NAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology

1.	Subject Code	: N	TN- 501	Cours	se Title :	Nan	oscale	Materia	als	
2.	Contact Hours	:	L: 3		T: 0		P: 2	2		
3.	Examination Dur	ation	(Hrs) :		Theory :	03	I	Practical	.s : 00	
4.	Relative Weight	:	CWS :	15	PRS :	25	MTE	: 20	ETE :	: 40
5.	Credits :	04	6. Ser	nester	: Aut	tumn	7.	Pre-requ	uisite :	Nil
8.	Subject Area	:	PCC							

9. Objectives: To provide knowledge of various concepts related to nanosized materials, their preparation, properties and applications.

S.No.	Contents	Contact Hours
1.	Classification and Nomenclature of Nanomaterials:	6
	Nanosized metals and alloys, semiconductors, ceramics - a comparison with respective bulk materials; Organic semiconductors, carbon nanotubes; Zero-, one-, two-, and three dimensional nanostructures – quantum dots, quantum wells, quantum rods, quantum wires, quantum rings; bulk nanostructured materials, Nanomachines and Devices.	
2.	Synthesis by Physical Methods: Nucleation and growth of Nanosystems; self-assembly; Physical methods – mechanical milling, laser ablation, sputtering and microwave plasma.	7
3.	Synthesis by Chemical Methods: Chemical reduction and oxidation, hydrothermal, micelles, sol-gel processes, photolysis, radiolysis, and metallo-organic chemical vapor deposition; Designing of advanced integrated nanocomposites, functional nanomaterials and nanostructured thin films.	7
4.	Novel Properties of Nanomaterials and Related Theoretical	7
	Background: Size and shape dependent optical, emission,	
	mechanical magnetic non-linear optical properties:	
	Transition metal sols, origin of plasmon band, Mie theory,	
	influence of various factors on the plasmon absorption.	

5.	Size Effect in Nanomaterials: Quantum confinement in semiconductors – particle in a box like model for quantum dots; Origin of charge on colloidal sols, zeta potential - DLVO theory; Implications of colloids in making building blocks; Catalytic and photocatalytic properties, Mechanical properties.	6
6.	Characterization of Nanomaterials: Structural Characterization - XRD, SAXS, SEM, TEM, SPM/AFM; Chemical Characterization – Optical spectroscopy, Electron spectroscopy, Ionic spectrometry; Physical properties – Melting point, Lattice constant, Electrical and magnetic characterization; Mechanical properties – nanoindentaion, nanotribology.	9
	Total	42

List of Experiments:

- 1. To investigate the optical properties of certain nanosized semiconducting oxides.
- 2. To synthesize metal nanostructures and investigate their optical behaviour.
- 3. To analyze the thickness, optical transmission and reflectivity of thin film of Al.
- 4. Synthesis and characterization of carbon nanotubes by cracking of gas mixture using tubular furnace.
- 5. To work out the charge, zeta potential and size distribution of colloidal

solution of nanoparticles using dynamic light scattering method.

6. To determine the elemental contents in nanoalloys using different analytical techniques.

S.No.	Name of Books/Authors/Publishers	Year of
		Publication/
		Reprint
1.	Klabunde, K.J. (Ed.), "Nanoscale Materials in Chemistry", John	2001
	Wiley & Sons Inc.	
2.	Nalwa, H.S. (Ed.), "Encyclopedia of Nanoscience and	2004
	Nanotechnology".	
3.	Sergeev, G.B. Nanochemistry, Elsevier, B.V.	2010
4.	Schmid, G. (Ed.), "Nanoparticles", Wiley-VCH Verlag GmbH	2004
	& Co. KgaA.	
5.	Rao, C.N.R., Müller, A. and Cheentham, A.K. (Eds.),	2005
	"Chemistry of Nanomaterials", Wiley – VCH.	

NA	IAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology						
1.	Subject code	: NTN- 502	Course Ti	itle: Biomedical Na	notechnology		
2.	Contact Hours	: L :3	T:1		P:0		
3.	Examination Dur	ation (Hours):	Theory : 03	Practical :	00		
4.	Relative Weight	: CWS : 25	PRS : 00 1	MTE: 25 ETE:	50		
5.	Credits : 04	6. Semester	: Autumn	7. Pre-requisite : N	il		
8.	8. Subject Area: PCC						

9. Objective: To impart knowledge on biomedical applications of nanotechnology.

S.No.	Contents		
		Hours	
1.	Synthesis of nanoparticles by physical, chemical and biological methods; Cell	6	
	organization and subcellular structure; Cell-nanostructure Interactions;		
	Molecular Biomimetics; Nanostructures for medicinal applications.		
2.	Introduction to genetic engineering and gene therapy; Virus-based	4	
	nanoparticles for gene therapy; Nanotechnology in nonviral gene delivery.		
3.	Introduction to tissue engineering; Nanotechnology in tissue Engineering;	9	
	Nanostructured extracellular matrix; Nanomaterials for cell engineering;		
	Nanostructured biomaterials; Nanostructured surface modifications for		
	biomedical implants; Artificial cells; Stem cells in tissue engineering;		
	Nanotechnology for regenerative medicine.		
4.	Nanopharmaceuticals; Biodegradable targeted nano drug delivery system;	7	
	Diagnostic and therapeutic applications of nanoparticles; Theranostic		
	nanoparticles; Pharmacokinetics of nanocarrier-mediated drug and gene		
	delivery; Nano-enabled components and systems for biodefense.		
5.	Design and applications of nanotechnology in the fields of Oncology,	9	
	Neurology, Cardiology, Orthopedics, Microbiology, Ophthalmology,		
	Dermatology, Pulmonology and Dentistry.		
6.	Cytotoxicity and genotoxicity; Cell toxicity mechanisms and method of	7	
	analysis; Toxicity of nanoparticles in vivo.		
	Total	42	

S.No.	Name of Authors /Books / Publishers	Year of
		Publication /
		Reprint
1.	Malsch, N.H., "Biomedical Nanotechnology", CRC Press.	2005
2.	Mirkin, C.A. and Niemeyer, C.M., "Nanobiotechnology II: More	2007
	Concepts and Applications", Wiley-VCH.	
3.	Jain, K.K., "The Handbook of Nanomedicine", Humana press.	2008
4.	Kumar, C. S. S. R., Hormes, J. and Leuschner C., "Nanofabrication	2005
	Towards Biomedical Applications: Techniques, Tools, Applications,	
	and Impact", WILEY -VCH Verlag GmbH & Co.	
5.	Lamprecht, A., "Nanotherapeutics: Drug Delivery Concepts in	2009
	Nanoscience", Pan Stanford Publishing Pte. Ltd.	

NAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology

1.	Subject Code	: NTN- 503	Course Title : Nu	merical Methods	and Statistics
2.	Contact Hours	: L:3	T: 0	P: 2	
3.	Examination Dura	ation (Hrs) :	Theory : 0.	3 Practicals	: 00
4.	Relative Weight	: CWS :	15 PRS : 25	MTE : 20	ETE : 40
5.	Credits : 04	6. Semester	: Autumn	7. Pre-requisi	te: Nil

8. Subject Area : PCC

9. Objective: To impart knowledge of various numerical techniques to solve the problems.

S.No.	Contents	
		Hours
1.	Introduction, roots of a non-linear equation and roots of a polynomial of n th	6
	degree [incremental search method, method of successive approximations,	
	Newton's method, bisection method, secant method] and convergence study	
2.	Solution of (non-homogeneous) linear algebraic equations, review of matrix	8
	algebra, Gauss elimination method, Cholesky's decomposition method,	
	householder method, Gauss-Siedal iterative method; Solution of non-linear	
	algebraic equations, method of successive approximation, Newton's method,	
	modified Newton - Raphson method, secant method	
3.	Eigen values and Eigen vectors, reduction of generalized Eigen value problem to	6
	the standard Eigen value problem, methods for obtaining Eigen values and Eigen	
	vectors	
4.	Time marching schemes for solution of problems in time domain, numerical	6
	integration (2 – D) [Newton – Cotes method, Gauss – Legendre method]	
5.	Solution of ordinary and partial differential equations, Euler's method, Runge -	8
	Kutta method, finite difference method.	
6.	Sampling distributions, Tests for single mean, Proportion, Difference of means	8
	(large and small samples), Tests for single variance and equality of variances,	
	Chi-square test for goodness of fit, Independence of attributes; Completely	
	randomized design, Randomized block design, Latin square design, factorial	
	design	
	Total	42

11. Laboratory Practicals:

- 1. Solution of non-linear equations using MATLAB and related convergence study.
- 2. Solution of a system of equations using MATLAB and Matrix operations.
- 3. Curve fitting and polynomial approximation using MATLAB.
- 4. Consider a initial-value problem for harmonic oscillations. (i) Solve the equation explicitly. (ii) Solve this system with forward Euler method. (iii) Find a condition on the time step to ensure stability. (iv) Plot your solutions as curves. (v) Solve same question with backward Euler method and trapezoidal method.
- 5. Consider a mixed Neumann-Dirichlet boundary-value problem. Use Matlab to find out the eigenvalues and eigenvectors. Plot the first three eigenvectors. Do they match your theoritical prediction?
- 6. Numerical differentiation and integration using MATLAB.
- 7. Numerical approximation of model partial differential equations using MATLAB
- 8. Design of Experiments in MATLAB
- 9. ANOVA, Chi-square test for Goodness of fit in MATLAB.
- 10. Sampling distribution (Discrete and Continuous valiables) in MATLAB

S. No.	Name of Authors / Books / Publisher	Year of
		Publication/
		Reprint
1.	Chapra, S. C. and Canale, R. P., "Numerical Methods for Engineers",	2003
	Tata McGraw hill	
2.	Heath, M. T., "Scientific Computing : An Introductory Survey",	1997
	McGraw hill	
3.	Douglas, F. J. and Burden, R., "Numerical Methods", Cengage Learning,	2012
	4 th Edition	
4.	Rajasekaran, S., "Numerical Methods in Science and Engineering: A	2003
	Practical Approach", S. Chand & Sons	
5.	Walpole, R.E., Myers, R.H., Myers, S.L., and Ye,K., "Probability and	2007
	Statistics for Engineers and Scientists", Pearson Education, Asia	
6.	Yang, W. Y., Cao W., Chung, TS., and Morris, J., "Applied Numerical	2005
	Methods Using MATLAB", Wiley	

NAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology

1.	Subject Code	: NTN- 504	Course Title :	Nanoscale Modeling	and Simulation
2.	Contact Hours	: L:3	T: 0	P: 2	
3.	Examination Dur	ation (Hrs) :	Theory :	03 Practicals	: 00
4.	Relative Weight :	CWS : 15	5 PRS : 25	MTE : 20 ETE	: 40 PRE 0
5.	Credits : 04	6. Semester	: Spring	7. Pre-requisi	te: Nil
	~				

8. Subject Area : PCC

9. Objective: To introduce various approaches used for modeling and simulation of

nanomaterials.

S.No.	Contents	Contact
		Hours
1.	Introduction: Definition of a model, modeling in materials science;	6
	Simulation vs. modeling; Simulation techniques for nano, micro, meso and	
	continuum scales; Nanoscale and microscale - molecular dynamics and Monte	
	Carlo techniques.	
2.	Statistical Mechanics: Microstate, Macrostate, Distribution Laws,	8
	Indistinguishable particles, statistical mechanics and thermodynamics laws;	
	Maxwell Botzmann statistics.	
3.	Monte Caro Simulation: Principles of equilibrium; Monte Carlo simulation-	8
	estimator; Importance of sampling, acceptance ratio, continuous time MC, Ising	
	model and Metropolis algorithm; Simulation of Interfaces; Analysis of MC data;	
	Out of equilibrium simulation; MC simulation in surface science; Implementation	
	of MC algorithms.	
4.	Molecular Dynamics: Introduction, Interatomic potentials, Equations of motion,	8
	integration, Pair Distribution, constraints and free energy; Time correlation	
	functions and spherical densities; Velocity autocorrelation functions; Time	
	correlation function and relaxation times; Applications in nanomaterials.	
5.	Molecular Dynamics: Introduction, Interatomic potentials, Equations of motion,	8
	integration, Pair Distribution, constraints and free energy; Time correlation	
	functions and spherical densities; Velocity autocorrelation functions; Time	
	correlation function and relaxation times; Applications in nanomaterials.	
6.	Overview of Modelling, Simulation and Visualization Software: LAMMPS,	4
	ABMER, Folding@home, GROMACS, NAMD, VMD, XMD, Materials Studio.	
	Total	42

11.List of Laboratory Practicals:

- 1. Simulation of Ising Model using Metropolis algorithms.
- 2. Simulation of Potts model and its application in studying magnetic properties.
- 3. Molecular dynamics simulation of thermodynamic and kinetics properties.
- 4. Sintering of nanoparticles using LAMMPS/XMD
- 5. Deposition experiment using LAMMPS/XMD.
- 6. Yield Mechanism of nanostructures using LAMMPS
- 7. Nano-indentation experiments using LAMMPS
- 8. Structural properties calculation using LAMMPS.

S. No.	Name of Authors / Books / Publisher	Year of
		Publication /
		Reprint
1.	Newman, M.E.J. and Barkema, G.T., "Monte Carlo Methods in	1999
	Statistical Phyiscs", Oxford University Press.	
2.	Lee, J. G., "Computational Materials Science - An Introduction", CRC	2012
	Press.	
3.	Wolfson, M.M. and Pert, G. J., "An Introduction to Computer	1999
	Simulation", Oxford Press.	
4.	Raabe, D., Computational Materials Science: The Simulation of	2005
	Materials Microstructures and Properties, Wiley-VCH	
5.	Landau, D.P. and Binder, K., "A Guide to Monte Carlo Simulation in	2005
	Statistical Physics", Cambridge University Press.	
6.	Frenkel, D. and Smith, B., "Understanding Molecular Simulation",	1996
	Academic Press.	

NA	NAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology				
1.	Subject code	: NTN- 505	Course Titl	e: Laboratory met	hods
2.	Contact Hours	: L:0		(Multidisciplinary T:0	y Experiments) P:4
3.	Examination Dur	ration (Hours):	Theory :	00 Practica	al : 04
4.	Relative Weight	: CWS : 0	PRS : 50	MTE:0 ETE 0	PRE : 50
5.	Credits : 02	6. Semester	[:] Spring	7. Pre-requisite	² Nil
8.	8. Subject Area: PCC				

9. Objective: This course is intended to provide the experimental training in multidisciplinary areas of nanotechnology.

10. List of experiments:

- 1. To study the forming characteristics of nanograined micro/nanostructure by mechanical alloying using high energy planetary ball mill.
- 2. To study the annealing behavior of nanopowders using microwave furnace under controlled environment.
- 3. Synthesis of nanocoating by electroless technique and to study the morphology of coatings.
- 4. Dielectric variation of ferroelectric ceramics PZT and BaTiO₃ with temperature and frequency.
- 5. Magnetic effect on dielectric properties of multiferrites.
- 6. CV characteristics of diodes to extract doping profile.
- 7. CV characteristics of MOSFETs to extract surface states.

- 8. Native agarose gel electrophoresis for DNA.
- 9. Quantification of DNA oligonucleotides using UV spectrophotometer.

S. No.	Name of Authors / Books / Publisher	Year of Publication/ Reprint
1.	Bhushan, B. (Ed.), Springer Handbook of Nanotechnology,	2007
	Springer Science international edition.	
2.	Berg,J.M., Tymoczko, J.L., and Stryer,L., Biochemistry, 6 th Ed. –	2006
	Freeman, W.H., and Company, New York.	
3.	Nalwa,H.S., Ed. Encyclopedia of Nano science and	2004
	Nanotechnology.	

NAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology

1. Subject code : NTN- 601 Course Title: Structural Analysis of Nanomaterials

2.	Contact Hours	: L:3		T:1	P:0
3.	Examination Dura	tion (Hours):	Theory : 03	Practica	al : 00
4.	Relative Weight	: CWS : 25	PRS : 00	MTE: 25	ETE : 50
5.	Credits : 04	6. Semester	Both	7. Pre-requisite	i Nil

- 8. Subject Area: **PEC**
- 9. Objective: This course aims at imparting the knowledge on structural aspects of

nanomaterials.

S.	Contents	Contact
No.		Hours
1	Introduction: Phase, Phase rules of Gibbs; Phase diagram: unary, and ternary	4
	systems, lever rule; microstructure during cooling, Crystal formation (energy vs.	
	distance between atoms); Structural Magic number rule to show the number of	
	atoms in nanoparticles; X-ray diffraction by the crystalline phase.	
2	Quantitative Analysis: Basic principles; Hanawalt method; Examples of phase	4
	analysis single phase and phase mixture; Analysis of unknown phase mixtures;	
	practical difficulties.	
3	Quantitative Analysis: Atom fraction and weight fraction; Factors that control	
	absolute and relative X Ray intensities.	
	Single Phase: Chemical analysis by parameter measurement, principle and	
	application of this method.	
	Multiphase: Basic principles, Methods like external standard method; Direct	
	comparison method and internal standard method; precautions for precise	
	measurements; Practical difficulties.	

4	Phase Determination: Introduction; general principles; Solid solution: Interstitial, Random, Ordered and Defect; determination of the type of solid solutions by XRD;	3
	Determination of solvus curves for binary and ternary systems using disappearing phase method and parametric method; Precautions; difficulties.	
5	The determination of Crystal Structure: Introduction. Preliminary treatment of	3
-	data; Indexing patterns of cubic crystals; Indexing patterns of noncubic crystals;	-
	Determination of the number of atoms in unit cell; Determination of atom	
	positions.	
6	Precise Parameter Measurements: Introduction; Cameras used for	3
	measurements; Debys-Scherrer cameras, Back -reflection focusing cameras,	
	Pinhole Diffractometers; Methods of least squares, Cohen' method, calibrations	
	method.	
7	The structure of Polycrystalline Aggregate: Introduction; Crystal size; Particle	4
	size; Crystal perfection; texture of wire, and rod.	
8	Orientation of Single Crystals: Need for orientation identification, methods for	4
	determining crystal orientation; Laue method (the back- reflection and the	
	Transmission Laue method); The diffractometer method; Zone, pole and trace,	
	Stereographic projection, Wulff net, Angle between poles and traces, rotation of the	
	poles around axes, Steleographic projection diffraction spots of transmission Late	
	Leonhardt chart for the orientation of transmission Laue patterns. Diffractometer	
	method of determining orientation, relative orientation of precipitate and matrix	
9	Stress Measurement: Introduction Applied stress and residual stress Uniaxial	4
,	stress. Biaxial stress. Experimental technique using pinhole camera and	•
	diffractometer, Applications.	
10	Order Disorder Transformations: Introduction Long order; examples like	3
	AuCu3 Detection of superlattice lines; Short range order and clustering.	
11	Structural Studies of Nanomaterials: Reciprocal Lattice; Edward's Sphare and	6
	its application; Principles of emerging nanoscale X-ray techniques such as small	
	angle X-ray scattering and X-ray absorption fine structure (XAFS); Electron and	
	Neutron diffraction techniques and their applications to Nanomaterials.	
	Total	42
•		

S. No.	Name of the Author(s) / Books/ Publisher	Year of
		Publication /
		Reprint
1.	Cullity, B.D., Stock, S.R. and Stock, S, "Elements of X-Ray diffraction",	2001
	Prentice Hall, 3 rd Edition, New Jersey.	
2.	Phillips, R., "Crystal defects and Microstructures", Cambridge University	2001
	Press, Cambridge, U.K.	
3.	Wang, Z.L., "Characterization of Nanophase Materials", Wiley-VCH,	2000
	Weinheim, Germany.	
4.	Graef, M.D., McHenry, M.E., "An Introduction to crystallography,	2007
	diffraction and symmetry", Cambridge University Press U.K.	
5.	Allen, S.M., Thomas, E.L., "The structure of Materials" (MIT Series in	1999
	materials science and engineering), John Wiley & Sons, US.	

]	NAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology				
1.	Subject code N	FN- 602 Course Ti	tle: Technology	v of Nanostruct	ured Fabrications
2.	Contact Hours	: L:3		T:1	P:0
3.	Examination Dur	ration (Hours):	Theory : 03	Practic	al : 00
4.	Relative Weight	: CWS : 25	PRS : 00	MTE: 25	ETE : 50
5.	Credits : 04	6. Semester :	Both	7. Pre-requisite	e: Nil
8.	Subject Area:	PEC			

9. Objective: To impart the knowledge on application of thin film technology to fabricate nanoelectronic, optical and magnetic data storage devices.

S.No.	Contents	Contact
5.1 (0.	Contents	Hours
1.	Introduction to Nanostructures: Overview of thin film technology for various nanotechnology applications, Miniaturization of electrical and electronic devices, Moore's law. Epitaxial growth of thin films,	6
	Homoepitaxy and heteroepitaxy; lattice misfit and imperfections, thin film superlattice.	
2.	Production of Nanolayers (PVD & CVD Techniques): Thermal evaporation, Sputtering, Molecular beam epitaxy (MBE) and Pulsed laser deposition (PLD), Chemical vapour deposition (CVD)	11
3.	Introduction to Various Lithography Techniques: Introduction & Limitation of Photolithography, X-ray Lithography, Electron Beam Lithography, Nanoimprinting & Soft nanolithography, Dip Pen nanolithography.	12
4.	Applications and Emerging Technologies: Thin films for micro & nanoelectronics, MEMS, NEMS, Growth and properties of semiconducting nanowires using topdown and bottom up approaches and their applications in electronic devices, mechanical, chemical and biochemical sensing applications. Solar cells, Fuel cells, superconducting and GMR devices, Gas sensors.	13
	Total	42

S.No	Name of Author (s)/Book/Publisher	Year of Publication/
		Reprint
1.	Madou, M., Fundamentals of Microfabrication, CRC Press.	1997
2.	Fahrner, W.R., Nanotechnology and Nanoelectronics, Springer.	2005
3.	Waits, R.K., Thin film deposition and patterning, American Vacuum Society.	1998
4.	Tu, K.N., Mayer, J.W., and Feldman, L.C., Electronic Thin Film Science for Electrical Engineers and Materials Scientists, American Vacuum Society.	1992
5.	Poole, C.P., Introduction to Nanotechnology, John Wiley & Sons.	2003
6.	Venables, J.A., Introduction to Surface and Thin Film Processes, Academic Press.	2000
7.	Vassen, J.1., and Kem, W., Thin Film Procss, Acadmic Press New York.	1990
8.	Ohring, M., Materials Science of Thin Films, Academic Press.	2002
9.	Callister Jr, D., Materials Science and Engineering: An Introduction 6 th Edition. William John Wiley & Sons.	2003

	NAME OF DEPTT. /CENT	RE : O	Centre of Excellence	e: Nanotechnology
1.	Subject code: NTN- 603	Coι	arse Title: Supramo	lecular Chemistry of
2.	Contact Hours : L	.:3	T:1	Nanomaterials P:0
3.	Examination Duration (Hours):	Theory :	03 Prac	tical : 00
4.	Relative Weight : CWS : 25	PRS :	00 MTE: 25	ETE : 50
5.	Credits : 04 6. Semester :	Both	7. Pre-requisite :	Nil

8. Subject Area: **PEC**

9. Objective: To impart the knowledge on supramolecular Interactions and their importance in natural systems, self-assembly and synthesis nanodevices.

S. N0.	Contents	Contact
		Hours
1.	Introduction to Supramolecular Chemistry: Inspiration, history and definitions;	5
	Molecular forces: Role of non- covalent interactions in supramolecular chemistry,	
	difference with molecular and supramolecular system, kinetics and thermodynamics	
	of supramolecular assemblies.	
2.	Molecular Structures: Natural and artificial ionophores and receptors, cyclodextrins, zeolites, cucurbiturils, crown ethers, calixarenes and porphyrins based systems; Synthesis of receptors for cations, anions and neutral molecules; non covalent synthesis of macrocycles; metal containing molecular geometries; Molecular recognition biomaterials and bioinspiration (Protein folding, Assembly and structure, Protien misfolding and disease), biomimetics and nanotechnology.	15
3.	Synthesis and Fabrication: 'Top –down' vs. 'bottom –up' approaches, self-assembly and core- shell systems; Microspheres: Colors from the Beaker, microporous and mesoporous materials.	8
4.	Applications of Self –assembled Nanomaterials: Self assembled molecular structure (molecular containers, metalla –cages and capsules), molecular scale machines- mechanical rotors, gears brakes, and molecular switches. Self-assembling blocks copolymers, self-assembly of large building blocks, nanorods, nanotube and nanowire. Nano-imaging and nano-drugs.	14
	Total	42

S. No.	Name of the Author(s) / Books/ Publisher	Year of
		Publication/
		Reprint
1.	Pradeep, T., "Nano The Essentials", Tata Mc Graw Hill, New Delhi.	2007
2.	Ozin, G., Arsenault, A., "Nanochemistry A Chemical Approach to Nanomaterials", RSC, London.	2005
3.	Wang, Z.L., Zhang, Z., Liu, Y., "Handbook of Nanophase and Nanostructured materials", Kluwer Academic, New York.	2002
4.	Cao, G., "Nanostructures and Nanomaterials, Synthesis, Properties and Application", Imperial College Press London.	2004
5.	Gomez-Romero, P., Sanchez, C., "Functional Hybrid Materials", Wiley-VCH, weinheim.	2004
6.	Balzani, V., Ventdurei, M., Credi, A., "Molecular Devices and Machines – A journey in to the Nanoworld", Wiley – VCH Weintheim.	2003
7.	Steed, J.W., Atwood, J.L., "Supramolecular Chemistry", John Wiley & Sons, England.	2000
8.	Zang, J.Z., Wang, Z.L., Liu, J., Chen, S.W., Liu, G.Y., "Self –assembled Nanostructures", Kluwer Academic Publisher, New York.	2002
9.	Anslyn, V., Dougherty, D.A., "Modern Physical Organic chemistry", University Science Books, Sausalito, CA.	2006
10.	Steed, J.W., Tuner, D.R., Wallace, K.J., "Core Concepts in Supramolecular Chemistry and Nanochemistry", John Wiley & Sons Ltd., England.	2007

NAME OF DEPTT. /CENTR	E : Centre of Excellence:	Nanotechnology
1. Subject code : NTN- 604	Course Title: Physics of	Nanomaterials
2. Contact Hours : L:3	T:1	P:0
3. Examination Duration (Hours):	Theory : 03 Practica	al : 00
4. Relative Weight : CWS : 25	5 PRS : 00 MTE : 25	ETE : 50
5. Credits : 04 6. Semeste	er : Both 7. Pre-requisit	te: Nil
8. Subject Area: PEC		

9. Objective: This course is aimed at providing physics related concepts of nanomaterials.

	Content				
S.No.		Hours			
1.	Introduction: An overview of quantum mechanical concepts related to low	5			
	- dimensional systems e.g. Wave -particle, deBroglie wavelength, quantum				
	confinement, time- dependent and time independent Schrodinger equation,				
	Particle in box, a free particle.				
2.	Concepts Related to Electronic Structure: Three dimensional and direct	12			
	lattice, packing fraction, reciprocal, Brillouin Zones, Diffraction from 2D				
	structures, Free electron approximation, periodic boundary conditions,				
	allowed k values, Fermi energy, density of electronic states for one, two, and				
	three dimensional electron gas, energy bands, Direct and indirect gap				
	semiconductors, Lattice matching, effective mass, Variation of energy bands				
	with alloy composition and its exploitation for devices.				
3.	Heterostructures and Electron States: Heterojunctions, type I and Type II				
	heterostructures, Classification of Quantum confined systems, electrons and				
	holes in Quantum wells, Electronic wavefunctions, energy subbands and				
	density of electronic states in Quantum wells, Quantum wires, and Quantum				
	dots, Superlattices, wavefunctions and Density of State for superlattices,				
	Excitons in Quantum structures and in heterostructures, The unit cell for				
	quantum well, for quantum wire and for quantum dot.				
4.	Nanoclusters and Nanoparticles: Introduction, particle shape and the	6			
	surface, Collective surface area, Porosity, Spherical cluster approximation.				
	Metal nanoclusters: Magic numbers, geometric structures, electronic				

	structure, Bulk to nanotransition, Magnetic clusters; Semiconducting nanoparticles: Rare – gas and Molecular clusters	
5.	Carbon Nanostructures: Introduction, to Carbon molecules and clusters, Structure of C 60 and its crystal, Small and Large Fullerenes and other Buckyballs, Carbon nanotubes and their electronic structure.	5
6.	Bulk Nanostructured Materials: Solid disordered nanostructures, Nanostructured crystals, photonic crystals.	2
	Total	42

S.No.	Name of Books / Authors	Year of
		Publication /
		Reprint
1.	Hornyak, G.L., Dutta, J., Tibbals, H.F., Rao, A.K., "Introduction to	2008
	Nanoscience", CRC Press.	
2.	Midtin, V.V., Kochelp, and Strosci, MA., "Quantum Heterostructures:	1999
	Microelectronics and Optoelectronics", Cambridge University Press.	
3.	Poole, C.P. Jr. and Owens, F.J., "Introduction to Nanotechnology", Wiley	2006
	India.	
4.	Pradeep, T., "Nano: The essentials", Tata Mc Graw Hills.	2007
5.	Streetman, B.G., and Banerjee, "Solid State Electronic Devices", prentice	2001
	Hall of India.	
6.	Harrison, P., "Quantum Wells, Wires, and Dots: Theoretical and	2000
	Computational Physics", John Wiley.	

]	NAME OF DEPT	Г. /CENTRE	: Centre	of Excellence:]	Nanotechnology
1.	Subject code : NTN	-605 Cours	se Title: Electroi	nic Properties a	and Measurement
				Techniques of	Nanomaterials
2.	Contact Hours :	L:3		T:1	P:0
3.	Examination Duration	on (Hours):	Theory : 03	Practica	al : 00
4.	Relative Weight :	CWS : 25	PRS : 00	MTE: 25	ETE : 50
5.	Credits : 04	6. Semester	: Both	7. Pre-requisite	i Nil
8.	Subject Area: Pl	EC			

9. Objective: To introduce the principles of electronic materials and their properties.

S.No.	Contents	Contact
1.	Elementary Material Science Concepts: Bonding principles and types of solids, crystalline states, Miller Indices, Crystal defects and their significance, amorphous, polycrystalline and single crystalline materials; single crystalline material developing methods and their limitations; solid solutions and two phase solids; phase diagrams of important electrical and electronic materials, nano-grain formation, magic number.	8
2.	Electrical and Thermal Conduction in Solids: Classical theory; temperature dependence of resistivity; Matthiessen's rule, Nordheim's rule; resistivity of mixtures; Hall effect; thermal conduction; electrical conductivity of semiconductors and ionic crystals, electrical conductivity of nanomaterials.	6
3.	Modern Theory of Solids: Hydrogen molecule; band theory of solids; semiconductors; density of states in an energy band; Boltzmann statistics; Fermi-Dirac statistics; Quantum theory of metals; Fermi energy significance, thermionic and field emission; selection of nanomaterials.	6
4.	Semiconductors: Intrinsic and extrinsic semiconductors; temperature dependence of conductivity, recombination and minority carrier injection; optical absorption; peizoresistivity; Schottky junction; direct	6

	and indirect semiconducting materials.	
5.	Dielectric and Magnetic Materials : Polarization and relative permittivity; electronic polarization, polarization mechanisms, dielectric constant and dielectric loss, dielectric breakdown, capacitor dielectric materials; piezoelectric, pyroelectric and ferroelectric materials and their significant usages; Magnetization of matter; magnetic materials classification – diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, ferrimagnetism; Ferromagnetism origin and exchange interation, saturation magnetization and Curie temperature, magnetic domains; soft and hard magnetic materials, magnetic recording materials; Superconductivity - Zero resistance, mechanism, Meissner effect, critical current density, applications.	8
6.	Measurement Techniques: Magnetic measurements: Permeability, saturation magnetization, susceptibility, Hysteresis loop (B-H curve); Vibrating sample magnetometer (VSM); superconducting quantum interference device (SQUID);Electrical measurements: Resistivity, conductivity, inductance, impedance, permittivity; LCR meter; ferroelectric (P-E loop); Dielectric measurements: Transmission line, rectangular waveguide and coaxial cable; scattering parameters (S-parameter); Vector network analyzer (VNA); Piezoelectric measurement; Magneto-electric measurement.	8
	Total	42

S.No.	Authors/Name of Books/ Publisher	Year of Publication/ Reprint
1.	Kasap S.O., Principles of Electronic Materials and Devices, 3 rd Ed., McGraw-Hill.	2009
2.	Hummel R.E., Electronic Properties of Materials, 4 th Ed., Springer.	2011
3.	White M.A., Physical Properties of Materials, 2 nd Ed., CRC Press.	2011
4.	Kwok H.L., Electronic Materials, PWS Publications.	1997
5.	Streetman B., and Bannerjee S., Solid State Electronic Devices, 6 th Ed., Printice Hall.	2005
6.	Hench, L.L. and West, J.K., Principle of Electronic Ceramics, 1 st Ed., Willey.	1990
7.	Cooper W.D. and Helfrick, A.D., Electronic Instrumentation and Measurement Techniques, 3 rd Ed., Printice Hall.	1978

]	NAME OF DEF	PTT. /CENTRE	: Centre	of Excellence: Nanotechnology
1.	Subject code : N	ГN-606	Course Title:	Environmental Nanotechnology
2.	Contact Hours	: L:3	T:1	P:0
3.	Examination Dur	ration (Hours):	Theory : 03	Practical : 00
4.	Relative Weight	: CWS : 25	PRS : 00	MTE: 25 ETE: 50
5.	Credits : 04	6. Semester :	Both	7. Pre-requisite : Nil
8.	Subject Area:	PEC		

9. Objective: To impart the knowledge on applications of nanotechnology in the field of Environmental Science and Technology

S. No.	Contents	Contact
1	Our interview of above the second second biological and a second	Hours
1.	Overview of physical, chemical and biological processes	0
	concerning the environment, types, transport and transformation	
	processes of contaminants in an, water and son, effects of	
	Containmants on environment.	(
2.	Environmental impacts of nanomaterials - Exposure and fisk	0
	assessment, Dose-response, mechanisms of toxicity,	
	ecoloxicological impacts of nanomaterials - bloavallability and	
2	uptake, assessment of the cycle fisk of nanomaterials.	-
5.	Nanoparticle transport, aggregation and deposition –	5
	physicochemical interaction, aggregation, deposition, nanoparticle	
	behavior in heterogenous systems, airborne nanoparticles,	
4.	Reactive oxygen species (ROS) generation – semiconductor	5
	nanoparticles and ROS generation, metal sulphide surface	
	chemistry and free radical generation, fullerene photochemistry and	
	ROS generation potential.	
5.	Environmental applications of nanomaterials – Mechanism for	10
	remediation of aqueous contaminants, photocatalyst; membranes	
	incorporating nanomaterials, transport processes in membrane	
	technology; nanomaterial based adsorbents for water and	
	wastewater treatment – adsorption at metal oxide surfaces, hybrid	
	adsorbents; case studies.	

6.	Analytical methodologies for studying impact of nanomaterials in environment – atomic absorption spectrometry, inductively coupled plasma spectrometry, chromatography, thermal methods, hyphenated techniques	10
	Total	42

S. No.	Name of Authors/Book/ Publisher etc.	Year of Publication/ Reprint
1.	Wiesner, M.R., and Bottero, J.Y. (Ed.) "Environmental	2007
	Nanotechnology: Applications and Impacts of Nanomaterials"	
	McGraw-Hill, New York.	
2.	Diallo, M., Duncan, J., Savage, N., Street, A., and Sustich, R.	2008
	(Eds). "Nanotechnology Applications for Clean Water"	
	William Andrew.	
3.	Lead J., and Smith, E. "Environmental and Human Health	2009
	Impacts of Nanotechnology" John Wiley & Sons.	
4.	Skoog, D.A., Holler, F.J., and Crouch S.R. "Instrumental	2007
	Analysis" Clenage Learning India Private Limited, New Delhi.	
5.	Masters, G.M. and Ela, W.P. "Introduction to Environmental	2007
	Engineering and Science" Prentice Hall.	

	NAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology			
1.	Subject code : NTN-607	Course Title:	Transport Phene	omenon in Nanomaterials
2.	Contact Hours :	L:3	T:1	P:0
3.	Examination Duration (Ho	ours): Theor	y: 03	Practical : 00
4.	Relative Weight : CWS	25 PRS	: 00 MTE :	25 ETE: 50
5.	Credits : 04 6. S	emester : B	oth 7. Pre-	requisite : Nil

- 8. Subject Area: **PEC**
- 9. Objective: This course aims at imparting the knowledge on fluid flow, heat and mass transfer with specific emphasis on nanomaterials.

S.No.	Contents	Contact Hours
1	Introduction: Principle of momentum mass and energy balance:	5
1.	Dimensional analysis and its applications: Generalized interface models for	5
	transport phenomena- unusual scale effects in composite nanomaterial	
2	Fluid Flow: Laminar and Turbulent Fluid Flow: Viscosity: Mass balance-	8
	continuity equation for steady state incompressible fluid. Momentum	Ū
	balance- equation of motion. Laminar flow through pipes. Over all mass and	
	momentum balance: Flow meters: Flow through packed and fluidized beds:	
	Motion of gas bubbles in liquids. Theory of transport phenomena on	
	nanomaterials. Process parameters including the application in	
	nanotechnology.	
3.	Heat Conduction: Fourier's law of heat conduction; Conductivity; Heat	5
	conduction equation in rectangular, cylindrical and spherical coordinates;	
	Steady state one dimensional and multidimensional heat conduction;	
	Unsteady state heat conduction.	
4.	Heat Convection: Forced convection; Natural convection; Overall thermal	5
	energy balance and concept of heat transfer coefficient.	
5.	Heat Transfer by Radiation: Thermal radiations and related properties of	5
	materials like two dimensional nanomaterials (thin films); Emissivity and	
	absorptivity of substances; Heat exchange between two infinitely long and	
	wide parallel plates; Heat exchange between surfaces of finite area.	
6.	Mass Transfer: Modes of mass transfer viz. diffusion and convection;	7
	Diffusion- Fick's laws of diffusion; Diffusion in gasses, liquids and solid;	

	Convective mass transfer- natural and forced convection; Application in nanomaterials.	
7.	Applications of Nanofluids: Nanomaterials and their application in enhancement of thermal conductivity and heat convection; Nanofluids for heat transfer applications.	7
	Total	42

S.No.	Name of Author (s) / Book/ Publisher	Year of
		Publication
		/ Reprint
1.	Bird, R. B., Stewart, W.E. and Lightfoot, E.N., "Transport Phenomena",	2007
	Revised 2 nd Edition, John Wiley & Sons, Inc.	
2.	Geankoplis, C.J., "Transport Processes & Separation Processes	2012
	Principles",4 th Edition, PHI Learning Pvt. Ltd., New Delhi.	
3.	Incroperia, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., "Principles	2013
	of Heat and Mass Transfer";7 th Edition, John Wiley & Sons, Inc.	
4	Nag, P.K., "Heat and Mass Transfer", 3 rd Edition, Mc Graw Hill	2011
	Education(India) Pvt. Ltd.	
5.	Thirumaleshwar, M., "Fundamentals of Heat and Mass Transfer" Pearson	2012
	Education in South Asia.	
6.	Rathore, M.M., "Engineering Heat and Mass Transfer" 2 nd Edition,	2006
	University Science Press, New Delhi.	
7.	Arora, D., "A Course of Heat Mass Transfer" Dhanpat Rai Publishing	2005
	Company (P) Limited.	

	NAME OF DEPTT. /CENTRE : Centre of Excellence: Nanotechnology					
1.	Subject code : NT	CN-608 Co	ourse Title: Sur	face Engineer	ing of Nanomaterials	
2.	Contact Hours	:	L:3	T:1	P:0	
3.	Examination Dura	ation (Hours):	Theory :	03	Practical : 00	
4.	Relative Weight	: CWS :	25 PRS :	00 MTE	: 25 ETE : 50	
5.	Credits : 04	6. Semester :	Both	7. Pre-requisi	te : Nil	
8.	Subject Area:	PEC				

9. Objective: To impart knowledge on surface engineering of nanomaterials and their applications.

10.	Details	of	Course:
-----	---------	----	---------

S.	Particulars	Contact
No.		Hours
1.	Fundamentals: Introduction to tribology, surface degradation, wear and corrosion, types of wear, adhesive, abrasive, oxidative, corrosive, erosive and fretting wear, classification of nano coatings, definition, scope and general principles, application of surface engineering towards nanomaterials.	6
2.	Conventional surface engineering: Surface engineering by material removal, material addition, surface modification using liquid/molten bath, thermal and chemical treatments, gaseous medium etc.	6
3.	Advanced surface engineering practices: Surface engineering by energy beams, laser assisted microstructural and compositional modification, electron and laser beam, ion beam, plasma beam etc.	9
4.	Advanced coating practices: Cold spray, sputter deposition, ion implantation, sol-gel technique, electrolysis and electroless techniques, HVOF, PVD, PECVD, CVD, ALD etc.	9
5.	Characterization of surfaces and coatings: Porosity and adhesion of surface coatings, Measurement of coating thickness, wear track and debris analysis, surface microscopy and topography by scanning probe microscopy, spectroscopy analysis, XRD, AFM etc.	6
6.	Functional coatings and Applications: Brush, Screen printing, Spray, powder, Dip-coating, ED, Fluidized Bed, Electrostatic spray gun, photovoltaics, bio-and chemical sensors, semiconductors, polymers and composites, electronic, optical and magnetic devices, modeling.	6
	Total	42

S. No.	Name of Author (s) / Book/ Publisher	Year of
		Publication
		/ Reprint
1.	Morton, P.H., "Surface Engineering & Heat Treatment", I.I.T, Brooke field.	1991
2.	"ASM Metals Handbook: Surface Cleaning, Finishing & Coating", Tenth Edition, Vol.5, Ohio, Metals Park, USA.	2000
3.	Satas, D. and Tracton, A.A., "Coating technology handbook", Mercel Dekker, New York.	2001
4	Davis, J.R., (Ed.)., "Surface Engineering for Corrosion and Wear Resistance", ASM International, Materials Park, Ohio.	2001
6.	Fontana, M.G., "Corrosion Engineering", 3 rd Edition, M. C. Graw Hill, New York.	2005
7.	Winston Revie, R., (Ed.), "Uhlig's Corrosion Handbook", 3 rd Edition, John Wiley & Sons. New York. USA.	2011
8.	Bieleman, J., "Additives for coating", Wiley-VCH Verlag, Germany.	2008
9.	Peter M. Martin, "Introduction to Surface Engineering and Functionally Engineered Materials", Wiley.	2011
10	Pal, K., (Ed.), "Recent Advances in Elastomeric Nanocomposites", Springer, Berlin	2011

NAME OF DEP	TT. /CENTRE	: Centre of	f Excellence: Na	notechnology
1. Subject code	: NTN- 609	Course Tit	le: Nanobiotech	nology
2. Contact Hours	: L:3	Т	ſ :1	P:0
3. Examination Dura	ation (Hours):	Theory : 03	Practical :	00
4. Relative Weight	: CWS : 25	PRS: 00 N	MTE: 25 ET	`E : 50
5. Credits : 04	6. Semester :	Spring 7	'. Pre-requisite :	Nil

8. Subject Area: PEC

9. Objective: This course is intended to impart the knowledge of nanoscale biological molecules, their methods of analysis, integration to macromolecules, and providing an understanding of various nanobiological applications.

S. No.	Contents	Contact
		Hours
1.	Overview of Nanobiotechnology: Historical perspective of integration of	2
	biology, chemistry and material science opportunities and promises of nanobiotechnology.	
2.	Biological Molecules and their Analysis: Complexity and size of biological	6
	molecules - DNA, RNA proteins and carbohydrates; Techniques: Biological	
	analysis electrophoretic and chromatographic analysis - basic principles and	
	applications.	
3.	Single Molecule Approaches in Biotechnology: Fluorescence – spectroscopy-Fluorescent probes for analysis of proteins and nucleic acids.	4
	Labeling of proteins and nucleic acids by acids by various fluorescent dyes.	
	Molecular beacons and applications.	
4.	Microbiology and Nanotechnology: Bacteria viruses: Prokaryotic	8
	complexity and size distribution; Bacterial cell-to -cell communication,	
	quorum sensing, chemotaxis; Microbial production of inorganic	
	nanoparticles; Gold nanoparticles for imaging and therapy.	
5.	Miniaturized Devices-Nanotechnology and medical devices: Overview of	6
	smart devices for medical field; miniaturized devices for drug delivery;	

	advantages of miniaturized devices; lab on chip concept; epipen; intelligent pill; wobbling gels.	
6.	Nanomaterials used in Biotechnology: Nanoparticles; carbon nanotubes; fullerenes; nanofibres; quantum dots and buckyballs interface with biological macromolecules; Biological perspectives of Nanomaterials: Impact of Nanomaterials in biological process; tolerance by immune systems and toxicity; Nucleic acid Engineering: Modifications of DNA for nanotechnological applications; Nanostructure assembly using DNA.	7
7.	Applications of Nanobiotechnology: Nano – Biosensing –Biosensors and nanobiosensors – basic Design type of nano –biosensors. DNA aptamers for nano- biosensing and drug discovery; Nano–medicine – Impact of nanotechnology in health medicine – overview .Promising applications of nanomedicine- recent concepts – implantable devices, dendrimers – polymers for drug delivery, targeted drug delivery for cancer and other diseases.	6
8.	Chemical Biology and system biology: Small molecules as antibiotics – mode of action, chemical genetics, nanotechnology and high throughput screening for drug discovery.	3
	Total	42

S. No.	Name of Books / Authors	Year of
		Publication
		/ Reprint
1.	Berg, J.M., Tymoczko, J.L., and Stryer, L., "Biochemistry", 6 th Ed W. H.	2006
	Freeman and Company, NewYork.	
2.	Goodsell, D.S., "Bionanotechnology: Lessons from Nature", Wiley Press.	2004
3.	Niemeyer, C.M. and Mirkin, C.A., (Editor). "Nanotechnology: Concepts,	2004
	Applications and perspectives", Wiley Press.	
4.	Weish, C., "Antibiotics: Action, Origins, and resistance", ASM Press	2003
5.	Arya, D.P., "Aminoglycoside Antibiotics: From Chemical biology to Drug	2007
	Discovery" Wiley Press.	
	Labhasehwar, V., and Leslie-Pelecky, D.L., (editor), "Biomedical	
6.	Applications of Nanotechnology", Wiley Press.	2007
7.	Klussman, S., "The Aptamer Handbook : Functional Oligonucleotides and	2006
	their Applications", Wiley VCH Press.	
8.	Paulter Adans, R.L., Knwler, L., and Leader, D.P., "The Biochemistry of	2007
	the Nucleic Acids" Springer verlag GmbH.	