9. Objective: To impart knowledge about the design of various water resources structures.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Design of hydraulic structures on permeable foundation including	6
	weir and barrage; determination of afflux and discharge intensity;	
	waterway and looseness factor; stilling basin level and length; uplift	
	pressures and exit gradient; floor thickness and protection works.	
2.	Gravity dams- general features; forces acting on gravity dam;	6
	galleries and their functions; stability analysis; roller compacted RCC	
	dams.	
3.	Earth dams- homogeneous and zoned sections; filter design and	6
	stability analysis.	
4.	Spillways-layout and design of various types of spillways; design of	5
	energy dissipaters.	
5.	Intake Structures-trash racks and their cleaning and handling devices;	4
	stoplog arrangements; intake entrance; aeration vent; gate control.	
6.	Tunnels-classification; rock cover; hydraulic design and supporting	4
	systems; concrete lining; portals and plugs; underground cavities.	
7.	Gates- various types of gates for barrages; spillways; intakes; sluices;	5
	structural design considerations for vertical lift and radial gates.	
8.	Hydro power-function; classification and main components	
	(penstocks, surge tanks, hydro turbines, etc.) of hydro power stations.	6
	Total	42

S.No.	Name of Authors /Book/Publisher	Year of
		Publication/Reprint
1.	Bickel, J.O., Kuesel, T.R. and King,, E.H., "Tunnel Engineering	2002
	Handbook", CBS Publishers and Distributors.	
2.	Mosoyni, E., "Water Power Development", Nem Chand and	2009
	Bros.	
3.	Singh, B. and Varshney, R.S., "Embankment Dam	2004
	Engineering", Nem Chand and Bros.	
4.	Varshney, R. S., "Hydro Power Structures", N.C. Jain.	2001
5.	Varshney, R. S., "Gates and Valves", Nem Chand and Bros.	2002
6.	Varshney, R.S., Gupta, S. C. and Gupta, R. L. "Theory and	2000
	Design of Irrigation Structures", Nem Chand and Bros.	

NAME OF DEPTT./CENTRE:	Department of Water Resources Development and Management			
1. Subject Code: WRN-503	Course Title: Water I	Resources Plannin	g and Management	
2. Contact Hours: L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weight : CWS 25	PRS 0 MTE	25 ETE 50	PRE 0	
5. Credits: 4 6. Ser	nester: Autumn	7. Subject Area: P	CC	
8. Pre-requisite: NIL				

- 9. Objective: To impart knowledge of planning and managing surface water resources at project and regional levels.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Objectives of water resource development; needs and opportunities;	3
	societal goals.	
2.	Spatial and temporal characteristics of water resources; constraints for	4
	its development like non-reversibility; planning region and horizon.	
3.	Financial analysis of water resources projects; allocation of cost of	8
	multipurpose projects; repayment of cost.	
4.	Demand for drinking water; irrigation, hydropower; navigational;	6
	planning for flood control.	
5.	Characteristics and functions of reservoir; reservoir sedimentation;	8
	conservation storage; conflict among uses, Reservoir operation studies	
	- effect on river regime; long term simulation; reliability; resiliency	
	and vulnerability assessment.	
6.	Ground water evaluation; conjunctive use of surface and ground	2
	water.	
7.	Discounting techniques; benefit cost parameters; estimation of	4
	benefits and costs; appraisal criteria; social benefit cost analysis.	
8.	Basin planning; inter-basin transfer of water.	3
9.	Environmental impacts assessment guidelines and case studies.	4
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprint
1.	James, L.D., and Lee, R. R., "Economics of Water Resources	1971
	Planning", Mc Graw Hill.	
2.	Modi, P.N., 'Irrigation, Water Resources and Water Power	1995
	Engineering', Standard Book Pub., Delhi.	
3.	"Guidelines for Preparation of Detail Project Reports of	2002
	Irrigation and Multipurpose Projects", Ministry of Irrigation,	
	Govt. of India.	
4.	Garg, S.K., "Irrigation Engineering and Hydraulic Structure",	2004
	Khanna Publishers.	
5.	Subramanya, K., "Engineering Hydrology", Tata McGraw Hill	2006
	Publishing Company.	

NAME OF DEPTT./CENTRE: **Department of Water Resources Development and Management** 1. Subject Code: WRN-504 Course Title: Applied Hydrology 2. Contact Hours: L: 3 T: 1 **P:** 0 0 3. Examination Duration (Hrs.): **Practical** Theory 3 4. Relative Weight : CWS 25 PRS 00 MTE 25 ETE 50 PRE 00 5. Credits: 4 6. Semester: Spring 7. Subject Area: PCC

8. Pre-requisite: NIL

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction: Hydrologic design requirements, hydrologic cycle,	4
	classification of processes and models	
2.	Hydrologic Data: Observation and collection; Processing -	7
	supplementing, consistency checking, corrections and presentation	
3.	Frequency Analysis: Probability distributions, statistical analysis,	8
	return period of flood and storm, outliers, regional flood frequency,	
	confidence interval and goodness of fit	
4.	Rainfall runoff models: Empirical, conceptual and physical; Unit	8
	hydrograph; Decisions with inadequate hydrologic data	
5.	Hydrologic Design: Design criteria, dependable yield, design storm,	8
	design flood estimation, reservoir and channel routing	
6.	Flood Forecasting: Travel time, correlation, telemetry, gage and	4
	discharge forecasting	
7.	Elements of Groundwater Hydrology: Ground water recharge,	3
	ground water balance, aquifer properties	
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprints
1.	Chow, V.T., Maidment, D. R. and Mays, L. W., "Applied	1988
	Hydrology", Tata McGraw Hill.	
2.	Mishra, S.K. and Singh, V.P., "Soil Conservation Service-	2003
	Curve Number Methodology", Kluwer Publication.	
3.	Mutreja, K. N., "Applied Hydrology" Tata McGraw Hill.	1986
4.	Subramanya, K., "Engineering Hydrology", Tata McGraw Hill.	2006

^{9.} Objective: To impart knowledge on hydrologic aspects of investigations, planning, design and operations of river valley projects.

NAME OF DEPT	T./CENTRE:	Department of Water Resources Development and Management			
1. Subject Code:	WRN-511	Course Title:	Geotechnical Eng	ineering	
2. Contact Hours:	L: 3	T: 1	P:	0	
3. Examination D	uration (Hrs.):	Theory	3 Practica	al O	
4. Relative Weigh	nt : CWS 25	5 PRS 0	MTE 25 ETE	50 PRE	0
5. Credits:	4 6. Sen	nester: Spring	7. Subject A	Area: PEC	

8. Pre-requisite: Nil

S. No.	Contents	Contact Hours
1.	Composition and classification of soil: Importance of soil mechanics	4
	in water resources applications; Textural properties and their	
	determination; Identification and classification of soils	
2.	Seepage analysis: Flow net; Theory of seepage and analysis; Quick-	5
	sand phenomenon and seepage forces	
3.	Compressibility and consolidation: Compressibility of soil;	6
	Terzaghi's theory of consolidation; Secondary consolidation	
4.	Shear strength of soils: Friction; Mohr's circle; Strength theories for	5
	soils; Pore pressure parameters; Shearing characteristics of sand and	
	clay	
5.	Stability of earth slopes: Earth pressures; Stability of retaining walls;	4
	Bearing capacity; settlement analysis	
6.	Foundation– Types of shallow foundation, foundation on	6
	nonuniform soils; Deep foundation; Design and construction of pile	
	foundation	
7.	Engineering geology: Classifications and properties of rocks, folds,	6
	faults, joints; Unconformities and their bearing on engineering	
	structures; Geophysical and geological explorations for various	
	engineering projects	
8.	Rock mechanics: Theories of failure and strength of rock masses;	8
	Geological investigations of dams, reservoirs and tunnels; Design of	
	rock anchors and cables for slopes, dam abutments and foundation	
	Total	42

^{9.} Objective: To impart knowledge on theory and analysis of soil mechanics for design of water resources structures, compaction and consolidation.

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Krynine, M. G. and Judd, W. R., "Principles of Engineering	1957
	Geology and Geotechnics", McGraw Hills.	
2.	Obert, L. and Duvall, W.I., "Rock Mechanics and Design of	1967
	Structure in Rock", John Wiley.	
3.	Punmia, B.C., "Soil Mechanics and Foundation", Standard Book	1981
	House.	
4.	Terzagi, K., "Theoretical Soil Mechanics", John Wiley.	1943
5.	Venkatramaiah, C., "Geotechnical Engineering", New Age	2007
	International	

NAME OF DEPTT./CENTRE:				Department of Water Resources Development and Management								
1. Subject Code:	(Course Title: Hydropower and Appurtenant Works										
2. Contact Hours	s:]	L: 3		Т	: 1			P: 0				
3. Examination	Duratio	on (Hrs.):	T	heory		3	Pra	ctical		0		
4. Relative Weig	ght :	CWS	25	PRS	0	MTE	25	ЕТЕ	50	PRE	0	
5. Credits:	4	6.	Seme	ster: Sp	ring		7. Su	bject Ar	rea: P	EC		

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on various types of hydroelectric power stations and other related appurtenant works.
- 110. Details of Course:

S. No.	Contents	Contact Hours
1.	Surface hydro power stations: Basic functional features and typical	6
	general arrangements; Classification of surface power houses, vertical	
	sub-divisions, type of super structures; Overall layout, preliminary	
	dimensions of various components, main floor levels	
2.	Arrangement at various floors: Details of auxiliary equipment,	6
	arrangement at various floors, joints, collection of data, design and	
	indexing of loads	
3.	Stability analysis of powerhouse: Stability of substructures,	6
	intermediate structures and superstructures	
2.	Underground power stations: Number and size of cavities, their	6
	location and alignment, auxillary equipments and their arrangement,	
	supporting arrangements for roof and sides, design considerations, design	
	of gantary girder column	
3.	Tunnels and shafts: High head pressure tunnels and shafts, design	6
	considerations, design of concrete lining and steel liner, pre- stressed	
	concrete lining, grouting and drainage	
4.	Surge tanks: Characteristics and suitability of various types of surge	4
	tanks like simple, restricted orifice and differential types, criteria for	
	design and stability, hydraulic design	

5.	Penstocks: Water hammer phenomenon, velocity and pressure waves,	6
	estimation of over-pressures by arithmetic integration and by use of	
	charts and curves, effects of over pressure on governing of turbines;	
	Forces acting on penstock pipe lines and preliminary design of steel	
	penstocks, fabrication and testing of penstocks; Design of anchors,	
	piers and saddles	
6.	Switchyard: Equipments in the switchyard and their layout, design of	2
	foundation	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Brown, Gutherie, "Hydroelectric Engineering Practice", Blackie	1958
	and Sons.	
2.	Mosoyni, E., "Eater Power Development", Nem Chand and	2009
	Brothers.	
3.	Nigam, P.S., "Handbook of Hydroelectric Engineering", Nem	1979
	Chand and Brothers.	
4.	Varshney, R. S., "Hydro Power Structures", Nem Chand and	2001
	Brothers.	
5.	Varshney, R. S., "Water Power Systems", Planning and	1990
	Economics", Nem Chand and Brothers.	

NAME OF DEPTT./CENTRE:			Department of Water Resources Development and Management										
1.	Subject Code:	WRN-5	13	C	Course 7	Title:	Earth a	nd Ro	ck Fill]	Dam			
2.	Contact Hours:	L: 3	3		T	: 1			P: 0				
3.	Examination Dur	ration (F	Hrs.):	TI	neory		3	Prac	tical		0		
4.	Relative Weight	: CV	WS	25	PRS	0	MTE	25	ETE	50	PRE	0	
5.	Credits: 4		6. 5	Semes	ster: Sp	ring		7. Suł	oject Ar	ea: P	EC		

8. Pre-requisite: NIL

9. Objective: To impart knowledge on design and analysis of earth and rock fill dams. 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Materials properties of soils: Pore pressure parameters; Hilf Bishop	4
	method; Shear strength of soils; Mohr Coulomb failure criterion;	
	Factors contributing to slope failure	
2.	Design criteria: Types of earth dams; Design considerations- Freeboard	6
	calculations, dam section, upstream slope protection; Design	
	considerations in earthquake regions; Filter design; Causes of damage	
	and failure, typical case studies.	
3.	Seepage control: Control of seepage through earth dam on pervious	8
	soil foundation and on impervious base; Cutoff trench; Sheet pile;	
	Alluvial grouting, Slurry trench, Horizontal upstream blanket, Relief	
4	Stability, analysis, Total, and affective stress, matheds of analysis	0
4	Stability analysis: Total and effective stress methods of analysis; Standard method of glicog Simplified Dishon method: Wedge method:	8
	Standard method of sinces, Simplified Disnop method, wedge method, Stability conditions during construction full reservoir and reservoir	
	drawdown	
5	Analysis of dam: Introduction to finite element method (FEM): FEM	4
5	analysis of dams. Nonlinearity in soils	
6	Rockfill dam: Considerations favouring choice of a rockfill dam:	5
	Principles of design; Selection of materials; Stability analysis by wedge	
	method, Different types of impervious cores and their locations;	
	Different types of face members; Settlement in rock fill dams;	
	Procedure for placement and compaction of rock fill	
7	Instrumentation in earth dams: Measurements of deformations, pore	7
	pressures; Quality control; Foundation preparation and treatment;	
	Quality control of materials and control of moisture, laying and	
	compaction; Tests for quality control; Diversion during construction	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprint
1	Abramson, L.W., Lee, T.S., Sharma, S. and Boyce, G.M., "Slope	1996
	Stability and Stabilization Method", John Wiley.	
2	Creager, W. P., Justin J.D. and Hinds, "Engineering for dams",	1968
	Wiley Eastern.	
3	Hirschfeld, R.C. and Poulos, S.J., "Embankment Dam	1973
	Engineering - Casagrande Volume", John Wiley.	
4	Sherard, J.L., Woodward, R.J., Gizienski, S.F. and Clevenger,	1963
	W.A., "Earth and Earth-Rock Dams", John Wiley.	
5	Singh, B. and Sharma, H.D., "Earth and Rock Fill Dams", Sarita	1976
	Prakashan.	
6	Singh, B. and Varshney, R.S., "Embankment Dam Engineering",	2004
	Nem Chand and Brothers.	
7	Department of Interior, "Design of Small Dams", United States	2006
	Bureau of Reclamation.	

NAME OF DEPTT./CENTRE:			I	Department of Water Resources Development and Management									
1. Subject Code: WRN-514				(Course Title: Masonry and Concrete Dams								
2.	Contact Hours	s: .	L: 3		Т	: 1			P: 0				
3.	3. Examination Duration (Hrs.)		: T	Theory		3	Practical			0			
4.	Relative Weig	,ht :	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0	
5.	Credits:	4	6	. Seme	ster: Sp	ring		7. Sul	bject Ai	rea: P	EC		

8. Pre-requisite: Nil

9. Objective: To impart knowledge on design and analysis of masonry and concrete dams.

S. No.	Contents	Contact Hours
1.	Introduction: Selection of site for different types of dams, selection	4
	of materials, layout of works; Properties of concrete as related to dams	
2.	Gravity Dams: Forces acting on a dam including uplift and wave	
	forces; Design criteria for stability; Determination of dam profile;	8
	Computation of stresses by gravity analysis; Elastic analysis by finite	
	element method and structural modelling techniques; Seismic design	
	and analysis; Determination of internal stresses	
3.	Foundation treatment: Preparation of foundation including	
	consolidation; Curtain grouting and treatment of faults and weak	5
	zones; Foundation cutoffs and drainage arrangements; Layout and	
	location of spillway; Powerhouse and other appurtenances	
4.	Stressed and their management: Stresses around openings; Design	7
	of galleries in dams; Temperature stresses and methods of temperature	
	control; Joints and seals	
5.	Instrumentation and maintenance aspects: Instrumentation and	6
	analysis of data; Deterioration of concrete in dams and remedial	
	measures	
6.	Hollow and buttress dams: Principles of hollow gravity dams;	6
	Stability criteria and determination of internal stresses	
7.	Arch dams: Classification, principles of layout and factors affecting	6
	layout; Theories for arch dam analysis	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Creager, W. P., Justin J.D. and Hinds, "Engineering for Dams",	1968
	Wiley Eastern.	
2.	Golze, A.R., "Handbook of Dam Engineering", Van Nostrand	1977
	Reinhold.	
3	Sharma, H.D., "Concrete Dams", CBIP Publication.	1998
4	Department of Interior, "Design of Gravity Dams", United States	1976
	Bureau of Reclamation.	
5	Department of Interior, "Design of Arch Dams", United States	1977
	Bureau of Reclamation.	
6	Varshney, R.S., "Concrete Dams", Oxford and IBH Publishing.	1977

N.	AME OF DEPT	T./CENTRE:]	Departn	nent	of Wate	r Res	ources	Deve	lopment	t and Management
1.	Subject Code:	WRN-515	(Course 7	Title:	Irrigati	on St	ructure	5		
2.	Contact Hours:	L: 3		Т	: 1			P: 0			
3.	Examination Du	uration (Hrs.):	Т	heory		3	Pra	ctical		0	
4.	Relative Weight	t : CWS	25	PRS	0	MTE	25	ETE	50	PRE	0
5.	Credits: 4	6.	Seme	ster: Sp	ring		7. Su	ibject A	rea: F	РЕС	

8. Pre-requisite: NIL9. Objective: To impart knowledge on the design of various irrigation structures.

S. No.	Contents	Contact
		Hours
1.	Site selection and investigations for diversion works; Hydraulics of flow	8
	over weirs/under sluices; Hydraulic jump, seepage theory, Khosla theory,	
	scour depth estimation, critical exit gradient	
2.	Design flood estimation; Types and design of energy dissipaters;	6
	protection works, transitions	
3.	Components of barrage- waterway, undersluice/weir, glacis, stilling basin	8
	and appurtenance works, cutoff, u/s and d/s protection works; Hydraulic	
	design of barrage; Head regulator; Cross regulator	
4.	Types of cross drainage works; Design aspects of aqueducts, siphon	6
	aqueducts, super-passage, siphon	
5.	Concept of sediment removal, fall velocity, difference between sediment	6
	exclusion and ejection devices, design aspects of sediment excluder and	
	sediment ejector	
6.	Types of loads and their combinations; Structural design of raft	8
	foundation, piers, abutments, and retaining walls	
	Total	42

11. Suggested Books:

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Singh, B., "Fundamentals of Irrigation Engineering", Nem	2005
	Chand and Brothers.	
2.	Varshney, R.S., Gupta, S.C. and Gupta, R.L., "Theory and	2005
	Design of Irrigation Structures", Nem Chand and Brothers.	
3.	Asawa, G.L., "Irrigation and Water Resources Engineering",	2005
	New Age International.	
4.	Arora, K.R., "Irrigation, Water Power and Water Resources	2007
	Engineering", Standard Publishers Distributers.	
5.	Garg, S.K. "Irrigation Engineering and Hydraulic Structures",	2005
	Khanna Publishers.	

NAME OF DE	PTT./C	CENTRE:]	Departr	nent	of Wate	er Res	ources	Devel	opment	and I	Manag	gement
1. Subject Code	e: Wl	RN-516	(Course [Fitle:	Rural a	nd Ui	rban W	ater S	Supply			
2. Contact Hour	rs:	L: 3		ſ	: 1			P: 0					
3. Examination	Durat	ion (Hrs.):	Т	heory	3	6	Pra	ctical	0				
4. Relative Wei	ight	: CWS	25	PRS	0	MTE	25	ETE	50	PRE	0		
5. Credits:	4	6.	Seme	ster: Sp	ring		7. Su	ibject A	rea: P	EC			

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge for planning, design, operation and maintenance of water supply schemes for rural and urban areas.
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Introduction: Planning and preparation of water supply schemes for	6
	rural and urban areas; Issues in water supply for hilly and coastal	
	regions, regional and national perspective; Water pricing	
2.	Water Demand: Population forecasting, assessment of domestic, fire,	4
	industrial and public demands, demand management	
3.	Water Supply Sources: Surface and sub-surface, selection, protection,	8
	contamination protection zone, estimating potential yield and	
	sustainability; Design of wells	
4.	Water Quality: Drinking water quality parameters, comparison of	9
	international and national codes, physical and chemical treatment	
	processes, disinfection and appropriate technologies for water treatment	
5.	Components of Intake Works: Sizing water mains, pumps for water	6
	supply, pumping station, pipe appurtenances, pipe materials, laying of	
	pipes, design of water distribution network and allied works.	
6.	Water Distribution Networks: Flow through pipes, equivalent pipes,	9
	solving pipe network flow problems, use of computer software for	
	network analysis	
	Total	42

S.No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprints
1.	Garg, S. K, "Water Supply Engineering", Khanna Publishers.	2008
2.	Jeppson, R., "Analysis of Flow in Pipe Networks", Ann Arbor	1976
	Science.	
3.	Mays, L.W., "Urban Water Supply Handbook", McGraw Hill.	2002
4.	Ministry of Urban Development, "Manual on Water Supply and	1999
	Treatment", CPHEEO, Government of India.	
5.	Peavy, H.S. and Rowe, D.R. and Tchobanoglous, G.,	1985
	"Environmental Engineering", McGraw Hill.	
6.	Qasim, S. R., Motley, E. M. and Zhu, G., "Water works	2000
	engineering -Planning, design, and operation", PHI.	

NAME OF DEPTT./CENTRE:	Department of Wate	r Resources Development	t and Management
1. Subject Code: WRN-517	Course Title: River I	Engineering	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50 PRE	0
5. Credits: 4 6.	Semester: Spring	7. Subject Area: PEC	
8. Pre-requisite: Nil			

- 9. Objective: The impart knowledge of river mechanics and various river management techniques.
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Sediment Transport Processes: Incipient motion of sediment particles;	8
	Regimes of flow; Resistance to flow and velocity distribution in alluvial	
	streams; transport of bed, suspended and total load	
2.	River Morphology: Plan form variations and river channel pattern;	8
	Meandering and braided stream characteristics; River equilibrium, river	
	dynamics and adjustments to stream power	
3.	River Training Techniques: Principles of stabilisation and rectification of	8
	rivers, river bank stability analysis, spur / groyne, stream bank armouring,	
	guide banks, submerged vanes, porcupine and jack jetty systems, gabions;	
	Bandalling, surface and bottom panels	
4.	Inland Navigation Channel Development: Fairway dimensions and	5
	maintenance, canalization, navigation locks and terminals	
5.	River Models: Mathematical modelling - types, mathematical formulation,	8
	numerical procedures, calibration and validation; Scale modelling - types,	
	principles of similitude and dimensional analysis, model verification,	
	limitations	
6.	Flood Management and Remote Sensing Applications: Flood control	5
	planning, flood plain zoning and other non - structural measures, use of	
	satellite imageries and topo sheets for DEM generation for flood plain zone	
	mapping	
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of
		Publication/
		Reprints
1.	Blazejewski, R., Pilarczyk, K.W, and Przedwojski, B., "River Training	1995
	Techniques: Fundamentals, Techniques and Applications", A. A. Balkema,	
	Rotterdam.	
2.	Cunge, J. A., et. al., "Practical Aspects of Computational River Hydraulics",	1980
	Pitman Advance Pub. Program.	
3.	Garde, R. J. and Rangaraju, K. G., "Mechanics of Sediment Transportation	2006
	and Alluvial Stream Problems", New Age International (P) Ltd. Revised	
	Reprint 3 rd Edition.	
4.	Jansen, P. P., et. al., "Principles of River Engineering"; Pitman Publishing	1979
	Co.	
5.	Julien, Pierre, Y., "River Mechanics", Cambridge University Press.	2002
6.	Peterson, Margaret, S., "River Engineering"; Prentice Hall.	1986
7.	Shen, H. W., "Modeling of Rivers", John Wiley and Sons.	1979

NAME OF DEPTT./CENTRE:	Department of Water	r Resources Development	t and Management
1. Subject Code: WRN-518	Course Title: Finite E	lement Methods	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50 PRE	0
5. Credits: 4 6. S	Semester: Spring	7. Subject Area: PEC	
8. Pre-requisite: Nil			

9. Objective: To impart knowledge of fundamentals and applications of finite element method and its application to engineering problems.

S. No.	Contents	Contact Hours
1.	Introduction: Finite difference method (FDM), finite element method (FEM), advantages of FEM over FDM and matrix algebra.	4
2.	Basics of FEM: Steps, formulation of element equations, shape functions for triangular elements, load and strain displacements, stress strain relations, variational principles	6
3.	Weighted Residual Methods: Collocation, sub-domain, Galerkin's and least square	4
4	Shape Functions: Linear elements, element equations, iso-parametric elements, Hermite polynomial, Jacobian matrix, numerical integration, two dimensional, Lagrangian, triangular and trapezoidal elements	8
5	Solution Techniques: Axisymetric problems - element equations, stiffness matrix, boundary conditions; Direct and Iterative methods, band solver and frontal solution techniques	8
6	Applications of FEM: Heat flow problems in one, two and three dimensions; Beams and trusses; Dams and seepage problems	8
7	Software Applications: Case studies, data preparation, processing and result reporting for field problems	4
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1	Desai, C. S., and Abel, J.E., "Introduction to Finite Element	1972
	Method", Van Nostrand Reinhold Company.	
2	Desai, C.S., and Christian, J.T., "Numerical Methods in	1977
	Geotechnical Engineering", Mc Graw Hill.	
3	Hinton, E. and Owen, D.R. J., "Finite Element Programming",	1977
	Academic Press.	
4	Norrie, D.H.; De Vries, G., "Introduction to Finite Element	1978
	Analysis", Academic Press.	
5	Segerlind, L.J., "Applied Finite Element Analysis", John Wiley	1976
	and Sons.	
6	Tirupathi, R. Chandrupatla and Belegundu, Ashok D.	2002
	"Introduction to Finite Elements in Engineering", Pearson	
	Education.	
7	Zienkiewicz, O.C., "The Finite Element Method", McGraw Hill.	1973

NAME OF DEPTT./CENTRE:		Departn	ient of Wate	er Resources De	velopment	t and Managemen	ıt
1. Subject Code: V	VRN-519	Course T	itle: Water	Resources Syste	m Reliabil	lity	
2. Contact Hours:	L: 3	Т	: 1	P: 0			
3. Examination Dur	ation (Hrs.):	Theory	3	Practical	0		
4. Relative Weight	: CWS	25 PRS	0 MTE	25 ETE 5	0 PRE	0	
5. Credits: 4	6. S	emester: Sp	ring	7. Subject Area	: PEC		

8. Pre-requisite: NIL

9. Objective: To impart knowledge on the risk and reliability estimation of water resources systems.

S. No.	Contents	Contact Hours
1.	Introduction: Concepts of perceived and statistical risk, role of risk	4
	assessment in modern technological, social, and environmental	
	context	
2.	Risk Assessment: Techniques, application of probabilistic and	8
	Markov models, uncertainty in risk assessment, decision-making	
	under uncertainty and risk	
3.	Fuzzy Theory: Introduction, applications in risk analysis	6
4.	Reliability concepts: Bath tub curve, hazard rate, failure density	6
	functions, repairable and non-repairable systems, mean time to failure	
	(MTTF), mean time between failures (MTBF), mean time to repair	
	(MTTR)	
5.	Reliability Estimation: Useful life of components, reliability	4
	estimation under extreme value distributions	
6.	Water Resources Systems Reliability: Series, parallel and non-	8
	series-parallel systems reliability, fault tree analysis (FTA)	
7.	Performance Evaluation: Reliability, resiliency, and vulnerability	6
	assessment; Case studies	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Billinton, R., and Allan, R., "Reliability Evaluation of	1983
	Engineering Systems : Concept and Techniques" Pitman Books	
2.	Henley, E.J., and H. Humamoto., "Reliability Engineering and	1981
	Risk Assessment", Prentice Hall.	
3.	Mays, L W., and Tung. K., "Hydrosystems Engineering and	1992
	Management", McGraw Hill.	
4.	Mishra, K. B., "Reliability Analysis and Prediction - A	1992
	Methodology Oriented Treatment", Elsevier.	
5.	Singh, V. P., Jain, S. K, and Tyagi, A., "Risk and Reliability	2007
	Analysis – A Handbook for Civil Engineers", ASCE, Reston.	
6.	Shooman, M. L., "Probabilistic Reliability: An Engineering	1968
	Approach", McGraw Hill.	
7.	Zimmermann, H J., "Fuzzy Set Theory and its Applications",	1996
	Allied Publisher.	

NAME OF DEPTT./CENTRE: Department of Water Resources Development and Management

1. Subject Code: W	VRN-520	Course Title: Environmental Impact Assessment of Wat Resources Projects			of Water	
2. Contact Hours:	L: 3	Т	: 1	P: 0		
3. Examination Dura	ation (Hrs.):	Theory	3	Practical	0	
4. Relative Weight	: CWS	25 PRS	00 MTE	25 ETE	50 PRE (00
5. Credits: 04	6. 5	Semester: Sp	ring	7. Subject Ar	rea: PEC	

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on environmental aspects of river valley projects and methods for impact assessment and management.
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Introduction: Human concern; Need for environmental impact	6
	assessment (EIA); Requirements and levels of EIA; Potential impacts of	
	water resource development projects	
2.	EIA Procedure: Screening, baseline data, scoping, terms of reference	4
	(TOR)	
3.	Environmental Clearance: Guidelines, acts and legislations, codes and	4
	country practices	
4.	Environmental flow: River as habitat, downstream direct and indirect	4
	uses, criteria and methods of assessment	
5.	Soil and Water Quality Management: Effect of project development	5
	on soil and water quality, water logging, soil salinity, and contamination,	
	remedial measures	
6.	Rehabilitation: Submergence effects, rehabilitation guidelines,	4
	planning, and procedures	
7.	Monitoring: Parameters to be monitored, frequency of monitoring,	4
	reporting procedures	
8.	Remote Sensing and GIS Applications: Monitoring of land use	6
	changes, digital elevation model (DEM), assessment of land degradation,	
	catchment area treatment plan	
9.	Simulation Exercises and Case Studies	5
	Total	42

S.No.	Name of Authors /Book /Publisher	Year of
		Publication /
		Reprints
1.	Govt. of India, "Environmental Impact Assessment of Development	1989
	Projects", Ministry of Environment and Forests.	
2.	Canter, L. W., "Environmental Impact Assessment", McGraw Hill.	1996
3.	Govt. of India, "EIA Notification 2006", Ministry of Environment and	2006
	Forest.	
4.	Bureau of Indian Standards, "Parameters for EIA of Water resources	2004
	Project", IS 5442:2004.	
5.	Burrough, P. A., "Principles of Geographic Information System for Land	1998
	Resources Assessment" Clarendom Press.	
6.	Chandra, A.M. and Ghosh, S.K., "Remote Sensing and Geographic	2007
	Information System". Narosa Publishers	

NAME OF DEPTT./CENTRE:	Department o	Department of Water Resources Development and Management			
1. Subject Code: WRN-521	Course Title:	Groundwater Hydr	ology		
2. Contact Hours: L: 3	T: 1	P: 0			
3. Examination Duration (Hrs.):	Theory	3 Practical	0		
4. Relative Weight : CWS 25	5 PRS 0	MTE 25 ETE	50 PRE 0		
5. Credits:46. Sen8. Pre-requisite:Nil	nester: Spring	7. Subject Ar	ea: PEC		

^{9.} Objective: To impart knowledge on groundwater behavior, characteristics and its hydrology.

S. No.	Contents	Contact Hours
1.	Introduction: Occurrence of groundwater sources; Groundwater	4
	bearing formations; Classification of aquifers; Flow and storage	
	characteristics of aquifer; Hydrologic budget	
2.	Groundwater movement: Darcy's law; Hydraulic conductivity and	6
	its determination; Anisotropy and heterogeneity; Groundwater flow	
	rates and directions, governing equations for groundwater flow;	
	Analytical solutions, general flow equation; Unsteady flow	
3.	Well hydraulics: Steady unidirectional and radial flow; Unsteady	6
	radial flow in confined and unconfined aquifers; Leaky aquifer;	1
	Determination of aquifer parameters; Pumping tests and analysis;	
	Well flow near different boundaries; Multiple well systems;	
	Interference of wells	
4.	Groundwater wells: Types and features of each type of wells; Well	4
	development, yield test	
5.	Groundwater quality: Indian and international standards; Pollution	4
	of groundwater and possible sources; Remedial and preventive	1
	measures	1
6.	Groundwater flow modeling: Need of groundwater flow models;	6
	numerical modeling, 2D and 3D groundwater flow models;	
	MODLFOW and its application	
7.	Conjunctive use planning: Planning of groundwater development;	6
	Conjunctive use models, constraints, application in water resources	
	management	

8.	Groundwater conservation: Regional groundwater budget; Resource	6
	assessment; Estimation of recharge; Artificial recharge; Rainwater harvesting	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Bear J., "Hydraulics of Groundwater" McGraw Hill.	1979
2.	Delleur, J.W., "The Handbook of Groundwater Engineering",	1998
	Springer Verlag	
3.	Rastogi, A.K., "Numerical Groundwater Hydrology", Penram	2007
	International	
4.	Todd, D. K. and Mays L.W., "Groundwater Hydrology", John	2005
	Wiley.	
5.	Walton, W.C. "Groundwater Resources Evaluation" McGraw	1970
	Hill.	

NAME OF DEPTT./CENTRE:	Department	of Water Resources Dev	velopment and Management
1. Subject Code: WRN-522	Course Title:	Climate Change and V	Water Resources
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.)	: Theory	3 Practical	0
4. Relative Weight : CWS	25 PRS 0	MTE 25 ETE 5	0 PRE 0
5. Credits: 4 6	Semester: Spring	7. Subject Area:	: PEC
8. Pre-requisite: Nil			

- 9. Objective: To impart knowledge on the concepts of climate change and impact assessment of climate change on water resources.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to atmospheric science; Earth, its atmospheric cycle and	7
	its relation with climate; Green house gas and climate change; Earth	
	and green house effect; Past climate change; Lessons from history;	
	Present and future climate changes	
2.	Ecological effect on freshwater systems- surface water, ground water	8
	and glaciers; Agriculture; Marine environment; Causes, human	
	dimension- impact of human settlement and infrastructure,	
	environmental quality	
3.	Analysis for climatic change assessment, statistical analysis of long-	8
	term meteorological and hydrological data; Trend analysis	
4.	Available climatic models such as GCM; Hydrologic models such as	8
	SWAT and Mike11; Downscaling of GCM to regional/local scales	
5.	Mitigation- capture of sequester carbon emissions, reducing global	6
	warming, renewable energy technologies, efficient use of energy	
6.	Policy, laws, economics, benefits and costs of mitigating climate	5
	change, international cooperation	
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprints
1.	Dowden, M., "Climate Change and Sustainable Development-	2008
	Law, Policy and Practice", EG-Books.	
2.	Hardy, J.T., "Climate Change-Causes, Effect and Solutions",	2003
	John Wiley.	
3.	Las, D.S., "Climatology", Sharda Pustak Bhawan.	2005
4.	Mirza, M.M.Q. and Ahmed, Q.K., "Climate Change and Water	2005
	Resources in South Asia", A.A. Balkema Publishers, Taylor	
	and Francis Group.	
5.	Rohil, V.R. and Vega, A.J., "Climatology", Jones and Bartlett.	2008
6.	Schubert, R., Hammerschmidt, G. and Scheu, H., "Climate	2008
	Change as a Security Risk", Earthscan.	

NAME OF DEPTT./CENTRE:	Department of Water Resources Development and Manage			
1. Subject Code: WRN-531	Course Title: Hydro	Generating Equip	nent	
2. Contact Hours: L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50	PRE 0	
5. Credits: 4 6. S	Semester: Autumn	7. Subject Area: P	CC	

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on design, construction, acceptance testing and operation of hydro-turbines and generators.

S. No.	Contents	Contact Hours
1.	Characteristics and specification of hydro-generators; constructional details- bearings and bearing location; brakes and jacks for hydro-generators.	8
2.	Cooling and ventilation- insulation and temperature limits; fire protection; electrical and mechanical tests; operating limits of hydro generators.	8
3.	Unit transformer and bus duct- excitation system and voltage regulators; excitation requirement; sources; drives; automatic excitation control equipment; typical schemes.	6
4.	Different types of turbines with their constructional details including reversible pump turbines, tubular, bulb and straflow turbines their characteristics and selection.	10
5.	Cavitation and Turbine setting; testing of water turbines at manufacturer's works and at site, model tests.	6
6.	Mechanical governors, electro hydraulic governors, digital governors, pressurized oil system for hydro-turbines.	4
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprint
1.	Brown,G. J., "Hydroelectric Engineering Practice", CBS	1984
	Publishers.	
2.	Kimbark, E.W., "Power system stability- Synhronous Machines"	1995
	Wiley Interscience, John Wiley and Sons.	
3.	Krivchenko, G.I., "Hydraulic Machines, Turbines and Pumps",	1986
	MIR Publishers.	
3.	Raabe, J., "Hydro Power", VDI-Verlag GmBH.	1985
4.	Walker, J.H., "Large A.C. Machines", Bharat Heavy Electricals	1979
	Ltd.	
5.	Mosoyni, E., "Water Power Development", Nem Chand and	2009
	Brothers.	

NAME OF DEI	PTT./CE	ENTRE:	Depart Manag	tment of W gement	ater Resour	ces Developm	ent and
1. Subject Code	: WR	N-532	Course	Title: Hyd	ropower Sy	stem Planning	
2. Contact Hour	s: I	L: 3		T: 1	I	P: 0	
3. Examination	Duratio	n (Hrs.):	Theory	3	Prac	tical 0	
4. Relative Wei	ght :	CWS	25 PRS	0	25	50	0
5. Credits:	4	6.	Semester: A	utumn	7. Subje	ct Area: PCC	
8. Pre-requisite:	NIL						

9. Objective: To impart knowledge about the planning of hydropower development in a river basin.

S. No.	Contents	Contact Hours
1.	Sources of energy and status of hydropower-global power scenario;	10
	hydropower policies of various countries; principles of hydropower	
	development; components of a hydropower scheme, types of hydro	
	power plants - run-of-river; valley dam; diversion canal plants; high	
	head plants; pumped storage schemes, etc.; power house planning for	
	surface and sub-surface hydropower plants.	
2.	Rainfall-runoff relationships, flow measurement in rivers and streams,	10
	hydrograph analysis, design flood estimation, flow and power duration	
	curves, power potential estimation, prediction of firm and secondary	
	power, load curve, load, capacity, utilization and diversity factors,	
	determination of installed capacity.	
3.	Diversion structures, different types of dams and their suitability, site	6
	selection, intakes, spillways, and energy dissipaters.	
4.	Water conveyance through penstocks-design criteria and economic	6
	diameter of penstock; conduit valves; water hammer.	
5.	Economics and financial analysis of hydropower projects -time value	10
	of money; discount rate; single payment interest factors; uniform	
	series factors; capital recovery factor; effect of inflation; depreciation;	
	return on investment, Benefit cost analysis- Internal rate of return;	
	levllisation; generation cost; energy pricing and tariff principles.	
	Total	42

Sl.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprint
1.	Brown, G.J., "Hydroelectric Engineering Practice", Blackie and	1958
	Sons.	
2.	James, L. D. and Lee, R. R., "Economics of Water Resources	1971
	Planning", Mc Graw Hill.	
3.	Mosoyni, E., "Water Power Development", Nem Chand and	2009
	Brothers.	
4.	Nigam, P.S., "Handbook of Hydroelectric Engineering", Nem	1979
	Chand and Brothers.	
5.	Thuesen, G. J. and Fabrycky, W. J., "Engineering Economy",	2008
	Prentice Hall.	
6.	Varshney, R. S., "Water Power Systems: Planning and	1990
	Economics", Nem Chand and Brothers.	

NAME OF DEPTT./CENTRE:	Department of Wate	r Resources Devel	opment and Management
1. Subject Code: WRN-533	Course Title: Power S	System Protection	Applications
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50	PRE O
5. Credits: 4 6. S	emester: Spring	7. Subject Area: P	CC
8. Pre-requisite: NIL			

9. Objective: To impart knowledge on power system protection applications.

S. No.	Contents	Contact Hours
1.	Principles of power system protection application	2
2.	Current and voltage transformers- characteristics and application	6
3.	Electro-mechanical, static and microprocessor-based relays	6
4.	Electrical protection of generators and generator transformers	6
5.	Protection of transformers for electrical and incipient faults	4
6.	Different types of electrical protection applicable to bus zones	4
7.	Protection of transmission lines by over current, pilot-wire, distance	8
	and with carrier application	
8.	Protection of single phase and three phase motors- induction and	6
	synchronous types; Protection of reactors, capacitor banks and	
	industrial power systems	
	Total	42
11. Suggested Books:

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	GEC Measurements, "Protective Relays - Application Guide",	1987
	General Electric.	
2.	Patra, S.P., Basu, S.K. and Choudhuri, S., "Power System	1983
	Protection", Oxford and IBH Publishing.	
3.	Rao, T.S.M., "Power System Protection- Static Relays",	1981
	McGraw Hill.	
4.	Mason, C.R., "The Art and Science of Protective Relaying",	1984
	Wiley Eastern.	
5.	Blackburn, J.L., Domin, T.J., "Protective Relaying Principles	2007
	and Applications", CRC Press.	
6.	Anderson, P.M., "Power System Protection", McGraw Hill.	1999
7.	Hewitson, L., Brown, M. and Ramesh, B., "Practical Power	2005
	Systems Protection", Newnes.	
8.	Singh, R.P., "Digital Power System Protection", Prentice-Hall.	2007

NAME OF DEPTT./CENTRE:			Department of Water Resources Development and Management									
1. Subject Code	: WR	N-534	C	Course 7	Title:	Substat	ion ar	ıd Tran	smiss	ion Lin	e Design	
2. Contact Hour	s: I	L: 3		Т	: 1			P: 0				
3. Examination	Duratio	n (Hrs.):	T	heory	;	3	Pra	ctical		0		
4. Relative Weig	ght :	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0	
5. Credits:	4	6.	Seme	ster: Sp	ring		7. Su	bject Ar	rea: P	EC		

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on planning and design of EHV lines, substation, their equipment characteristics and specifications.
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Transmission system planning including selection of voltage, AC and	4
	DC transmission systems, number of circuits	
2.	Travelling waves, lightning phenomenon, lightning and switching surges, surge wave shapes over voltages in power systems- types lightning, switching and temporary control of over voltage, statistical characteristics of over voltage; Flashover characteristics of rods gaps and insulators	8
3.	Characteristics of lightning arresters and protective devices, selection of lightning arresters, insulation coordination, location of protective devices, direct stroke protection, protection of transformers, surge protection of generators	6
4.	Electrical design of overhead lines, choice of conductor, voltage regulation, losses, charging KVA requirements; Surge impedance loading; Stability considerations; Corona and radio interference characteristics	6
5.	Survey of transmission lines, plotting of profiles, planning and locating line supports; Inductive coordination between power and communication lines; Series and shunt compensation	6
6.	Design of various HV and EHV substations, switching and busbar schemes, typical layouts, oil and compressed air systems	4
7.	Power transformers- specification, types, rating electrical characteristic,	4
	insulation temperature rise	
8.	Circuit breakers- types, ratings, electrical characteristics	4
	Total	42

11. Suggested Books:

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Begamudre, R.D., "EHV AC Transmission Engineering", New	2006
	Age International.	
2.	Edison Electric Institute, "EHV Transmission Line Reference	1968
	Book", General Electric.	
3.	EPRI., "Transmission Line Reference Book : 345 KV and Above",	1990
	Wiley Eastern.	
4.	Gupta, P.V. and Satnam, P.S., "Substation Design and	1983
	Equipment", Dhanpat Rai.	
5.	Pabla, A.S., "Electric Power Distribution", Tata McGraw-Hill	2004
6.	Bayliss, C.R., and Hardy, B.J., "Transmission and Distribution	2009
	Electrical Engineering", Elsevier India.	
7.	McDonald, J.D., (Ed), "Electric Power Substation Engineering",	2007
	CRC Press.	

NAME OF DEPTT./CENTRE:	Department of Water Resources Development and Management						
1. Subject Code: WRN-535	Course Title: Installation, Maintenance and Testing of Hydro Generating Equipment						
2. Contact Hours: L: 3	T: 1	P: 0					
3. Examination Duration (Hrs.):	Theory 3	Practical 0					
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50 PRE	0				
5. Credits: 4 6. S	Semester: Spring	7. Subject Area: PEC					
8. Pre-requisite: NIL							

- 9. Objective: To impart knowledge on erection and commissioning of hydro turbine, generator and transformers in hydropower projects.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Basic components of hydro turbines, pre-requisite for erection of	10
	hydro turbine, erection of under water parts, concreting of embedded	
	parts, erection of internal parts for Francis, Kaplan, Deriaz and Pelton	
	turbines (vertical type), erection precision	
2.	Erection of vertical large generator	4
3.	Hydraulic model testing of hydro turbines and on-site testing	4
4.	Pre-commissioning and commissioning tests on generator	6
5.	Erection of large power transformers, commissioning tests and	4
	preventive maintenance tests of solid and liquid insulation,	
	reconditioning and reclaiming methods of insulating oil	
6.	Preventive maintenance testing of generator insulation	4
7.	Routine and preventive maintenance and capital maintenance of hydro	4
	turbines and generators	
8.	Testing of protective relays, over current, impedance and directional	4
	relays	
9.	Preventive maintenance and its scheduling, maintenance of records,	2
	record keeping and analysis	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Carr, L. H. A., "The Testing of Electrical Machines", The Book	1963
	Centre.	
2.	Walker, J. H., "Large AC Machines – Design, Manufacture, and	1979
	Operation", BHEL.	
3.	Kerszenbaum, I., "Inspection of Large Synchronous Machines",	1996
	IEEE Press.	
4.	Gill, P., "Electrical Power Equipment Maintenance and Testing",	2009
	CRC Press.	
5.	Clemen, D.M., "Hydro Plant Electrical Systems", Penn Well.	1999
6.	Agarwal, K.C., "Electrical Power Engineering Reference and	2007
	Applications Handbook", Knowledge Books.	

NAME OF DEPTT.	CENTRE:	Department of Water Resources Development and Management						
1. Subject Code: W	/RN-536	Course 7	itle: Mainte	nance Manageme	ent in Power Plants			
2. Contact Hours:	L: 3	Т	: 1	P: 0				
3. Examination Dura	ation (Hrs.):	Theory	3	Practical	0			
4. Relative Weight	: CWS	25 PRS	0 MTE	25 ETE 50	PRE O			
5. Credits: 4	6. 8	Semester: Sp	ring	7. Subject Area:	PEC			
8. Pre-requisite: NI	L							

- 9. Objective: To impart knowledge on policies and schedules of maintenance and strategies for power plant equipments.
- 10. Details of Course:

S. No.	Contents	Contact					
		Hours					
1.	Importance of maintenance, objectives, functions, maintenance management strategies for hydro power stations and their organization	4					
2.	Maintenance policies and planning- maintenance strategies and their advantages and disadvantages, planned maintenance procedure, advantage of planned maintenance, scientific maintenance, safety in maintenance	8					
3.	Maintenance activities- optimal overhaul, repair or replacement policies for equipments subjected to breakdown, budgeting and control, production maintenance integration						
4.	Replacement decisions- economic models, replacement policy, economics of preventive maintenance	8					
5.	Maintainability and availability- economics of maintainability and reliability, maintainability increment, equipment availability						
6.	Management information systems for maintenance	6					
	Total	42					

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Clifton, R.H., "Principle of Planned Maintenance", McGraw	1983
	Hill.	
2.	Cunningham, C.E., "Applied Maintainability Engineering", John	1972
	Wiley.	
3.	Enthory, K., "Maintenance Planning and Control", EWP.	1984
4.	Heintzelman, "The Complete Handbook of Maintenance	1976
	Management", Prentice Hall.	
5.	Morse, P.M., "Queues, Inventories and Maintenance", Wiley.	1958

NAME OF DEPTT./CENTRE:]	Department of Water Resources Development and Management								
1.	Subject Code:	WR	N-537	(Course	Title:	Power	Syster	n Manage	ement		
2.	Contact Hours	s:]	L: 3]	ſ: 1			P: 0			
3.	Examination I	Duratio	on (Hrs.):	Т	heory		3	Рі	ractical	0		
4.	Relative Weig	sht :	CWS	25	PRS	0	MTE	25	ETE 5	0 PRE	0	
5.	Credits:	4	6.	Seme	ester: Sp	oring		7. Su	bject Area	a: PEC		

8. Pre-requisite: NIL

9. Objective: To impart knowledge on the organization and management of power utilities.

S.	Contents	Contact
No.		Hours
1.	Management and its goals- management processes, managerial skills and	8
	performance, policy and objectives of a power utility; electricity industry and	
	power sector changes	
2.	Financial accounting of utility- balance sheet, income statement,	4
	accounting for depreciation, interest charges during construction, financial performance analysis	
3.	Investment proposal- interest and compounding, measure of price- public and private perspective, internal rate of return and pay-back period	4
4.	Cost of generation, levellisation of cost of generation; Tariff for electricity-	6
	objectives, traditional approach, long-run marginal costs, general principles of tariff design	
5.	Dynamic, spot and real time pricing strategy, bidding strategies	4
6.	Concepts and methods of demand side management (DSM)- load control,	4
	energy efficiency, load management, DSM planning, design, marketing, customer incentives	
7.	Fundamentals of deregulation- privatization and deregulation, necessity	4
	for restructuring the power industry, necessity of unbundling of generation, transmission and distribution	
8.	Components of restructured systems, independent system operators,	4
	functions and responsibilities, trading arrangements (pool, bilateral and multilateral), open access transmission system	
9.	Different models of deregulation- Indian model, UK model, California	4
	model, Australian and New Zealand models, Japan model, Thailand model	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Bartol, K.M. and Martin, D. C., "Management" McGraw Hill.	1994
2.	Gellings, C.W. and Chamberlain, J.H., "Demand side	1988
	Management : Concepts and Methods," Fairmont Press.	
3.	Lai, L.L., "Power System Restructuring and Deregulation," John	2001
	Wiley.	
4.	Levy, H. and Sarnat, M., "Capital Investment and Financial	1994
	Decissions," Prentice Hall.	
5.	Shahidehpur, M. and Alomoush, M., "Restructured Electrical	2001
	Power Systems, Operation, Trading and Volatility," Marcel	
	Dekker.	
6.	Stickney, C.P. and Weil, R.L., "Financial Accounting", Dryden	1994
	Press.	
7.	Stoft, S., "Power System Economics: Designing Market for	2002
	Electricity," IEEE Press, Wiley –Interscience.	

NAME OF DEPTT./CENTRE:			D	Department of Water Resources Development and Management									
1. Subject Co	ode: W	/RN-538	Co	ourse 7	Title:	Electri	cal De	sign of l	Hydr	o Power	• Statior	t	
2. Contact Ho	ours:	L: 3		Т	: 1			P: 0					
3. Examinatio	on Dura	ation (Hrs.):	Th	eory	·	3	Pra	ctical		0			
4. Relative W	/eight	: CWS	25	PRS	0	MTE	25	ETE	50	PRE	0		
5. Credits:	4	6.	Semest	er: Sp	ring		7. Su	ıbject Aı	rea: I	PEC			

- 8. Pre-requisite: WH-511
- 9. Objective: To impart knowledge on the design criteria and principles of electrical system design of hydroelectric stations.

S. No.	Contents	Contact Hours
1.	Selection of turbine and generating equipment for conventional, small	4
	hydro and pumped storage stations	
2.	Types of pumping schemes- sources of power for pumping, starting of	4
	reversible units, pumped storage plant operation in the system,	
	economics, choice of site, choice of plant	
3.	Design and dimensional parameters of the turbine and generators;	6
	Cavitation and turbine setting	
4.	Planning and layout of electrical equipment in a conventional, small	8
	hydro and pumped storage stations- case studies; Turbine governing,	
	speed and pressure regulation, relief valves, frequency control	
5.	Auxiliary power supply system design and equipment, power and	4
	control cables and their ratings	
6.	Auxiliary system design and equipment for DC system and batteries,	8
	lighting system, grounding system, control and annunciation system	
	and internal communication system	
7.	Auxiliary system design involving air conditioning and ventilation	8
	system, lubricating oil system, fire protection system, power house	
	crane and drainage and dewatering systems	
	Total	42

11. Suggested Books:

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Brown, J. G., "Hydro-electric Engineering Practice, Vols. I - III",	1984
	CBS Publishers.	
2.	Bureau of Indian Standards, Indian Standards Specifications and	Latest edition
	Guidelines (Relevant) on the equipment and systems.	
3.	Prasad, M., Arora, J.K., Mathur, G.N. and Kanjia, V.K.,"Manual	2007
	on Earthing of AC power Systems," Central Board of Irrigation	
	and Power.	
4.	ASME Hydro Power Technical Committee, "The Guide to	1996
	Hydropower Mechanical Design", Penn Well.	
5.	DiLaura, D., Houser, Mistrick, R. and Steffy, G., (Ede.), "The	2011
	IES Lighting Handbook", IES.	
6.	Agarwal, K.C., "Electrical Power Engineering Reference and	2007
	Applications Handbook", Knowledge Books.	
7.	Clemen, D.M., "Hydro Plant Electrical Systems", HCI	1999
	Publications.	

NAME OF DEPTT./CENTRE:			:]	Department of Water Resources Development and Management								
1. Subject Code:	WR	N-539	(Course	Title:	Power S	Systen	n Operatio	on and C	ontrol		
2. Contact Hours	s:]	L: 3		7	Г: 1			P: 0				
3. Examination Duration (Hrs.):): T	Theory		3		Practical					
4. Relative Weig	ht :	CWS	25	PRS	0	MTE	25	ETE 50) PRE	0		
5. Credits:	4	(5. Seme	ester: Sp	oring		7. Su	bject Area	: PEC			

8. Pre-requisite: NIL9. Objective: To impart knowledge on judicious power system operation and control.

S. No.	Contents	Contact Hours
1.	Modelling of generator, load, prime-mover, governor and excitation	6
	system	
2.	Modelling of governor and excitation system	4
3.	Probabilistic methods for generation planning	4
4.	Unit commitment- spinning reserve, thermal unit constraint, hydro	4
	constraints and solution methods	
5.	Long-term and short-term hydro-generation scheduling	4
6.	Hydro-thermal scheduling- problem formulation and solution	4
7.	Interchange evaluation- economy, capacity, diversity emergency	4
	power, inadvertent power exchange, energy banking	
8.	Power pools- energy broker system, centralized economic dispatch of	4
	a power pool, allocating pool savings	
9.	Power system security evaluation, factors affecting power system	4
	security, contingency analysis	
10.	Power system state estimation- maximum likelihood weighted least	4
	squares estimation, detection and identification of bad data,	
	application of power system state measurement	
	Total	42

11. Suggested Books:

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Cohn, N., "Control of Generation and Power flow on	1966
	Interconnected Systems", Wiley.	
2.	El-Hawary, M.E. and Christensen, G.S., "Optimal Economic	1979
	Operation of Electric Power Systems", Academic.	
3.	Kirchmeyer, L.K., "Economic Operation of Power Systems",	1958
	Wiley.	
4.	Kothari, D.P, "Power System Engineering", Tata-McGraw Hill.	2008
5.	Sterling, M.J.H., "Power System Control", Peregrinus.	1978
6.	Wood, A.J., Woolenberg, Bruce, F., "Power Generation	2006
	Operation and Control", John Wiley.	

NAME OF DEPTT./CENTRE:]	Department of Water Resources Development and Management										
1.	Subject Code:	WR	N-540	(Course	Fitle:	Contro	l and	Instru	nenta	ation of	Hydro	Power Plai	nt
2.	Contact Hours	: I	L: 3		7	F: 1			P: 0)				
3.	Examination D	Duratio	n (Hrs.):	Т	heory	•	3	Practical		0				
4.	Relative Weig	ht :	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0		
5.	Credits:	4	6.	Seme	ster: Sp	ring		7. Si	ubject A	area:]	PEC			

8. Pre-requisite: NIL

9. Objective: To imparting knowledge on control and instrumentation of hydro power plants.

10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Essentials of measurement, implementation and scope of instrumentation;	6
	Performance characteristics, accuracy, response time, reliability and	
	availability, types of equipment	
2.	Measurement techniques and instruments for temperature, pressure, level,	10
	flow, speed, vibration, electric power and power factor measurement	
3.	Strip-chart and X-Y recorders of galvanometric and servo types- magnetic	4
	recorder; FM recording technique; Indicating and display devices	
4.	Control room instrumentation- design factors and validation, operator	4
	interface and ergonomics, computer based displays	
5.	DC, AC pulse and digital telemetry, signal transmission media	8
6.	Automation schemes in hydro-electric power plants for start and stop operation	4
7.	Elements and functions of SCADA system, automatic controllers closed loop	6
	control; On-off, proportional, PI and PID controllers, pneumatic and	
	electronic controllers, automatic controllers in hydro-electric plant	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Jervis, M.W. (Ed.),"Power Station Instrumentation," Butterworth	1993
	Hienemann.	
2.	Johnson, C.D., "Process Control Instrumentation Technology,"	1977
	John Wiley.	

3.	Rangan, C.S., Sarma, G.R. and Mani, V.S.N., "Instrumentation	1983							
	Devices and System", Tata Mc-Graw Hill.								
4.	Cegrell,T., "Power System Control Technology", Prentice Hall.	1986							
5.	Littler, D.J., Davies, E.J., Johnson, H.E., Kirkhy, F., 2008								
	Myerscough, P.B. and Wright, W., "Modern Power Station								
	Practice (Vol. F)", ASM International.								
6.	Bolton, W., "Instrumentation and Control Systems", Newnes	2004							
7.	Northrop, R.B., "Introduction to Instrumentation and	1997							
	Measurements", CRC Press.								

N	AME OF DEP	TT./CI	ENTRE]	Departı	nent	of Wate	er Res	sources	Deve	lopmen	t and N	lanage	ement
1.	Subject Code:	WR	N-541	(Course	Fitle:	Power S	Syste	m Anal	ysis				
2.	Contact Hours	:]	L: 3		7	ſ: 1			P: 0)				
3.	Examination I	Duratio	on (Hrs.)): T	heory	•	3	Pra	octical		0			
4.	Relative Weig	ht :	CWS	25	PRS	0	MTE	25	ЕТЕ	50	PRE	0		
5.	Credits:	4	6	. Seme	ster: Sp	oring		7. Si	ubject A	Area:	PEC			

8. Pre-requisite: NIL

9. Objective: To impart knowledge on power systems analysis.

S. No.	Contents	Contact
		Hours
1.	Complex power in balanced transmission lines, per unit system, constant	4
	impedance representation of the loads, three winding transformers,	
	autotransformers, delta-wye and wye - delta transformations	
2.	Disturbance of normal operating conditions, fault types and their	4
	analysis, symmetrical components, sequence networks balanced three	
	phase faults at no load and full load, analysis of unbalanced faults,	
	application of current limiting reactors	
3.	Load flow analysis, Gauss iterative method, Gauss-Seidel iterative	10
	method and its applications; Y _{bus} , application of acceleration factors,	
	application of Gauss-Seidel method Z _{bus} ; Newton - Raphson method and	
	its applications in rectangular coordinates and polar coordinates;	
	Decoupled load flow method, fast decoupled load flow method, DC load	
	flow method	
4.	Linear models of the synchronous machine, steady-state equations and	10
	phasor diagrams, initial conditions for a multi-machine system, analog	
	and digital simulation of synchronous machine	
5.	Excitation systems- control configuration, response, state-space	4
	description, computer representation, typical system constants, effect of	
	excitation on generator performance	
6.	Speed governing, modeling of governing system for hydro turbines	4
7.	Modeling of hydraulic turbine prime movers, conduits, surge tanks and	6
	penstocks, hydraulic system equations, hydraulic system transfer	
	function, block diagram for a hydro system	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Anderson, P.M. and Fouad, A.A., "Power System Control and	2003
	Stability", Wiley Interscience.	
2.	Gonen, T., "Modern Power System Analysis", Wiley.	1998
3.	Nagrath, I.J. and Kothari, D.P., "Power System Engineering", Tata	1994
	McGraw-Hill.	
4.	Nagrath, I.J. and Kothari, D.P., "Modern Power System Analysis",	1994
	Tata McGraw-Hill.	
5.	Murty, P.S.R., "Power System Operation and Control", Tata	1984
	McGraw-Hill.	
6.	Kundur, P., "Power System Stability and Control", McGraw Hill.	1994
7.	Das, J.C., "Power System Analysis", Marcel Dekker.	2002

NAME OF DEPTT./CENTRE:]	Department of Water Resources Development and Management									
1.	. Subject Code:	WR	N-542	(Course	Fitle:	Power	Syste	m Relia	ability	,		
2.	. Contact Hours	s:]	L: 3		7	ſ : 1			P: ()			
3.	. Examination I	Duratic	on (Hrs.)	: T	heory		3	Pra	actical		0		
4.	. Relative Weig	sht :	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0	
5.	. Credits:	4	6	. Seme	ster: Sp	oring		7. S	ubject A	Area: I	PEC		

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on reliability techniques used for design and planning of power systems.

S.	Contents	Contact
No.		Hours
1.	Basic probability theory, binomial distribution, Poisson distribution, normal	4
	distribution, adequacy and security evaluation	
2.	Basic reliability concepts- general reliability function, exponential distribution,	4
	mean time to failure, series and parallel systems, Markov and continuous Markov	
	processes, recursive techniques; Other Markov applications- simple series and	
	parallel system models	
3.	Component reliability- non-repairable components, hazard models, components	4
	with preventive maintenance, repairable components, ideal repair, ideal repair and	
	preventive maintenance, repairable components, normal repair and preventive	
	maintenance	
3.	Static generating capacity reliability evaluation-capacity outage probability tables	6
	the loss of load probability method load forecast uncertainty the loss of energy	-
	probability method frequency and duration approach	
4	Spinning generating capacity reliability evaluation-spinning capacity evaluation	4
••	load forecast uncertainty derated canacity levels	•
5	Transmission system reliability evaluation-average interruption rate method	Δ
5.	frequency and duration method stormy and normal weather effects. Markov	-
	nequency and duration method, stormy and normal weather effects, Markov	
(Composite system reliability evaluation convice evaluation conditional	1
0.	Composite system reliability evaluation- service quality criterion, conditional	4
	probability approach, simple system application, two-plant single load systems,	
	two-plant two load systems, networked system approach	
7.	Interconnected system generating capacity reliability evaluation- probability array	4
	for two systems, loss of load approach, reliability evaluation in more than two	
	systems, interconnection benefits	

8.	Direct current transmission system reliability evaluation- system failure modes,	4
	loss of load approach, frequency and duration approach, Spare valve assessment,	
	multiple bridge equivalents	
9.	Assessment of reliability worth- interruption cost for commercial users, industrial	4
	users, residential users and interruption energy assessment rate	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprint
		S
1.	Billinton, R. and Allan, R.N., "Reliability Assessment of Large	1988
	Electric Power System", Kluwer Academic.	
2.	Billinton, R., Ringlee, R.J. and Wood, A.J., "Power System	1978
	Reliability Calculations", The MIT Press.	
3.	Endrenyi, J., "Reliability Modeling in Electric Power Systems", John	1979
	Wiley.	
4.	Elmakais, D., "New Computational Methods in Power System	2008
	Reliability", Springer – Verlag.	
5.	Billinton, R. and Allon, R.N., "Reliability Evaluation of Power	2006
	Systems", Springer.	
6.	Pansini, A., "Transmission Line Reliability and Security", Marcel	2004
	Dekker.	
7.	Brown, R., "Electric Power Distribution Reliability", Marcel Dekker.	2002
8.	Chawdhury, A.A. and Koval, D.O., "Power Distribution System	2009
	Reliability – Practical Methods and Applications", John Wiley.	

NAME OF DEPTT./CENTRE:	Department of Wate	r Resources Deve	lopment and Management
1. Subject Code: WRN-543	Course Title: Insulati	ng Systems	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50	PRE 0
5. Credits: 4 6. S	emester: Spring	7. Subject Area: I	PEC

8. Pre-requisite: NIL

9. Objective: To impart knowledge on insulating systems and their characteristics.

S. No.	Contents				
		Hours			
1.	Electrical conduction of dielectrics, volume resistance, electrical conduction	6			
	in metals, semi-conductors and dielectric, band theory of solids, ionic and				
	molionic electrical conduction of dielectrics, electrical condition of gases,				
	dependence of resistivity of dielectric on various factors, surface conduction				
	of dielectrics				
2.	Polarization of dielectrics, relationship between capacitance and resistance	6			
	of an insulator, polar and non-polar dielectric, polarization, dependence of				
	permittivity on various factors, electric fields in non-homogeneous				
	dielectrics, mechanical forces in dielectric				
3.	Dielectric losses, basic definitions and equations, dependence of tan delta	4			
	on various factors, dielectric losses under non-sinusoidal voltage				
4.	Breakdown of dielectrics, breakdown of gaseous, liquid, solid dielectrics	4			
5.	Non-linear dielectrics, ferroelectrics, capacitors with a barrier layer,	4			
	piezoelectrics; Properties of dielectrics, wetting thermal and radiation				
	properties				
6.	Insulation of power transformers, construction of the insulation of power	4			
	transformers, transient processes in transformer windings, internal				
	protection of transformers, testing of transformer insulation				
7.	Insulation of high voltage rotating machines and its construction, puncture	4			
	voltages of the insulation of rotating machines, methods of elimination of				
	corona in the insulation of rotating machines, transient phenomena in				
	windings of electrical machines, testing of the insulating systems				

8.	Insulation of high voltage power cables, types and construction, oil fuel cables, testing of cable insulations, insulation of power condensers, paper impregnated condenser insulation	3
9.	Preventive testing of insulation, measurement of tan delta and capacitance, partial discharges and methods of its detection, preventive testing of bushings, suspension and post insulators, preventive testing of transformer insulation, preventive testing of insulation rotating machines, preventive testing of cables with viscous impregnation	7
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Razevig, D.V. and Chourasia, M.P., "High Voltage	1978
	Engineering", Khanna Publishers.	
2.	Tareev, B., "Physics of Dielectric Materials", English	1979
	Translation, Mir Publishers.	
3.	Stone, G.C., Boulter, E.A., Culbert, I. and Dhirani, H.,	2004
	"Electrical Insulation for Rotating Machines", Wiley	
	Interscience.	
4.	Malik, N.H., Al-arainy, A.A. and Qureshi, M.I., "Electrical	1997
	Insulation in Power Systems", Taylor & Francis.	
5.	Arora, R. and Mosch, W., "High Voltage and Electrical	2011
	Insulation Engineering", Wiley.	
6.	James, R. and Su, Q., "Condition Assessment of High Voltage	2007
	Insulation in Power Equipment", The Institution of Engineering	
	& Technology.	

NAME OF DEPTT./CENTRE:	Department of Water Resources Development and Management					
1. Subject Code: WRN-544	Course Title: Plannin	ng and Design of S	Small Hydro Power Scheme			
2. Contact Hours: L: 3	T: 1	P: 0				
3. Examination Duration (Hrs.):	Theory 3	Practical	0			
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50	PRE 0			
5. Credits: 4 6. S	Semester: Spring	7. Subject Area:	PEC			
8. Pre-requisite: NIL						

9. Objective: To impart knowledge on planning and design of small hydro power schemes.

S. No.	Contents	Contact
		Hours
1.	Small hydro definition and country status, government policy for	4
	renewable energy development including small hydro, basic components	
	of a small hydro scheme	
2.	Hydrology, regional flow duration models, rainfall-runoff modeling for	4
	small catchments, flow duration, considerations for environmental flow	
3.	Planning and design of diversion, intake, desilting and water conductor	8
	system	
3.	Types of turbines for small hydro, their characteristics, construction and	6
	selection of turbine	
4.	Synchronous and induction generators- characteristic, specification and	4
	application	
5.	Power evacuation system, design, control systems	4
6.	Planning and design of auxiliary systems- cooling water, drainage and	3
	dewatering, ventilation and lighting	
7.	Protection of synchronous and induction generators, protection of	3
	transformer and transformer feeder	
8.	Economic and financial analysis of small hydro projects	3
9.	Case Studies- low, medium and high head small hydro projects	3
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Masonyi, E., "Water Power Development, Vol.I, and Vol.II, Part	2009
	A and B", Nem Chand and Brothers.	
2.	Nigam, P.S., "Hand Book of Hydro Electric Engineering", Nem	1985
	Chand and Brothers.	
3.	USBR, "Design of Small Dams," SBS.	2006
4.	Fritz, J.J., "Small and Mini Hydropower Systems", McGraw Hill.	1984
5.	Bureau of Indian Standards, Indian Standards Specifications and	Latest Edition
	Guidelines (Relevant) on the Equipment and Systems.	
6.	Singh, A.N., Parasuraman, M.P., Tyagi, S.P., Ghose, D.P. and	2001
	Ajwani, M.G., "Manual on Planning and Design of Small	
	Hydroelectric Schemes", CBIP.	

NAME OF DEPTT./CENTRE:	Department of Water Resources Development and Management				
1. Subject Code: WRN-545	Course Title:	Power Elect	ronics Contr	olled Hy	dro-Electric Systems
2. Contact Hours: L: 3	T: 1		P: 0		
3. Examination Duration (Hrs.):	Theory	3 Pr	actical	0	
4. Relative Weight : CWS	25 PRS 0	MTE 25	ETE 50	PRE	0
5. Credits: 4 6. Se	emester: Spring	7. S	ubject Area:	PEC	

8. Pre-requisite: NIL

9. Objective: The course aims to provide the role of power electronics in variable speed hydroelectric systems.

S.	Contents	Contact
No.		Hours
1.	Introduction, Interdisciplinary nature of power electronics, interconnection of renewable energy sources and energy storage, Power semiconductor devices: Diode, Thyristor, Triac, GTO, BJT, Power MOSFET, IGBT, SIT, IGCT, commutation, line commutated diode and thyristor rectifiers: single phase and three phase, practical limitations, application of line commutated rectifiers	10
2.	Gate commutated inverters (DC to AC converter), single phase square wave inverter, single phase PWM inverter, three phase inverters, cycloconverters, AC voltage regulators.	5
3.	Static excitation systems, Variable speed operation of electric generators (synchronous and asynchronous): Equivalent circuit, operation at the power grid, autonomous operation, electrical losses and efficiency, modeling of synchronous and squirrel cage and doubly-fed induction machines in d - q frame, static power converters for induction generators, vector control of machine-side and source-side converters.	11
4.	Voltage, active power and reactive power control in variable speed hydro generators, parallel operation of induction generators, static capacitor exciter stand-alone induction generator for pumping applications, power control strategies for pumped storage system: load following and frequency droop control, power factor and displacement factor.	8
5.	Electromagnetic compatibility: analysis of harmonic distortion, acceptable levels of distortion in main supply system, voltage and current in the machine side converters, methods of reducing harmonic voltages, protection of ac converters and generators, installation and commissioning of converters	8
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Ned Mohan, Undeland T.M., Robbins W.P., "Power Electronics-	2003
	Converters, John Wiley Publications, Third Edition.	
2.	Boldea I., "Variable Speed Generators," Taylor and Francis, CRC Press.	2006
3.	Boldea I., "Synchronous Generators," Taylor and Francis, CRC Press.	2006
4.	Barnes M., "Practical Variable Speed Drives and Power electronics,"	2003
	Elsevier Publications.	
5.	Keyhani A., Marwali M.N., Dai M., "Integration of Green and	2010
	Renewable Energy in Electric Power System," John Wiley Publications.	

NAME OF DEPTT./CENTRE:		Department of Water Resources Development and Management					
1. Subject Code: WRN-546		Course Title: Modelling and Simulation of Hydro-Electric Ener Systems					vdro-Electric Energy
2. Contact Hours:	L: 1	Т	: 1	P: 4			
3. Examination Dur	ration (Hrs.):	Theory	2	Practical		2	
4. Relative Weight	: CWS	20 PRS	20 MTE	0 ETE	40	PRE	20
5. Credits: 4	6. 5	Semester: Bo	oth	7. Subject A	rea: P	PEC	

8. Pre-requisite: NIL

9. Objective: To impart knowledge on modeling and simulation of hydro-electric energy systems.

10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Electromagnetic energy conversion modelling and analysis: Energy relationships -	8
	Energy in coupling fields - Interpretation of energy conversion - Steady state and	
	dynamic performance of an electromechanical system	
2.	Modeling of converters: Modeling of back to back converters based on Two-Level	11
	VSC Topology used for synchronous and asynchronous generators in hydroelectric	
	energy system, Pulse Generation of the Controlled Switches	
3.	Synchronous generator: Modeling of synchronous machine, excitation system,	11
	Simulation of developed model to study real and reactive power delivery, Abnormal	
	operating conditions of synchronous generators	
4.	Squirrel cage induction generator: Modeling of Squirrel cage induction generator,	10
	Modeling of excitation system, Simulation of developed model to study real and	
	reactive power under grid disturbances: voltage unbalance, voltage sag/swell	
5.	Doubly-Fed Induction Generator: Modeling of doubly fed induction generator -	12
	steady state modelling - dynamic modelling, Modeling of excitation system, Real	
	and reactive power control of rotor circuit power converters, Doubly-Fed Induction	
	Generator under grid disturbances	
	Total	52

List of Experiments:

- 1. Modelling and simulation of three phase back to back voltage source converters
- 2. Modelling and simulation of synchronous and asynchronous electric machines
- 3. Modelling and simulation of DC excitation systems used for synchronous generators
- 4. Modelling of closed loop control of electric generators: real and reactive power control
- 5. Modelling of hydraulic turbines
- 6. Simulation of synchronous and asynchronous generators under grid disturbances: voltage unbalance, voltage sag/swell, torque-frequency analysis
- 7. Dynamic analysis of Doubly-Fed Induction Generator

Sl. No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprints
1.	Boldea I., "Variable Speed Generators," Taylor and Francis, CRC Press.	2006
2		2007
Ζ.	Boldea I., "Synchronous Generators," Taylor and Francis, CRC Press.	2006
3.	Barnes M., "Practical Variable Speed Drives and Power electronics,"	2003
	Elsevier Publications.	
4.	Abad G., López J., Rodríguez M., Marroyo L., Iwanski G., "Doubly fed	2010
	induction machine- modeling and control for wind energy generation"	
	John Wiley & Sons Publications	
5.	Ong C-M., "Dynamic Simulations of Electric Machinery: Using	1997
	MATLAB/SIMULINK" Prentice Hall Publisher,	

NAME OF DEPTT./CENTRE: Department of Water Resources Development and Management 1. Subject Code: WRN-547 Course Title: Synchronous and Asynchronous generators Laboratory 2. Contact Hours: L: 1 T: 0 P: 6 0 3. Examination Duration (Hrs.): Theory Practical 3 4. Relative Weight : CWS 0 PRS 50 **MTE** 0 ETE PRE 0 50 5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: NIL

9. Objective: To impart practical knowledge different electric generators and their control systems used in Hydropower plants.

SI.No	Contents/Experiments	Contact/Lab.
		Hours
1	Synchronous Generators -Stand-alone operation: Efficiency determination	10
	under part load operation, Voltage Regulation, Voltage and frequency control,	
	Electronic load controller	
	Grid connected operation: Synchronization, Real and reactive power control,	
	Analysis of harmonic distortion	
2	Squirrel cage Induction generator: Stand-alone operation: Excitation	12
	capacitance calculation, No-load saturation current and voltage buildup, Load-	
	voltage characteristics with different p.f loads, Effects of load voltage by	
	inserting capacitor in serious with load, Loss of residual magnetism, Generator	
	under short circuit condition, Performance comparison of induction machine	
	working as motor & Generator: stator current, Magnetizing current, Power	
	factor, Efficiency, Core losses, Air gap voltage.	
	Grid connected operation: Real and Reactive power control, Parallel	
	operation of induction generator	
3	Doubly fed induction machine (DFIM): Power and energy measurement:	11
	Operation at stator short circuit, operation at rotor short circuit, Startup	
	transient during motoring mode, Active and reactive power control at	
	motoring and generation modes, Equivalent circuit parameters	
4	Adjustable speed operation of hydro generators: synchronous generator,	11
	squirrel cage generator and DFIM, Active and reactive power control at	
	variable speed, Voltage and frequency control using PWM voltage fed	
	converter and dSPACE controller	
	Measurements of harmonic distortions in machine side and grid side	10
5	converters during variable speed operation.	
	Total	54

Sl. No.	Name of Authors /Book /Publisher	Year of Publication/Reprints
1.	Bose B.K., "Modern Power Electronics and AC Drives" Prentice Hall PTR	2002
2.	Boldea I., "Variable Speed Generators," Taylor and Francis, CRC Press.	2006
3.	Boldea I., "Synchronous Generators," Taylor and Francis, CRC Press.	2006
4.	Barnes M., "Practical Variable Speed Drives and Power electronics," Elsevier Publications.	2003
5.	R. Krishnan "Electric Motor Drives: Modeling, Analysis, and Control" Prentice Hall.	2001

NAME OF DEPTT./CENTRE: Department of Water Resources Development and Management							
1. Subject Code: WRN-548 Course Title: Power Electronics Laboratory							
2. Contact Hours:	L: 1		T: 0		P:	6	
3. Examination Dur	ation (Hrs.):	Theory	0	Practical	3		
4. Relative Weight	: CWS	0 PRS	50 MTE	0 ETE	0	PRE	50
5. Credits: 4	6. Semester	:Both 7.5	Subject Area	: PEC			
8. Pre-requisite: NIL							
9. Objective: To impart practical knowledge of different switches and their control signal							

Sl.No	Contents/Experiments	Contact
		Teaching
		(T) and
		Practical (P)
		Hours
1	i) Characteristics of Silicon Controlled Rectifier (SCR)	T-12, P-60
	ii) Characteristics of Diode AC Switch (DIAC)	
	iii) Characteristics of Triode AC Switch (TRIAC)	
2	i)Characteristics of Power Metal Oxide Semiconductor Field Effect	
	Transistor (Power MOSFET)	
	ii)Characteristics of Insulated Gate Bipolar Transistor (IGBT)	
3	Study of Firing circuits and generation of PWM signals for three phase converters.	
4	Single Phase SCR based Semi controlled and fully controlled Rectifier	
5	Three Phase SCR based Semi controlled Rectifierand fully controlled Rectifier	
6	Three Phase IGBT based PWM Rectifier(voltage source converter)	
7	Four quadrant DC Chopper	
	(Class A,B,C,D & E)	
8	Single phase IGBT based PWM Inverter(voltage source Inverter)	
9	Three phase IGBT based PWM Inverter(voltage source Inverter)	
10	Three phase four quadrant back-to-back PWM Converter	
11	i)AC voltage controller using Thyristors	
	ii)AC voltage controller using TRIAC	
12	Voltage and frequency control using Cycloconverter	
	Total	T-12, P-60

Sl. No.	Name of Authors /Book /Publisher	Year of Publication/Reprints
1.	Bose B.K., "Modern Power Electronics and AC Drives" Prentice Hall PTR	2002
2.	Ned Mohan, Tore M. Undeland and William P. Robbins "Power	2007
	Electronics Application & Design"John Wiley & Sons	2007
3.	Muhammad Rashid "Power Electronics: Circuits, Devices &	2013
	Applications" Pearson Education (4 th Edition)	
4.	Andrzej M. Trzynadlowski "Introduction to Modern Power	2010
	Electronics" John Wiley & Sons	

NAME OF DEPTT./CENTRE: **Department of Water Resources Development and Management** 1. Subject Code: Course Title: Control and Instrumentation Laboratory WRN-549 L: 1 T: 0 P: 6 2. Contact Hours: 0 3. Examination Duration (Hrs.): Theory Practical 3 4. Relative Weight : CWS 0 **PRS** 50 **MTE** 0 ETE PRE 0 50 6. Semester: Both 7. Subject Area: PEC 5. Credits: 4

8. Pre-requisite: WR-531 or Equivalent

9. Objective: To impart practical knowledge in control and instrumentation used in modern hydropower plants.

10. Details of Course:

SI.No	Contents/Experiments	Contact Teaching (T)/ Practical (P) Hours
1	Control of Asynchronous hydro generators: Closed loop v/f control of squirrel cage induction machine using DSP controller, Time ratio and current limit control of induction machine using DSP/dSpace controller, Steady state Scalar and vector controls of induction machine	T - 3, P-12
2.	Sensorless control of induction machine using dSpace controller, Hysteresis current control, Closed loop speed control of Static Kramer drive, operation and control of Static scherius drive using back-to-back converter, Soft starting control of induction machine.	T - 2, P-12
3.	Closed loop speed control of wound rotor induction machine with rotor Power Converters, Start-up transient analysis	T - 2, P-12
4	Control of Synchronous hydro generators: standalone and grid connected operation, automatic voltage control, real and reactive power control, field oriented control of Synchronous machine using DSP/dSpace controller	T -3, P-12
5.	Automation of mini hydropower plants: condition monitoring of hydrogenating equipments based on stator current signal, vibration sensors and thermal image processing, Expert system design for automatic ON/OFF control of mini hydropower plants using PLC and sensors including level/speed/current/voltage sensors.	T - 2, P-12
	Total	T-12, P-60

List of Experiments

Control of Asynchronous hydro-generators

- 1. Closed loop v/f and vector control of squirrel cage induction machine using DSP controller
- 2. Sensorless control of induction machine using dSpace controller

- 3. Control of doubly fed induction machine with rotor circuit power converters
- 4. Hysteresis current control of induction machine using dSpace controller
- 5. Closed loop speed control of Static Kramer drive using dSpace controller

Control of Synchronous hydro-generators

- 6. Margin angle control and power factor control of Synchronous machine using dSpace controller
- 7. Closed loop v/f and vector control of Synchronous machine using dSpace controller
- 8. Soft starting control of Synchronous machine at motoring mode using dSpace controller

Automation of Mini Hydropower plants

- 9. Condition monitoring of hydro generators using Stator current signals
- 10. Condition monitoring of hydro generators including thrust bearings using vibration sensors
- 11. Condition monitoring of stator windings using thermal image processing
- 12. Automatic ON/OFF control of mini hydropower plants using PLC

Sl. No.	Name of Authors /Book /Publisher	Year of Publication/Reprints
1.	Bose B.K., "Modern Power Electronics and AC Drives" Prentice Hall PTR	2002
2.	Boldea I., "Variable Speed Generators," Taylor and Francis, CRC Press.	2006
3.	Boldea I., "Synchronous Generators," Taylor and Francis, CRC Press.	2006
4.	Barnes M., "Practical Variable Speed Drives and Power electronics," Elsevier Publications.	2003
5.	Littler, D.J., Davies, E.J., Johnson, H.E., Kirkhy, F., Myerscough, P.B. and Wright, W., "Modern Power Station Practice (Vol. F)", ASM International.	2008

NAME OF DEPTT./CENTRE:	Department of Water Resources Development and Management		
1. Subject Code: WRN-551	Course Title: Design	of Hydro Mechan	ical Equipment
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50	PRE 0
5. Credits: 4 6. 5	Semester: Autumn	7. Subject Area: I	2CC
8. Pre-requisite: NIL			

- 9. Objective: To impart knowledge of hydro-mechanical equipments used in water resources development projects like turbines, pumps, penstocks, gates, valves, and hoists.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Different types of hydro turbines with their constructional details	6
	including reversible pump turbines, tubular, bulb and straflow	
	turbines their characteristics and selection.	
2.	Pumps for pumping water-characteristics; selection of size and type	8
	and constructional features .	
3.	Gates for different types of spillways; barrages; under sluice and dam	10
	outlet, their general features and comparative merits; structural design	
	of radial and vertical lift gates.	
4.	Different types of hoists for gates- design of rope drum hoist;	6
	different types of valves and their selection.	
5.	Different types of penstock layout- hydraulic and structural design of	8
	penstocks.	
6.	Fabrication, handling, alignment, erection and support arrangement,	4
	painting and testing of penstocks.	
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of					
		Publication/Reprint					
1.	Davis, C. V. and Sorensen, K. E., "Hand book of Applied	1969					
	Hydraulics", Mc Graw Hill.						
2.	Nigam, P. S., "Hand book of Hydroelectric Engineering", Nem	1985					
	Chand and Brothers.						
3.	Brown, G.J., "Hydroelectric Engineering Practice", Blackie and	1958					
	Sons.						
4.	Mosoyni, E., "Water Power Development", Nem Chand and	2009					
	Brothers.						
NAME OF DEPT	T./CENTRE:	Department of Water Resources Development and Management					
-------------------	-----------------	--	------------------	-------------	-----------	--	--
1. Subject Code:	WRN-552	Course Title: Co	onstruction Plan	ning and Ma	inagement		
2. Contact Hours:	L: 3	T: 1	P :	0			
3. Examination D	uration (Hrs.):	Theory 3	Practical	0			
4. Relative Weigh	nt : CWS	25 PRS 0	25	50	0		
5. Credits:	4 6. S	Semester: Autumn	7. Subject	Area: PCC			

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on CPM and PERT applications in construction planning and management of water resources projects.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Problems in planning and control of present day construction-	3
	applications of System Design Techniques; advantages and limitations	
	of systems approach.	
2.	Linear Programming applications like transportation and assignment	5
	models.	
3.	Waiting line models for construction planning and management	4
4.	Inventory Models and Replacement Models in construction planning	8
	and management.	
5	Network systems in project planning; use of CPM in planning	4
	scheduling and controlling of construction projects.	
6	Network development and monitoring of construction projects.	4
7.	Network crashing and time-cost trade off in construction planning and	4
	management.	
8.	Use of different techniques for resource allocation and leveling in	4
	construction planning and management.	
9.	Use of PERT in construction planning- PERT analysis; use of	6
	dynamic programming in project evaluation and construction planning	
	and management.	
	Total	42

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprint
1.	Punmia, B.C. and Khandelwal, K.K., "Project. Planning and Control with	2004
	PERT and CPM", Laxmi Publications.	
2.	Srinath, L.S., "PERT and CPM, Prionciples and applications", EastWest	2005
	Press.	
3.	Taha, H.A., "Operatioins Research- An Introduction", Pearson Education.	2005
4.	Varma, M., "Construction Planning and Management through System	1985
	Techniques", Metropolitan Book Co.	

NAME OF DEPTT./CENTRE:	Department of Wate	er Resources Developmen	t and Management
1. Subject Code: WRN-553	Course Title: Design	of Construction Job Facil	lities
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50 PRE	0
5. Credits: 4 6. S	Semester: Spring	7. Subject Area: PEC	
8. Pre-requisite: NIL			

- 9. Objective: To impart knowledge on different facilities required for construction of water resources development projects and their design.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Requirements of material handling, mechanization of material movements on construction for construction sites for handling of earth and concrete	3
2.	Belt and bucket conveyors, bucket elevators, screw conveyors and calculations for sizes and capacities of conveyors including design of principal components	8
3.	Selection of type and design of pneumatic conveyors for conveying bulk cement	4
4.	Hoisting equipment and its design and selection for different working conditions	4
5.	Selection of type and design of cable-ways for aerial transportation and placement of concrete	5
6.	Design of compressed air and water supply system on construction projects; Estimating construct ion power requirements	6
7.	Design and layout of plant for production of aggregates including scalping crushing screening, washing, stockpiling and reclaiming	8
8.	Planning for shop services; base and field workshops; layouts for workshops and principal workshop equipment; equipment for structural fabrication.	4
	Total	42

S.	Name of Author /Book /Publisher	Year of
No.		Publication/Reprints
1.	Havers, J.A. and Stubbs, F. Jr., "Handbook of Heavy	1971
	Construction", 2nd Edition, McGraw-Hill.	
2.	Peurifoy, R.L., Schexnayder, C.J., Shapira, A. and Schmitt, R.,	2010
	"Construction Planning, Equipment, and Methods", Tata	
	McGraw Hill.	
3.	Peurifoy, R.L., Schexnayder, C.J. and Aviad, S., "Construction	2002
	Planning, Equipment and Methods", Mcgraw-Hill Series in Civil	
	Engineering.	
4.	Varma, M., Construction Equipment and its Planning and	1983
	Application, 3rd Edition, Metropolitan.	

NAME OF DEP	PTT./CE	ENTRE:	Ι	Departn	nent	of Wate	er Res	sources	Deve	lopment	t and M	lanager	nent
1. Subject Code	: WRI	N-554	(Course 7	Title:	Constru	uctior	n Plant	Mach	ninery			
2. Contact Hour	s: I	.: 3		T	: 1			P: 0)				
3. Examination	Duratio	n (Hrs.):	T	heory		3	Pr	actical		0			
4. Relative Weig	ght :	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0		
5. Credits:	4	6.	Seme	ster: Sp	ring		7. Sı	ubject A	rea: l	PEC			

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on construction equipment and machinery for water resources development projects.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Mechanized nature of modern construction and responsibilities of mechanical engineers on construction projects, functional classification of construction equipment; Different types of prime movers, power ratings, power available, useable power, power requirements	8
2.	Grade-ability and pull ability, analysis of combined influence of rolling resistance and traction on ability to negotiate grade and ability to pull trailing load by track-mounted and wheel-mounted construction equipment	8
3.	Analysis and application of different types of planetary, hydraulic and hybrid transmissions for track-mounted and wheel-mounted construction equipment	6
4.	Analysis and application of different types of mechanical, hydraulic, electric and hybrid controls for steering and braking of track-mounted and wheel-mounted construction equipment	6
5.	Equipment specifications and procurement procedures, old versus new and indigenous versus imported equipment; Performance computations and production estimates	6
6	Sizing, matching and efficient utilization for optimal production of principal construction plant and machinery	4
7	Cost accounting, maintaining records and preventive maintenance of construction plant and machinery	4
	Total	42

S.	Name of Author /Book /Publisher	Year of
No.		Publication/Reprints
1.	Nunnally, S. W., "Construction Planning, Equipment, and	2010
	Methods", Eighth edition, Pearson.	
2.	Peurifoy, R.L., Schexnayder, C.J., Shapira, A. and Schmitt, R.,	2010
	"Construction Planning, Equipment, and Methods", Tata	
	McGraw Hill.	
3.	Varma, M., "Construction Equipment and its Planning and	1983
	Application", Metropolitan.	
4.	Wong, J.Y., "Theory of Ground Vehicles", John Wiley.	1978

NAME OF DEPTT./CENTRE:	Department of Wate	er Resources Developmen	t and Management
1. Subject Code: WRN-555	Course Title: Air Cor	nditioning and Ventilation	n
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50 PRE	0
5. Credits: 4 6. S	Semester: Spring	7. Subject Area: PEC	

8. Pre-requisite: NIL

9. Objective: To impart knowledge on various aspects of air-conditioning and ventilation systems.

S. No.	Contents	Contact Hours
1.	Introduction: Types of air-conditioning systems, design conditions,	8
	heat transfer coefficients for indoor and outdoor conditions	
2.	Load Estimation: Refrigeration and air conditioning load estimation,	8
	heat gains through structures	
3.	Ventilation: Necessity; ventilation standards; natural and mechanical	8
	ventilation; forces for natural ventilation; general ventilation rules;	
	advantages of mechanical ventilation; various methods; ejector	
	systems; determining ventilation requirement; use of decay equation.	
4.	Air cleaning: Physical and chemical vitiation of air, permissible	4
	concentration of air contaminants, mechanical and electronic air	
	cleaners, dry and wet filters, air sterilization, odour control	
5.	Air-conditioning and ventilation ducts: Layout and design	8
6.	Others: Refrigerants; System noise and its control, Environmental	6
	issues; Controls for air conditioning and ventilation systems	
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprints
1.	Arora, C.P., "Refrigeration and Air conditioning", Tata-	1998
	McGrawHill.	
2.	ASHRAE, "ASHRAE Handbooks", ASHRAE.	2006
3.	Howell, Ronald, H., Sauer, Harry J. and Coad, William J.,	2010
	"Principles of Heating, Ventilating, and Air Conditioning: A	
	Textbook with Design", American Society of Heating,	
	Refrigerating, and Air-Conditioning Engineers.	
4.	Tobias, H., and Otto, K., "Air Conditioning Systems:	2010
	Performance, Environment and Energy Factors", Nova Science	
	Pub.	
5.	William, M. J., William, C. W., Eugene, S. and John, A. T.,	2008
	"Refrigeration and Air Conditioning Technology", Delmar Pub	

NAME OF DEPT	Γ./CENTRE:	Department of Water Resources Development and Managemen							
1. Subject Code:	WRN-556	Course Title: Construction Techniques							
2. Contact Hours:	L: 3	Т	T: 1 P: 0						
3. Examination Du	ration (Hrs.):	Theory	3	Practical	0				
4. Relative Weight	: CWS	25 PRS	0 MTE	25 ETE	50 PRE	0			
5. Credits: 4	6. S	Semester: Sp	ring	7. Subject A	Area: PEC				

8. Pre-requisite: NIL

9. Objective: To impart knowledge on various aspects of construction techniques for water resources development projects.

S.	Contents					
No.		Hours				
1.	Construction planning, job and resource planning, construction scheduling,	4				
	mechanization in heavy construction, construction plant and its functional					
	classification					
2.	Selection of type, size and number of construction equipment and techniques for	6				
	excavation at borrow-pits, transportation from borrow-pits to fill sites, placement,					
	compaction, and quality control for construction of embankments and earth and rockfill					
	dams					
3.	Selection of type, size and number of construction equipment and techniques for	8				
	manufacture, transportation, cooling, placement and quality control of concrete for					
	construction of concrete dams/spillways/other structures					
4.	Selection of type, size and number of construction equipment and techniques for	6				
	tunneling and underground powerhouses in squeezing, weak, moderate and sound					
	strata					
5.	Flood frequencies for design of river diversion works, techniques for river diversion,	6				
	economical height of coffer dams and diameter of diversion tunnels; Different					
	techniques for dewatering, design of pumping and well-point dewatering systems					
6.	Foundation treatment of concrete and earth dams; Consolidation and curtain grouting,	6				
	dental treatment and cutoff trenches					
7.	Equipment and techniques for aggregate recovery, processing and conveyance;	6				
	Construction utility services					
	Total	42				

S.	Name of Authors /Book /Publisher	Year of
No.		Publication/Reprints
1.	Nunnally, S. W., "Construction Planning, Equipment, and Methods",	2010
	Eighth edition, Pearson.	
2.	Peurifoy, R.L., Schexnayder, C.J., Shapira, A. and Schmitt, R.,	2010
	"Construction Planning, Equipment, and Methods" Tata McGraw Hill.	
3.	Sharma, S.C., "Construction Equipment and its Management", Khanna	2007
	Publishers.	
4.	Varma, M., "Construction Equipment and its Planning and Application",	1983
	Metropolitan.	

NAME OF DEPTT./CENTRE: Department of Water Resources Development and Management

1. Subject Code:	WRN-571	Course Title: Design of Irrigation Structures Drainage Works				
2. Contact Hours:	L: 3	Т	F: 1	P: 0		
3. Examination Du	ration (Hrs.):	Theory	3	Practical	0	
4. Relative Weight	: CWS	25 PRS	0 MTE	25 ETE 5	50 PRE 0	
5. Credits: 4	6. 5	Semester: Au	ıtumn	7. Subject Are	ea: PCC	

8. Pre-requisite: NIL

9. Objective: To impart knowledge on various design aspects of irrigation and drainage works.

S. No.	Contents	Contact
		Hours
1.	Planning and layout of irrigation system: Necessity, advantages and types of	4
	irrigation, techniques of water distribution, alignment.	
2.	Crop water requirement: Duty, delta base period, irrigation efficiencies,	4
	consumptive use, net irrigation requirement, frequency of irrigation; canal	
	capacity, rotational delivery, conveyance and seepage losses.	
3.	Design of lined and unlined channels: Design for clear and sediment laden	8
	water, principles of maximum and minimum permissible velocities, theory of	
	sediment transport, regime concept; Kennedy theory; Lacey's theory;	
	economics of canal lining, discharge measuring devices.	
4.	Design of distributary head regulator and cross regulator: Hydraulic design	8
	principles, seepage theory, exit gradient, invert filter, protection works.	
5.	Design of canal falls/drops: Definition, location and types of canal falls,	6
	design principles of vertical drop and fall, Sarda type fall; Glacis type fall;	
	canal escape and their function as safety valve.	
6.	Water logging: Causes of water logging, types of drainage system, surface	8
	drains; layout and design of surface drains their operation and maintenance.	
6.	Flood control/protection: Design flood and its importance, flood management,	4
	structural and non-structural measures	
	Total	42

S. No.	Name of Authors /Book /Publisher	Year of
		Publication/Reprint
1.	Arora, K.R., "Irrigation, Water Power and Water Resources	2007
	Engineering", Standard Publishers Distributers.	
2.	Asawa, G.L., "Irrigation and Water Resources Engineering",	2005
	New Age International Publishers.	
3.	"Design Practices of Open Drainage Channels", ICID	1984
	Publication	
4.	Singh, B., "Fundamentals of Irrigation Engineering", Nem	2005
	Chand and Brothers.	
5.	"Design of Small Canal Structures". U.S.B.R. Publication	1978
6.	Varshney, R.S., Gupta S.C. and Gupta, R.L., "Theory and design	2005
	of Irrigation Structures". Nem Chand and Brothers.	

NAME OF DEPTT./CE	NTRE: Depar Manag	tment of Wate gement	er Resources	Development :	and
1. Subject Code: WRN	V-572 Course	Title: Soil and	l Agronomy		
2. Contact Hours: L	: 3	T: 1		P: 0	
3. Examination Duration	n (Hrs.): Theory	3	Practical	0	
4. Relative Weight :	CWS 25 PRS	0	25	50	0
5. Credits: 4	6. Semester: A	utumn	7. Subject A	rea: PCC	

8. Pre-requisite: NIL

9. Objective: To impart knowledge of agro-climatic conditions, soil characteristics and cultivation of crops for efficient use of water.

S. No.	Contents	Contact Hours
1.	Introduction: Scenario of agriculture in the world	4
	characterization of irrigated and rain-fed agriculture.	
2.	Crops and plants: Definitions, morphological and	4
	physiological features, classification, adaptation and ecology.	
3.	Agro-climate: Elements of weather, analysis of weather data	8
	and agro-climatic classification, biomass production potential	
	assessment and yield estimation.	
4.	Soils: Physical, chemical and biological properties,	4
	Taxonomic classification and characterization.	
5.	Soil survey for land evaluation: Irrigability and drainability	4
	classification, evaluation and productivity assessment of land.	
6.	Principles and practices of cultivation of crops: Husbandry of	4
	cereal, pulses, oilseeds and cash crops; package and practices	
	of crops.	
7.	Agro Technology Software: Use of computer software like	6
	Decision Support System in Agro Technology Transfer	
	(DSSAT) and other crop yield models.	
8.	Statistical analysis of experimental data: Field experimental	4
	techniques; yield estimation and production forecasting.	
9.	Optimization Techniques: Application of system techniques in	4
	crop planning and management.	
	Total	42

S. No.	Name of Authors /Book/Publisher	Year of
		Publication/Reprint
1.	"Hand Book of Agriculture", Indian Council of Agricultural	2008
	Research (ICAR).	
2.	John, R., George, E., and Rashid, A., "Soil and Plant Analysis	2009
	- Laboratory Manual", Scientific Publishers.	
3.	Kakade, J.R., "Agricultural Climatology", Metropolitan Book	1989
	Company.	
4.	Martin, J.H., Leonard, W.H. and Stamp, D.L., "Principles of	1979
	Field Crop Production", Mcmillan Publishing Company.	
5.	Metcalfe, D.S. and Elkins, D.M., "Crop Production: Principles	1980
	and Practices", Mcmillan Publishing Company.	

NAME OF DEF	PTT./CE	ENTRE:	Ι	Departn	nent	of Wate	er Reso	ources	Devel	opment	and M	lanage	ement
1. Subject Code	: WRI	N-573	(Course 7	Fitle:	Princip	oles an	d Prac	tices (of Irriga	ation		
2. Contact Hour	s: I	2:3		Т	: 1			P: 0					
3. Examination	Duratio	n (Hrs.):	T	heory		3	Prac	ctical	0	1			
4. Relative Weig	ght :	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0		
5. Credits:	4	6.	Seme	ster: Sp	ring		7. Su	bject A	rea: P	CC			

8. Pre-requisite: NIL

9. Objective: To impart knowledge on principles of irrigation and irrigation practices. 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Introduction, basic definitions and approach, water resources and its status,	4
	problems of irrigation development	
2.	Soil water plant atmosphere relationship, monitoring of crop water stress and	8
	soil moisture, water uptake and release in the atmosphere and root zone,	
	consumptive use determination from field and Lysimetric experiments	
3.	Rainfall-runoff analysis, water availability assessment, infiltration, hydraulic	
	conductivity and water balance study	8
4.	Approaches of estimating reference crop evapotranspiration, crop	4
	coefficient; Effective rainfall, net irrigation requirement, gross irrigation	
	requirement, project irrigation requirement: Preparation of water demand	
	sheet	
5.	Crop growth stages; Soil moisture depletion; Miscellaneous uses of irrigation	6
6.	Basin, border, furrow, sprinkler and drip irrigation and their design	8
	procedures; Evaluation of irrigation performance; Irrigation pumps;	
	Automation in irrigation	
7.	Water quality testing, classification, treatment and management;	4
	Groundwater quality contamination, effluent and wastewater use in	
	agriculture	
	Total	42

S. No.	Name of Authors /Book /Publishers	Year of
		Publication
		/Reprint
1.	Asawa, G.L., "Irrigation and Water Resources Engineering", New Age	2006
	International Publishers.	
2.	FAO, "Crop Water Requirements", FAO Irrigation and Drainage Paper No.	1992
	24.	
3.	Jensen, M.E., "Design and Operation of Farm Irrigation System", American	1981
	Society of Agricultural Engineers.	
4.	Majumdar, D.K., "Irrigation Water Management Principles and Practices",	2000
	Prentice Hall.	
5.	Michael, A.M., "Irrigation Theory and Practice', Vikas Publishing House	2008
6.	Garg, S. K., "Irrigation Engineering and Hydraulic Structures", Khanna	2004
	Publishers.	
7.	Varshney, R.S., Gupta S.C. and Gupta, R.L., "Theory and Design of	2005
	Irrigation Structures". Nem Chand and Brothers.	

N	AME OF D	EPTT.	/CE	ENTRE:	Ι	Departr	nent	t of Wat	er Res	ources	Devel	opment	t and	l Man	agem	ent
1.	Subject Co	de: W	RN	N-575	(Course T	Title	: On Fa	ırm De	velopm	nent					
2.	Contact Ho	ours:	L	: 3]	: 1			P: 0						
3.	Examinatio	on Dura	atior	n (Hrs.):	Т	heory		3	Pra	ctical	0					
4.	Relative W	eight	:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0			
5.	Credits:	4		6.	Seme	ster : Sp	ring	ţ	7. Su	bject A	rea: P	EC				

8. Pre-requisite: NIL

9. Objective: To impart knowledge on the watershed level development of the canal commands.

S. No.	Contents	Contact
		Hours
1.	Introduction, techno-economic and environmental issues of canal commands;	4
	Command area development programme- Objectives and approach	
2.	On Farm Development Planning- Delineation of watershed, land acquisition,	7
	delineation of farm roads, field channels, field drains and escapes; Land	
	leveling, shaping and earth work estimation	
3.	Identification and reclamation of waterlogged and salt-affected lands through	4
	cultural, chemical and engineering practices	
4.	Water distribution practices in India and other neighboring countries in canal,	8
	tube well, small storage and diversion structures; On farm system design-	
	Modernization and rehabilitation of water-courses and their structures	
5.	Agricultural extension- Farmer's organization, leadership development and	4
	linking farmers- with agriculture, irrigation and financing; Rural and	
	infrastructural development agencies	
6.	Participatory irrigation management- Irrigation management transfer,	6
	responsibility of irrigation department and farmers' organization,	
	constitution, laws and bye laws, social, economic and environmental control of	
	water users' society	
7.	Runoff recycling, planning mixed use of fresh and effluent water in agriculture	3
8.	Conjunctive use planning- Use of surface and ground water to improve water	6
	productivity, safeguard against land degradation and environmental protection;	
	Sub surface drainage- Layout and Design	
	Total	42

S. No.	Name of Authors /Book /Publishers							
		Publication						
		/Reprint						
1.	Jensen, M.E., "Design and Operation of Farm Irrigation System", American	1981						
	Society of Agricultural Engineers.							
2.	Michael, A.M., "Irrigation Theory and Practice', Vikas Publishing House	2008						
3.	Murthy, V.V.N., "Land and Water Management Engineering", Kalayani	1998						
	Pubishers.							
4.	Garg, S. K., "Irrigation Engineering and Hydraulic Structures", Khanna	2004						
	Publishers.							
5.	Singh, B., "Fundamentals of Irrigation Engineering", Nem Chand and	2005						
	Brothers.							

NAME OF DEPTT./CENTRE:	Department of Water Resources Development and Management									
1. Subject Code: WRN-576	Course Title: Operation Maintenance and Managemen Irrigation Systems									
2. Contact Hours: L: 3	T: 1	P: 0								
3. Examination Duration (Hrs.):	Theory 3	Practical 0								
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50 PRE	0							
5. Credits: 4 6. Se	emester: Spring	7. Subject Area: PEC								

8. Pre-requisite: NIL

S. No.	Contents	Contact
		Hours
1.	Definition of terms, elements of organizational management; Comparative	4
	analysis of irrigation organization, organizational change mechanism	
2.	Maintenance problems- physical and social phenomena, examples;	5
	Maintenance types- essential, structural, catch up, preventive and normal;	
	Budget control and accountability development of maintenance program	
3.	Maintenance practices- catchment protection to check soil erosion,	5
	headworks; Maintenance of channels, structures, communication and	
	ancillary works; Maintenance of tertiary systems and drains	
4.	Diagnostic analysis of operation and maintenance of a canal system;	8
	Purpose, planning, field work, walk-through survey, field experiments,	
	report preparation and presentation	
5.	Reservoir and canal operation- reservoir operation rules for flood control and	6
	water supply; Canal capacity, discharge measurement, water allowance,	
	water distribution, planning and sharing in water deficit	
6.	Automatic regulation of canal operation- concept of automation, hardware	4
	and software requirements, gate discharge, pool volume control; Algorithm	
	for canal operation	
7.	Information management- geographic information system based record	6
	keeping and analysis, information flow and feedback	
8.	Water charges, revenue recovery and performance budgeting	4
	Total	42

^{9.} Objective: To impart knowledge on operation, maintenance and management of irrgation systems.

S. No.	Name of Authors /Books /Publishers	Year of
		Publication
		/Reprint
1.	MOWR, GOI, "Guidelines for Farmers Participation in Water	1987
	Management', Command Area Development and Water Management	
	Division.	
2.	INCID, "Guide for Preparation of Plans of Operation and Maintenance of	1994
	Irrigation Systems in India".	
3.	INCID, "Guidelines for Irrigation Performance Evaluations".	2005
4.	Modi, P.N., "Irrigation Water Resources and Water Power Engineering",	1995
	Standard Book House.	
5.	Garg, S.K., "Irrigation Engineering and Hydraulic Structures", Khanna	2004
	Publishers.	
6.	Singh, B., "Fundamentals of Irrigation Engineering", Nem Chand and	2005
	Brothers.	

NAME OF DEPTT./CENTRE:				Department of Water Resources Development and Management								
1. Subject Code: W	/RI	N- 577	(Course 7	Title:	Water a	and La	and Lav	ws			
2. Contact Hours:	Ι	L: 3		Т	: 1			P: 0				
3. Examination Dura	atio	n (Hrs.):	Т	heory		3	Pra	ctical		0		
4. Relative Weight	:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0	
5. Credits: 04		6.	Seme	ster: Sp	ring		7. Su	bject A	rea: P	EC		

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on laws pertaining to water and land use for sustainable agricultural production.
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Water laws in India: Basic concepts of resource economics applied to	8
	water resource management, fugitive nature of water resources,	
	common property rights; Constitutional right, surface and ground water	
	use regulations	
2.	National policies: Agriculture, water, forest and science policies; North	6
	India canal and drainage act	
3.	Land laws in India: Legal aspects of land ownership, inheritance,	6
	disputes and their resolution	
4.	Environmental protection act: Rules and regulation, effluent disposal	6
	and pollution control laws	
5.	Water rights: Comparative analysis of surface and subsurface water	6
	rights, legal procedures for establishment of water rights, groundwater	
	legal issues, group versus individual rights	
6.	Water disputes and their resolution: Interstate, inter-basin and trans-	6
	boundary disputes; Conflict resolution, development of accountability	
	mechanism	
7.	Organizational setup: Water boards and authorities; Case studies of	4
	users' interactions with government agencies	
	Total	42

S.No.	Name of Authors /Book /Publishers	Year of
		Publication/
		Reprint
1.	Indian Council of Agricultural Research, "Hand Book of Agriculture",	2008
	Govt. of India.	
2.	Joseph, L. S., "Water Laws Planning and Policy", Bobbs Meril.	1968
3.	Luis, V. C., "Management and Law for Water Resources", Water	1977
	Resources Publication.	
4.	Ministry of Agriculture, "National Agricultural Policy", Govt. of India.	2000
5.	Ministry of Environment and Forest, "National Forest Policy", Govt. of	1992
	India.	
6.	Ministry of Health and Family Welfare, "National Health Policy", Govt.	2002
	of India.	
7.	Ministry of Water Resources, "National Water Policy", Govt. of India.	2002

NAME OF DE	PTT./C	CENT	RE:	D	epartm	ent of	f Water	Resou	irces De	evelop	ment an	d Mana	ıgement
1. Subject Code	e: Wl	RN- 5	578	C	ourse Ti	tle: R	Rural So	ciolog	y and Iı	rrigati	on Econ	omics	
 Contact Hou Examination 	rs: Durat	L: 🤅 ion (I	3 Hrs.):	Tł	T: neory	1 3		Pract	P: 0 ical	0			
4. Relative We	ight	: C	WS	25	PRS	0	MTE	25	ETE	50	PRE	0	
5. Credits:	4		6.	Semes	ter: Spr	ing	,	7. Subj	ect Area	a: PEC	2		

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on various socio-economic groups and their role in economic use of irrigation water.
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Rural sociology: Elements of rural sociology, social structure and	6
	their interaction, moral values, irrigation for social service and rural development	
2	Control et an antipart a ser la development,	1
2.	motivation for effective governance	4
3.	Panchayati raj act: Panchayati raj institution and rural development	6
	programs	
4.	Social upliftment: Social conflicts and their resolution, role of	6
	NGOs and women in irrigation management	
5.	Principles of economics: Definitions, basic concepts of water	4
	resource economics, analysis and project planning for irrigation	
	management	
6.	Farm accounting: Production response, functions of irrigation	6
	application	
7	Pricing of water: Socio-economic aspects, time-value of money,	6
	determination of demand; Pricing policy- guidelines and estimation	
8	Socio-economic surveys: Principles and guidelines	4
	Total	42

S. No.	Name of Authors /Book /Publishers	Year of
		Publication/Reprint
1.	Bhattacharya, S.N., "Rural Development in India and Other	1983
	Developing Countries", Metropolitan.	
2.	Indian Council of Agricultural Research, "Hand Book of	2008
	Agriculture", Govt. of India.	
3.	James, L. D. and Lee, R. R., "Economics of Water Resources	1971
	Planning", McGraw Hill.	
4.	Stevenson, V., "Social Change", Prentice Hall.	1989

NAME OF DEPTT./	CENTRE:	Depart	tment of V	Vater Resources	Developm	ent and Manage	ment
1. Subject Code: W	'RN- 579	Course	Title: Eva	aluation of Irrigat	tion Projec	cts	
2. Contact Hours:	L: 3		T: 1	P: 0			
3. Examination Dura	tion (Hrs.):	Theory	3	Practical	0		
4. Relative Weight	: CWS 2	25 PRS	0	25	50	0	
5. Credits: 4	6. Semester:	Spring	7. Subject	Area: PEC			
8. Pre-requisite: NII	L						

9. Objective: To impart knowledge on evaluation of irrigation projects for their performance improvement.

S. No.	Contents	Contact
		Hours
1	Introduction: Need for evaluation of irrigation projects; Principles	4
	of system diagnosis, health of an irrigation system for its functioning	
2	Cropping system: Cropping pattern, cultivation techniques, crop	6
	diversification, intensification and rotation; Yield estimation	
3	Performance evaluation: Benchmarking, guidelines and	8
	procedures for command area project evaluation	
4	Water productivity: Modern concepts, economics, limits and	6
	opportunities for improvement, management of floods and droughts	
5	On farm system: Field level assessment of efficiencies, efficient	6
	use of rain water	
6	Main system: Basic concepts of irrigation systems, system	6
	boundaries, interaction between environment and system, system	
	deficiency	
7	Socio-economic: Social structure, per capita income, livelihood	6
	improvement	
	Total	42

11. S	aggested Books:
S	Name of Ar

S.	Name of Authors /Book /Publishers	Year of
No.		Publication/Reprint
1.	David, J., Molden, R., Sakthivadivel, C., Perry, J. and Charlotte de	1998
	F., "Indicators for Comparing Performance of Irrigated Agricultural	
	Systems", International Water Management Institute.	
2.	Hector, M. and Martin, B., "Guidelines for Benchmarking	2001
	Performance in Irrigation and Drainage", Food and Agricultural	
	Organisation.	
3.	ICID, "Benchmarking of Irrigation and Drainage Projects",	2004
	International Commission on Irrigation and Drainage.	
4.	Yoder, R., "Identification and Utilization of Farm Resources in	2003
	Irrigation Development", Cornell University Press.	

NAME OF DEPTT./	CENTRE:	Departn	nent of Wate	er Resources Dev	elopment	and Management
1. Subject Code: W	'RN- 580	Course 7	Title: Renew a	able Energy Syste	em Techn	ology
2. Contact Hours:	L: 3	Г	: 1	P: 0		
3. Examination Dura	tion (Hrs.):	Theory	3	Practical	0	
4. Relative Weight	: CWS	25 PRS	0 MTE	25 ETE 50	PRE	0
5. Credits: 4	6. 8	Semester: Sp	ring	7. Subject Area:	PEC	
8. Pre-requisite: NI	L					

9. Objective: To impart knowledge on renewable energy harnessing technologies.

S. No.	Contents	Contact
		Hours
1.	Renewable energy: Definition, history, current state-of-the-art, future use	3
	and penetration of renewable energy technologies; Types of renewable	
	energy sources - Solar radiation, tidal and waves, hydro cycle, geothermal	
2.	Solar thermal energy conversion technologies: Nature of solar radiation;	6
	Insolation; Measurements and estimation; Physical principles of conversion	
	of solar radiation into heat; Flat plate collectors, energy balance equation	
	and collector efficiency, concentrating collectors and flat plate collectors,	
	solar thermal electric power generation	
3.	Solar photo voltaic systems: System components and configurations, cells,	3
	modules, and arrays, batteries, charge controllers, inverters, system sizing,	
	mechanical integration, electrical integration, utility interconnection	
4.	Wind energy: Wind characteristics, data analysis and resource estimation;	5
	Wind turbine energy prediction; Measurement of wind velocity and	
	direction; Wind turbine configurations- drag and lift types; Magnus effect in	
	wind turbines; Vortex wind machines; Electric generators for wind turbine	
	application; Power converter, auxiliary equipment; Wind turbine control;	
	Wind turbine sitting considerations; System economics; Environmental	
	aspects and impacts	
5.	Small Hydro: Small hydropower generation using synchronous and	6
	induction generators– characteristic, standalone and grid connected	
	operations, voltage and frequency control, Electronic load control.	
6.	Bio mass energy: Biomass conversion technologies, generation, bio-	6
	digestion; Classification of biogas plants- floating drum type and fixed	
	dome type; Thermal gasification of biomass; Biomass gasifiers;	
	Gasification process, application of gasifiers for electricity generation;	

	Pyrolysis and alcohol fuels	
7.	Other renewable energy sources: Wave energy and ocean thermal energy conversion technologies; Geothermal energy sources, geothermal exploitation, prime-movers for geothermal energy conversion system, material selection for geothermal power plants, flashed steam and total flow concept	6
8.	Applications : Application to micro-irrigation, rural water supply, water and waste water treatment, special conditions of preference – off grid and remote areas; cost effectiveness, use of software	7
	Total	42

S. No.	Name of Authors /Books /Publishers	Year of
		Publication
1.	Messenger, R.A. and Ventre, J., "Photovoltaic System Engineering," CRC	2003
	Press.	
2.	Peuser, F. A., Remmers, Karl-Heinz and Schnauss, M., "Solar Thermal	2009
	Systems: Successful Planning and Construction", Solar Press.	
3.	Rai, G.D., "Non conventional Energy Sources," Khanna Publishers.	2001
4.	Rosa, A.V. Da, "Fundamentals of Renewable Energy Processes",	2005
	Elsevier.	

NAME OF DEPTT. /CENTRE: **Department of Water Resources Development and Management** Course Title: Water Quality Monitoring and Modelling 1. Subject Code: WRN-581 2. Contact Hours: L: 3 T: 1 **P:** 0 0 3. Examination Duration (Hrs.): Theory Practical 3 4. Relative Weight : CWS **25** PRS 0 MTE **25** ETE **50** PRE 0 6. Semester: Spring 4 5. Credits: 7. Subject Area: **PEC**

8. Pre-requisite: NIL

9. Objective: To impart knowledge on water quality modelling and monitoring of water bodies.

S. No.	Contents	Contact
		Hours
1.	Water quality parameters: Physical, chemical and biological	9
	parameters of natural water bodies like lake, river and estuary; Water	
	quality standards, Eutrophication; Sources of pollution, mass bathing	
	impacts, waste load allocation	
2.	Water quality monitoring: Physical, chemical and biological	8
	monitoring of rivers; Guidelines for sample size and location of	
	monitoring stations, Sample analysis	
3.	Modelling: Characteristics of point and non-point sources of pollution;	9
	Solution of diffusion and dispersion problems; Water quality models,	
	case studies	
4.	Water purification: Physical, chemical and biological processes,	8
	response of streams to biodegradable organic waste; Engineered systems	
	for water and waste water purification	
5.	Groundwater quality: Parameters; Sources of salinity, short and long	8
	term monitoring; Remedial and preventive measures	
	Total	42

S. No.	Name of Authors /Books /Publishers	Year of
		Publication
1.	Biswas, A. K., "Models for Water Quality Management", Mc Graw Hill.	1981
2.	Chapra, S. C., "Surface Water Quality Modeling", Waveland Press.	2008
3.	David, A. Chin, "Water Quality Engineering in Natural Systems", Wiley	2006
	Interscience.	
4.	Loucks, D. P., Stedinger, J. R. and Haith, D. A., "Water Resource	1981
	Systems Planning and Analysis", PH.	
5.	Orlob, G. T., "Mathematical Modelling of Water Quality- Streams,	1983
	Lakes, and Reservoirs", John Wiley.	
6.	Thomn, R. V. and Mueller, J. A., "Principles of Surface Water Quality	1987
	Modelling", Harper and Row Publishers.	
7.	Zhen, G. J., "Hydrodynamics and Water Quality- Modelling Rivers,	2008
	Lakes and Estuaries", John Wiley.	

NAME OF DEPT	T./CENTRE:	Department	of Water Resources Dev	velopment and Management
1. Subject Code:	WRN-582	Course Title:	Theory of Seepage	
2. Contact Hours:	L: 3	T: 1	P: 0	
3. Examination D	uration (Hrs.):	Theory	3 Practical	0
4. Relative Weigh	it : CWS 2	5 PRS 0	25 50	0
5. Credits: 4	6. Ser	mester: Spring	7. Subject Area	: PEC

8. Pre-requisite: NIL

9. Objective: To impart knowledge of seepage theory applicable to water resources projects.

S. No.	Contents	Contact
		Hours
1	Fundamentals, characteristics and boundary conditions of groundwater	6
	flow; Darcy's law; General hydrodynamic equations; Flownet	
2	Application of Dupuit theory; Basic consideration; Two dimensional	6
	flow; Free surface subject to infiltration and evaporation; Radial flow in	
	fully penetrating well	
3	Conformal mapping and special mapping techniques; Application of	6
	mapping function; Fundamentals of solution of two dimensional flow	
	problems by conformal mapping; Bilinear transformation	
4	Unconfined flow through earthen structures and its seepage analysis;	8
	Unconfined flow around cutoffs; Earth structure with a cutoff wall and	
	with horizontal drain; Rockfill dams with central core and seepage	
	analysis	
5	Confined flow, methods of solving confined flow problems; Hydraulic	8
	structure on surface of finite depth of porous media; Inclined sheet pile;	
	Finite lower impervious boundary; Depressed structure on a permeable	
	base of infinite extent; Double-wall sheet-pile cofferdam	
6	Seepage from small water bodies, reservoirs and canals; Seepage	8
	towards well- steady and unsteady flows; Stream-aquifer interaction	
	Total	42

S.	Name of Authors /Book /Publishers	Year of
No.		Publication/Reprint
1.	Bear, J., "Dynamics of Fluids in Porous Media" McGraw Hill.	1972
2.	Bear., J. "Hydraulics of Groundwater" McGraw Hill.	1979
3.	Harr, M.E., "Groundwater and Seepage", McGraw Hill.	1990
4.	Reddi, L. N., "Seepage in Soils-Principles and Applications' John	2005
	Wiley.	
5.	Walton, W.C. "Groundwater Resources Evaluation" McGraw	1970
	Hill.	

NAME OF DEPTT./CENTRE:			Department of Water Resources Development and Management													
1. Subject Code: WRN-583				C	Course T	itle:	Remot	e Sens	ing and	d GIS	Applic	ations	in Ag	ricult	ure	
2.	Contact Hou	irs:	L:	3		Т	: 1			P: 0						
3. Examination Duration (Hrs.):		T	Theory 3			Practical			0							
4.	Relative We	eight	: C	WS	25	PRS	0	MTE	25	ETE	50	PRE	0			
5.	Credits:	4		6. 5	Seme	ster: Sp	ring		7. Su	bject A	rea: P	PEC				

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on applications of remote sensing and GIS techniques in agriculture and water resources management.

S. No.	Contents	Contact
		Hours
1.	Introduction, history of remote sensing, sensors, platforms and their	6
	characteristics; Satellite data products	
2.	Principles of remote sensing and data analysis, electromagnetic spectrum,	8
	atmospheric effects, energy interaction with earth surface features, basic	
	interaction mechanism of soil, vegetation and water	
3.	Image interpretation virtual and digital; Image rectification, image	8
	enhancement, image classification and accuracy assessment, use of image	
	processing software	
3.	Geographical information system (GIS), definition, essential components of	8
	GIS, spatial data structure- raster and vector, spatial and non-spatial	
	relationship, geographic database concepts and analysis, GIS packages and	
	salient features	
4.	Use of remote sensing and GIS techniques in agriculture, vegetation cover	4
	mapping, crop acreage estimation and disease detection	
5.	Application of remote sensing and GIS for estimation of surface and	8
	groundwater irrigation potential, erosion hazard assessment, water quality	
	assessment, flood inundation mapping and modeling; Drought monitoring;	
	performance evaluation of irrigation commands; Selection of site for	
	artificial recharge, agricultural management and planning	
	Total	42

S. No.	Name of Authors /Books /Publishers	Year of
		Publication
1.	Burrough, P. A., "Principles of Geographic Information System for Land	1998
	Resources Assessment", Clarendom Press.	
2.	Chandra, A.M. and Ghosh, S.K., "Remote Sensing and Geographic	2007
	Information System", Narosa Publishers.	
3.	Jensen, J.R. "Remote Sensing of the Environment an Earth Resources	2003
	Perspective", Pearson Education.	
4.	Lillesand, T. M. and Kiefer, R. W., "Remote Sensing and Image	2000
	Interpretation", Fourth Edition, John Wiley.	
5.	Curan, P.J., "Principles of Remote Sensing", English Language Book	1983
	Society, Longman.	

NAME OF DEPT	ΓΤ./CENTRE:		Depart	ment	of Wate	er Reso	ources I	Develo	pment a	and Ma	nagement
1. Subject Code:	WRN- 584		Course	Title:	Croppi	ng Sys	tem Mo	odeling	g		
2. Contact Hours	: L: 3		r	Г: 1			P: 0				
3. Examination E	Duration (Hrs.)	: Т	Theory	3		Prac	ctical	0			
4. Relative Weig	ht : CWS	25	PRS	0	MTE	25	ETE	50	PRE	0	
5. Credits: 4	6	. Seme	ester: Sp	oring		7. Su	bject Ar	ea: PI	EC		

8. Pre-requisite: NIL

9. Objective: To impart knowledge on decision making in agro-techniques for crop cultivation.

S. No.	Contents	Contact
		Hours
1	Introduction: Need of crop modeling, crop modeling, advanced	4
	crop cultivation techniques	
2	Constraint analysis: Crop, soil and hydrological constraints,	4
	analysis of problems, remedies for optimal crop yield	
3	Agricultural lands problems: Land and water degradation	6
	problems due to use of fertilizers, water and agro-chemicals	
4	Crop diversification: Need, process and forms; Crop	4
	intensification, intensive cropping systems	
5	Systems approach: Use of linear programming in crop planning	6
	and management	
6	Crop models: Use of CROPWAT for yield estimation, water	6
	uptake and nitrogen uptake forecasting	
7	Decision support system (DSS): Basic concepts, development of	6
	DSS for agro-technology transfer	
8	Remote Sensing & GIS application: Introduction to remote	6
	sensing & GIS and application for yield forecasting	
	Total	42

11. Suggested Books:

S.	Name of Authors /Book /Publishers	Year of
No.		Publication/Reprint
1.	IBSNAT, "Decision Support System in Agrotechnology Transfer",	2004
	International Benchmark Sites Network for Agrotechnology	
	Transfer.	
2.	National Bureau of Soil Survey, "Agro-Climate Regional Planning	2004
	in India", Indian Council of Agriculture and Research, Vol.1-2.	
3.	Thornily J.M. and Johnson, I.R., "Plant and Crop Modeling",	2009
	Scientific Publication.	
4	Lillesand, T. M. and Kiefer, R. W., "Remote Sensing and Image	2000
	Interpretation", Fourth Edition, John Wiley.	
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPTT.	Department of Water Resources Development and Management					
1. Subject Code: W	/RN- 585	Course T	itle: Envir	onmental Impact of	Irrigate	d Agriculture
 Contact Hours: Examination Dura 	L: 3 ation (Hrs.):	T: Theory	: 1 3	P: 0 Practical 0		
4. Relative Weight	: CWS 2	25 PRS	0 MTE	25 ETE 50	PRE	0
5. Credits: 4	6. Se	emester: Sp	ring	7. Subject Area: F	EC	

- 8. Pre-requisite: NIL
- 9. Objective: To impart knowledge on environmental implications of intensive irrigated agriculture.
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1	Introduction: Definition, basic environmental issues in irrigated	4
	agriculture, scope	
2	Ecology: Flora and fauna in irrigated areas, soil and water-borne	6
	pathogens of crops and trees, fertility and productivity of lands	
3	Ecological adaptation: Competition, adaptation and adoption of	4
	crop and weeds under variable soil moisture condition	
4	Nutrient and water balance: Organic carbon, major and	6
	micronutrient requirements of crops and soils, nutrient and water use	
	efficiency; Model studies in nutrient and water balance studies	
5	Soil, water and plant chemical analysis: Collection of samples,	4
	preparation of standard solution and analysis; Use of advance	
	techniques for chemical analysis	
6	Climatologically changes in irrigated areas: Soil degradation;	6
	Crop extinction; Human and animal diseases	
7	Microclimate: Micro environment study of field crops,	4
	instrumentation for microclimatic study	
7	Field studies: Project work on field observation, recording of data	8
	and statistical analysis	
	Total	42

11. Suggested Books:

S.	Name of Authors /Book /Publishers	Year of
No.		Publication/Reprint
1.	Dougherty, T.C. and Hall, A. W., "Environmental Impact	1995
	Assessment of Irrigation and Drainage Programme", FAO	
	Irrigation and Drainage Paper.	
2.	Shiva, V., "Sustainable Agriculture and Food Security", Sage	2002
	Publishers.	
3.	Wainwright, J., "Environmental Modeling Finding Simplicity and	2004
	Complicity", John Wiley.	
4.	Jaiswal, P.C., "Soil, Plant and Water Analysis", Kalyani	2003
	Publishers.	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPTT./CENTR	E: Department o	Department of Water Resources Development and Management				
1. Subject Code: WRN-586	Course Title: C	Groundwater Develop	oment and Management			
2. Contact Hours: L: 3	T: 1	P: 0				
3. Examination Duration (Hr	s.): Theory ;	3 Practical	0			
4. Relative Weight : CW	S 25 PRS 0	MTE 25 ETE 5	50 PRE 0			
5. Credits: 4	6. Semester: Spring	7. Subject Are	ea: PEC			
8. Pre-requisite: Nil						

9. Objective: To impart knowledge on groundwater development and management for irrigation water management.

10. Details of Course:

S. No.	Contents	Contact Hours
1	Use of groundwater and its impact on irrigation water management;	8
	Hydrologic properties of water bearing formation, occurrence, storage	
	and distribution of groundwater; Use of groundwater zone maps;	
	Groundwater resource assessment and budget	
2	Surface investigations of groundwater; Well hydraulics- steady and	8
	unsteady flows; Water wells- test holes and well logs; Design,	
	construction and development of shallow and deep wells, design of	
	screen and gravel packs	
3	Pumps and their selection, installation and testing of pumps;	6
	Monitoring and maintenance of wells, causes of failure	
4	Ground water conservation and artificial recharge, sustained yield,	8
	water balance equation; Ground-water and surface-water interaction,	
	interference of wells; Watershed conservation measures in irrigation	
	commands	
5	Groundwater flow parameter estimation; Groundwater simulation and	6
	conjunctive use models, comparative analysis for management of	
	conjunctive use system	
6	Groundwater quality- agricultural sources of pollution, causes and	6
	monitoring; Technical, socio-economic and organizational aspects of	
	groundwater management	
	Total	42

11. Suggested Books:

S. No.	Name of Authors /Book /Publishers	Year of
		Publication/Reprint
1.	Bear, J., "Hydraulics of Groundwater", McGraw Hill.	1979
2	Karanth, K. R., "Groundwater Assessment, Development and	1987
	Management", Tata McGraw Hill.	
3.	Rastogi, A.K., "Numerical Groundwater Hydrology", Penram	2007
	International.	
4.	Raghunath, H.M., "Groundwater", New Age International.	2007
5.	Sharma, H.D. and Chawla, A.S., "Manual on Ground Water and	1977
	Tube Wells", Central Board of Irrigation and Power.	
6.	Sterrett, R.J., "Groundwater and Wells", Smyth Companies.	2008
7.	Todd, D. K and Mays, L.W. "Groundwater Hydrology", John	2005
	Wiley.	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPTT./	CENTRE:	Department of Water Resources Development and Management				
1. Subject Code: W	RN-587	Course Title	e: Waters	hed Development	and Ma	nagement
2. Contact Hours:	L: 3	Т:	1	P: 0		
3. Examination Dura	tion (Hrs.):	Theory	3	Practical	0	
4. Relative Weight	: CWS 2	5 PRS 0	MTE	25 ETE 50	PRE	0
5. Credits: 4	6. Ser	nester: Sprin	g	7. Subject Area:	PEC	
8. Pre-requisite:	Nil					

9. Objective: To impart knowledge of watershed components, processes and management for soil and water conservation.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Components of watershed and need of watershed management;	4
	Principal factors influencing watershed operations; Delineation of	
	watersheds; Engineering surveys; Data requirement	
2.	Watershed hydrology, water resources assessment in watershed,	8
	hydrological cycle; Surface water assessment- rainfall-runoff analysis;	
	Groundwater assessment, infiltration and its measurement	
3.	Watershed Behavior- Physical elements of watershed, effects of land	4
	use changes on hydrological cycle components, watershed	
	experiments	
4.	Land capability classification; Erosion process- factors affecting	6
	erosion, types of erosion, soil erosion models	
5.	Engineering measures for soil and water conservation- Contour	8
	bunding, graded bunding, bench terracing, land leveling and grading;	
	Small storage structures- Types and design data requirement, loose	
	boulder dams, gabions, check dams and their design criteria	
6.	Rainwater harvesting, direct and indirect methods, filter design,	6
	planning and design; Layout and execution; Impact assessment,	
	operation and maintenance issues	
7.	Watershed management plan- Methodology of planning a watershed,	6
	identification of watershed problems, socio-economic issues including	
	application of Remote sensing and GIS in watershed management	
	Total	42

11. Suggested Books:

S.	Name of Authors /Book /Publishers	Year of
No.		Publication/Reprint
1.	Das, G., "Hydrology and Soil Conservation Engineering",	2002
	Prentice Hall.	
2.	Debarry, P. A., "Watershed: Processes, Assessment and	2004
	Management", John Wiley.	
3.	Lyon, J. G., "GIS for Water Resources and Watershed	2003
	Management", Taylor and Francis.	
4.	Schwab, G.O., Fangmeier, D.D., Elliot, W. J., Frevert, R. K.,	2002
	"Soil and Water Conservation Engineering", John Wiley.	
5.	Suresh, R., "Soil and Water Conservation Engineering", Standard	2006
	Publishers.	
6.	Tideman, E.M., "Watershed Management", Omega Scientific	2002
	Publisher.	