NAME OF DEPARTMENT/CENTRE : Metallurgical and Materials Engineering

1. Subject Code:	MTN-501	Cours	e Title: S	Structure of	Materials		
2. Contact Hours:		L: 3	7	T: 1	P: 0		
3. Examination Dur	ation (Hrs):	Theor	y: 3	Prac	ctical: 0		
4. Relative Weight	: CWS:	25 PI	RS: 0	MTE:	25 ETE:	50 PRE:	0
5. Credits: 4				6. Se	emester: Au	ıtumn	
7. Pre-requisite:	NIL			8. Su	ıbject Area:	РСС	

9. Objective: To provide knowledge of structure property correlations of different materials.

SI.	Contents	Contact
No.		Hours
1.	Nature of Geometry of Crystals: Atomic arrangements in solids,	4
	space lattices, coordination number and effective number of atoms for	
	common crystalline structures: FCC, BCC and HCP, indexing of	
	crystallographic planes and directions.	
2.	Structure of Ceramics and Polymers: Atomic arrangements in	3
	ceramics and polymers, their influence on mechanical properties.	
3.	Principles of Alloy Formation: Primary and intermediate phases their	4
	formation, solid solutions, Hume Rothery rules, electron compounds,	
	normal valency compounds and interstitial compounds.	
4.	Solidification: Solidification of metals and alloys- equiaxed, dendritic	3
	and columnar grains; Coring.	
5.	Phase Diagrams: Binary equilibrium diagrams involving isomorphous,	8
	eutectic, peritectic and monotectic systems, phase rule, lever rule effect	
	of non-equilibrium cooling on structure and distribution of phases.	
6.	Solid State Transformations: Phase equilibria involving eutectoid and	8
	peritectoid transformations, TTT and CCT diagrams, harenability, Heat	
	Treatment of Ferrous and Non Ferrous Alloys viz., annealing,	
	normalizing, quenching, tempering and precipitation hardening.	
7.	Diffusion in Solids: Fick's laws of diffusion, Darken's equation,	4
	Kirkendall effect and mechanism of diffusion.	
8.	Important Binary Systems: Cu-Ni, Al-Si, Al-Cu, Pb-Sn, Cu-Zn, Cu-	8
	Sn and Fe-C systems, effect of non equilibrium cooling and important	
	alloys belonging to these systems.	
	Total	42

Sl. No.	Name of Authors/ Book/ Publisher	Year of Publication/ Reprint
1.	Avner, S.H., "Introduction to Physical Metallurgy", McGraw Hill	2005
2.	Callister W.D., Materials Science and Engineering, 7th Ed., Wiley	2010
	India (P) Ltd.	
3.	Hansen, P. Mordike, B.L., "Physical Metallurgy", 3 rd Ed. Cambridge	1996
	University Press	
4.	Hosford. W.F, "Physical Metallurgy", 2 nd Ed., CRC Press	2011
5.	Smallman, R.E., Ngan, A.H.W., Modern Physical Metallurgy, 8th	2013
	Ed. Butterworth-Heinemann.	

NAME OF DEPARTMENT/CENTRE : Metallurgical and Materials Engineering

1. Subject Code: MTN-502 Course Title: Modeling, Simulation, and Computer Applications

2. Contact Hours:	L: 3	T: 0	P: 2	
3. Examination Duration (Hrs):	Theory:	3	Practical : 0	
4. Relative Weight : CWS:	15 PRS :	25 M	TE: 20 ETE:	40 PRE: 0
5. Credits: 4			6. Semester: Spi	ing
7. Pre-requisite: NIL			8. Subject Area:	PCC

9. Objective : To impart knowledge on modeling with emphasis on metallurgical systems.

Sl.	Contents	Contact
No.		Hours
1.	Introduction : System, environment, input and output variables; State variables and their transition; Hierarchy of knowledge about a system; System identification – structure and parameter identification; Deterministic and stochastic systems; Static and	4
	Dynamic Systems; Objectives of modelling and simulation	
2.	Physical Modelling: Dimension analysis, Dimensionless grouping of input and output variables to find empirical relations, similarity criteria and their application to physical models.	5
3.	Modelling of Systems with Known Structure: Review of conservation laws and the governing equation for heat, mass and momentum transfer, Deterministic models – (a) distributed parameter models in terms of partial differential equations and their solutions and (b) lumped parameter models in terms of differential and difference equations, state space models, transfer functions, block diagrams and subsystems, stability of transfer functions, modelling for control, Stochastic models	10
4.	Neural Network Modelling of Systems only with Input-output Database: Neurons, architecture of neural network, knowledge representation, learning algorithm, Multilayer feed forward network and its back propagation learning algorithm, Application to metallurgical systems.	6
5.	Fuzzy logic modelling of systems only with broad expert knowledge: Fuzzy sets, membership functions, fuzzy linguistic variables, 'IF-THEN' rules, Fuzzy Inference systems (FIS) – (i) Mamdani type and (ii) Sugeno (TSK) type, Application to metallurgical systems.	5
6.	Neuro-fuzzy Modelling of Systems with Limited Database:	4

	Adaptive neuro-fuzzy inference system (ANFIS), hybrid learning algorithm using MATLAB®; Co-active neuro-fuzzy system (CANFIS)	
7.	Optimization and Design of Systems: Summary of gradient based techniques; Nontraditional optimization techniques – (i) Genetic Algorithm (GA) – coding, GA operators, elitism, application using MATLAB; (ii) Simulated Annealing	4
8.	Simulation of Metallurgical Systems: Monte-Carlo simulation, simulation of solidification and casting, simulation of melt stream disintegration by fluid flow	4
	Total	42

List of Practicals:

- 1. Introduction to programming with MATLAB
- 2. Find the response of a lumped variable model expressed in terms of transfer function using MATLAB for inputs of (i) unit step function, (ii) unit impact function and (iii) unit ramp function
- 3. Use of Simulink in MATLAB[®] for metallurgical problems
- 4. Use of Neural Network in MATLAB for metallurgical problems
- 5. Use of FIS and ANFIS in MATLAB for metallurgical problems
- 6. Develop a computer program to determine the temperature of ingot during its solidification.
- 7. Develop a computer program to determine the temperature of metal slab during its hot rolling.
- 8. Develop a computer program for Monte Carlo simulation for grain growth.

Sl. No.	Name of Authors/ Book/ Publisher	Year of Publication/ Reprint
1.	Zeigler, B.P., Praehofer, H. and Kim T.G., "Theory of Modelling and Simulation", 2 nd Edition, Academic Press	2000
2.	Szekely, J.S. and Ray, W.H., "Process optimization with applications metallurgy and chemical engineering", Wiley- Interscience	1973
3.	Ogata, K., "Modern Control Engineering", 3 rd Edition, Prentice Hall of India	2001
4.	Jang, J.S.R., Sun C.T. and Mizutani E., "Neuro-Fuzzy and Soft Computing", 3 rd Edition, Prentice Hall of India	2002
5.	Kuang-O,Y., "Modeling for casting and solidification processing", Marcel Dekker	2002
6.	Irving, W.R., "Continuous casting of steel", Institute of Materials	1993
7.	Pratab, R., "Getting Started with MATLAB", Oxford University Press	2009

NAME OF DEPARTMENT/CENTRE: Metallurgical and Materials Engineering

1. Subject Code:	MTN-503	Course Titl	e: Chara	cterization of M	Iaterials	
2. Contact Hours:		L: 3	T: 0	P: 2		
3. Examination Dur	ation (Hrs):	Theory:	3	Practical :	0	
 4. Relative Weight 5. Credits: 4 	: CWS : 15	PRS: 25	MTE:	20 ETE: 6. Semester:	40 PRE: Autumn	0
7. Pre-requisite:	NIL			8. Subject Ar	rea: PCC	

9. Objective: To familiarize the students with the basic principles related to materials characterization methods.

Sl.	Contents	Contact
No.		Hours
1.	X-ray Diffraction and Diffractometry: Stereographic projection,	10
	Laue's equation, Bragg's condition of diffraction, structure factor	
	rules, single phase analysis, multi-phase analysis, estimation of	
	particle size and strain, orientation and texture, residual stress.	
2.	Light Microscopy: Basic principles, estimation of grain size, grain	5
	boundary area, volume fraction of second phase.	
3.	Transmission Electron Microscopy (TEM): Reciprocal space and	10
	lattice, Ewald sphere, diffraction from finite crystal, bright and dark	
	field imaging, selected area diffraction, indexing of diffraction	
	patterns, contrast from precipitates, dislocations, and stacking faults.	
4.	Scanning Electron Microscopy (SEM): Basic principles of	6
	scanning electron microscopy, energy dispersive spectroscopy	
	(EDS), wavelength dispersive spectroscopy (WDS), electron	
	backscattered diffraction (EBSD).	
5.	Thermal analyses techniques: Principles of differential scanning	6
	calorimetry (DSC), differential thermal analysis (DTA),	
	Dilatometry, Thermogravimetric analysis (TGA).	
6.	Spectroscopy Methods: Emission spectroscopy, Atomic	5
	Absorption Spectroscopy(AAS), Inductively Coupled Plasma -	
	Mass Spectroscopy (ICP-MS).	
	Total	42

List of Practicals:

- 1. Sample preparation for optical microscopy: estimation of grain size and volume fraction of second phases in brass.
- 2. Demonstration of X-ray diffraction equipment.
- 3. Indexing of the powder pattern obtained by XRD.
- 4. Demonstration of Transmission Electron Microscope.
- 5. Indexing of the Selected Area Diffraction (SAD) patterns.
- 6. Demonstration of Scanning Electron Microscope and EDS.
- 7. Demonstration of DSC technique.

Sl. No.	Name of Authors/ Book/ Publisher	Year of Publication/ Reprint
1.	Goodhew, P.J., Humphreys, J. and Beanland, R., "Electron	2001
	Microscopy and Analysis", 3 rd Edition, Taylor and Francis	2001
2.	Cullity, B.D. and Stock, S.R., "Elements of X-Ray Diffraction", 3 rd Edition, Printice Hall	2001
3.	Williams, D. B. and Carter, C. B., "Transmission Electron Microscopy: A Textbook for Materials Science", 2 nd Edition, Springer	2009
4.	Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L. and Michael, J.R., "Scanning Electron Microscopy and X-ray Microanalysis", 3 rd Edition, Springer	
5.	Speyer, R., "Thermal Analysis of Materials", CRC Press	1993
6.	Dehoff, R.T. and Rhines, F.N., "Quantitaive Microscopy", McGraw Hill	1968

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN-504	Course Title: Phase Transformation
2. Contact Hours:	L: 3 ; T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical : 0 0
4. Relative Weight : CWS: 2	5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0
5. Credits: 0 4	6. Semester: Spring
7. Pre-requisite: Nil	8. Subject Area: PCC

9. Objective: To introduce the fundamentals of phase transformations in metal and alloys.

Sl.	Contents	Contact
No.		Hours
1.	Introduction : Types and classification of phase transformations, thermodynamic basis of phase transformation, introduction to concept of Gibbs free energy, entropy and enthalpy	2
2	Thermodynamics and phase diagram: Equilibrium in a closed system, effect of temperature and composition, order of transformation, fluctuations, stable unstable and metastable state, single component systems, binary solutions and binary phase diagrams	5
3	Structural defects: Surface free energy, interfaces in solids; boundaries in single phase solids, coherent, semicoherent and incoherent interfaces and interface migration	5
4	Empirical transformations kinetics: Atomic mechanism of diffusion, rate of atomic processes, empirical rate equation, determination of activation energy	5
5	Liquid solid transformation: Introduction, nucleation, rate of nucleation, growth, eutectic solidification, crystallization, cellular and dendritic solidification	9
6	Diffusional transformations in solids: Polymorphic transformations, massive transformations, order-disorder transformations, recrystallisation, precipitation, pearlitic reaction, cellular transformation, particle coarsening	9
7	Spinodal decompositions: Points of inflexion, solubility differences	2
8	Martensitic transformations: Thermodynamic of martensitic transformation, phenomenological theory of martensite crystallography (PTMC), effect of composition and temperature	5
	Total	42

Sl. No.	Authors/Name of Books/ Publisher	Year of Publications
1	Porter D.A. and Easterling K.E., Phase Transformations in Metals and Alloys, 3 rd Ed., CRC Press.	2009
2	Jena A.K. and Chaturvedi M.C., Phase Transformations in Materials, Prentice Hall.	1992
3	Burke J., The Kinetics of Phase Transformations in Metals, Pergamon Press.	1996
4	Phase Transformation in Materials, Editor G. Kostoz, Wiley- VCH Verlag.	2001
5	Shewmon, P., Diffusion in Solids, 2 nd Ed. Wiley.	1991

NAME OF DEPAR	ΓΜΕΝΤ	: Metallurgical and Materials Engineering
1. Subject Code:	MTN-505	Course Title: Non Destructive Testing
2. Contact Hours:		L: 3 ; T: 1; P: 0
3. Examination Dura	ation (Hrs):	Theory: 0 3 Practical: 0 0
4. Relative Weight	: CWS: 2	5 PRS : 0 0 MTE : ^{2 5} ETE : 5 0 PRE : 0 0
5. Credits: 0 4 6. Semester: Autumn/Spring		
7. Pre-requisite:	Nil	8. Subject Area: PEC

9. Objective: To impart the importance of non-destructive testing in assuring quality control in engineering components.

Sl.No.	Contents	Contact Hours
1	Introduction: Non destructive testing and its comparison with destructive testing, role of NDT in quality control.	5
2	Liquid penetrant inspection: its principles, equipment, advantages, limitations and applications.	6
3	Magnetic particle inspection: its principles, equipment, advantages, limitations and applications.	6
4	Ultrasonic inspection: its principles, equipment, advantages, limitations and applications.	6
5	Eddy current inspection: its principles, equipment, advantages, limitations and applications.	6
6	X-ray radiography: its principles, equipment, advantages, limitations and applications.	5
7	Quality control: Statistical quality control, control charts, control chart attribute and variables and acceptance sampling; Quality assurance and ISO 9000:2000	8
	Total	42

S.No.	Name of Author/Book/ Publisher	Year of Publication/ Reprint
1	"Non Destructive Evaluation and Quality Control", Metals Handbook, Vol. 17, 9 th Ed., ASM.	1989
2	Baldev Raj, Jayakumar T, Thavasimuthu M, Practical Non-Destructive Testing, 3 rd Ed., Narosa.	2009
3	Srivastava, K.C., "Handbook of Magnetic Particle Testing", Oscar Publications.	1998
4	Grant, E.L. and Larenwork, R.S., "Statistical Quality Control", Tata McGraw-Hill.	2000
5	Hull, B., "Non Destructive Testing", Springer.	2012

NAME OF DEPARTMENT: Department of Metallurgical and Materials Engineering

1. Subject Code: MTN-507	Course Title: Casting and solidification
2. Contact Hours:	L: 3; T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0
4. Relative Weight : CWS:	2 5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0
5. Credits: 0 4	6 Semester: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: DEC

9. Objective: To understand fundamentals of metal casting & solidification related to the foundry industry and quality control of the cast product.

SI. No.	Contents	Contact Hours
1	Introduction: Metal casting as a manufacturing process, foundry industry in India, challenges for foundry industry in India, important industrial sectors using casting.	2
2	Moulding processes, equipments and mechanization: Different types of moulds, moulding materials and moulding processes, pattern and other mould making equipments, forces acting on moulds, mould factors in metal flow, moulding factors in casting design. ; different types of binders and their use in mould and coremaking.	6
3	Melting of metals and alloys for casting: Brief mention of various melting units, melting and post melting treatments, melting practices as adopted for a few metals and alloys such as Al, Cu, steel, cast irons.	7
4	Solidification of metals and alloys: Nucleation, growth, role of alloy constitution, thermal conditions and inherent nucleation and growth conditions in the liquid melt, significance and practical control of cast structure.	9
5	Principles of gating and risering: Feeding characteristics of alloys, types of gates and risers, time of solidification and Chvorinov rule, Wlodawer system for feeder head calculations, gating ratio, concept of directionality in solidification, yield of casting and prescription for its augmentation.	7
6	Special casting Methods: Investment casting, die casting, centrifugal casting, full mould casting, vacuum sealed casting.	6
7	Casting Defects & quality control: A detailed analysis of casting defects, their causes and prescription of remedial measures.	5
	Total	42

Sl. No.	Authors/Name of Books/ Publisher	Year of Publications/ Reprint
1	Beeley, P. R., Foundry Technology, Newnes-Buttterworths.	2001
2	Jain, P. L., Principles of Foundry Technology, Tata McGraw- Hill Edu.	2003
3	Ramana Rao, T. V., Metal Casting, Principles and Practice, New Age International (P) Ltd.	2003
4	Webster, P. D., Fundamentals of Foundry Technology, Portwillis press, Red Hill.	1980
5	Mukherjee, P. C., Fundamentals of Metal Casting Technology, Oxford IBH.	1980
6	Hein, R. W., Loper, C.R. and Rosenthal, P.C., Principles of Metal Casting, Tata-Mc Graw Hill.	2008

NAME OF DEPARTMENT: Department of Metallurgical and Materials Engineering

1. Subject Code: MTN-511	Course Title: Thin Film Technology
2. Contact Hours:	L: 3; T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical : 0 0
4. Relative Weight : CWS: 2	2 5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0
5. Credits: 0 4	6. Semester: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: PEC

9. Objective: To impart knowledge on the processing and characterization of thin films for device applications

Sl.	Contents	Contact
No.		Hours
1	Introduction: Applications of thin films, process steps.	2
2	Gas kinetics : Maxwell-Boltzmann distribution, molecular impingement flux, Knudsen equation, mean free path, transport properties.	6
3	Evaporation : thermodynamics of evaporation, evaporation rate, alloys, compounds, sources, deposition monitoring techniques.	5
4	Deposition : adsorption, surface diffusion, nucleation, structure development, interfaces, stress, adhesion.	6
5	Epitaxy : symmetry, applications, disruption, growth monitoring, composition control, lattice mismatch, surface morphology.	6
6	Chemical Vapor Deposition : Gas supply and convection, reaction equilibrium and surface processes, diffusion limited deposition and reactor models.	6
7	Film Analysis : structure-thickness, topography, inhomogeneity, crystallography, bonding, point defects, composition, and optical, electrical and mechanical behavior of thin films.	6
8	Applications: Technology of polysilicon thin-film transistors, thin film transistors in active-matrix liquid crystal displays, organic based thin film transistors, vacuum deposited organic thin film transistos based on small molecules	5
	Total	42

Sl. No.	Authors/Name of Books/ Publisher	Year of Publications/ Reprint
1	Ohring, M., "Materials Science of Thin Films", 2 nd Ed.,	2001
	Academic Press.	
2	Smith D.L., "Thin-Film Deposition: Principles and Practice",	1995
	McGraw-Hill Professional.	
3	Kagan, C.R., Andry, P., "Thin Film Transistors", Marcel Dekker.	2003
4	Eishabini-Riad, A., Barlow, F. D., "Thin Film Technology	1997
	Handbook", 1 st Ed., McGraw-Hill Professional.	
5	Siddal, G. (Ed.), "Thin Films Science and Technology", Elsevier.	1984

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN-512	Course Title: Joining of Materials
2. Contact Hours:	L: 3 ; T: 1; P: 0
3. Examination Duration (Hrs):	Theory:03Practical:00
 4. Relative Weight : CWS: 2 5. Credits: 0 4 	2 5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0 6. Semester: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: PEC

9. Objective: To impart the knowledge of joining different metallic and non-metallic materials

SI. No.	Contents	Contact Hours
1	Introduction: Arc welding, electrical resistance welding, solid state	6
	welding, welding consumables, brazing and soldering, mechanical joining, adhesive joining	-
2	Thermal and mechanical effects of joining : Isotherm and thermal cycle, fusion and solidification, heat affected zone, microstructure, fastening, riveting, clinching, distortion and residual stresses in different joints	7
3	Joining of ferrous and non ferrous metals : Plain carbon structural steels, high strength low alloy steels, alloy steels, cast iron, stainless steels, aluminium alloys, copper alloys, titanium alloys, nickel alloys, characterization, defects and remedial measures	10
5	Joining of non metallic materials : Structural polymers, structural ceramics, composites, defects and remedial measures	5
6	Joining of dissimilar materials : Structural steel-stainless steel, aluminium-copper, metal-polymer, metal-ceramic, microstructure, defects and remedial measures	6
7	Quality assessment of joint : Inspection, mechanical testing, non- destructive testing, standards and codes for joint testing and qualification of joints	8
	Total	42

Sl. No.	Name of Authors/ Books/ Publisher	Year of
		Publications/
		Reprint
1	Larry J., Welding Principles and Applications, 4 th Ed., Delmar	1999
	Publishers	
2	Cornu J., Advanced Welding Systems: Consumable Electrode	1988
	Processes, IFS Publications	
3	Koichi M., Analysis of Welded Structures, Pergamon Press.	1980
4	DeGarmo P.E., Black J.T. and Kohser R.A., Materials and	2000
	Processes in Manufacturing, 8th Ed., Prentice-Hall India	
5	Parmer R.S., Welding Engineering and Technology, Khanna	1997
	Publishers	
6	Mittal K.L. and Pizzi A., Adhesion Promotion Techniques,	2002
	Marcel Dekker	

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN-513	Course Title: Engineering Ceramics
2. Contact Hours:	L: 3 ; T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0
4. Relative Weight : CWS: 2 5. Credits: 0	5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0 6. Semesters: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: PEC

9. Objective: To impart knowledge on ceramic materials, their properties, processing and engineering applications.

Sl. No.	Contents	Contact Hours
1	Introductory overview : General characteristics of ceramics, ceramic microstructures, ceramic crystal structures.	3
2	Ceramic powder preparation and characterization : Powder synthesis by mechanical methods and chemical methods; Powder characterization: (1) Physical characterization relating particle shape, size, size distribution, surface area, porosity; (2) chemical characterization relating to chemical compositions, phase composition	7
3	Colloidal Processing : Types of colloids; Electrostatic stabilization: charges on particles in a liquid, origins of electrical double layer, repulsion between two double layers; Polymeric stabilization: Steric stabilization, stability and sterically stabilized suspensions; Rheology of colloidal suspensions: rheological properties, viscosity of colloidal suspensions; Industrial application of colloidal methods.	6
4	Powder consolidation and shape forming processes : Dry and semidry pressing methods: die compaction, isostatic pressing; Casting methods: slip casting, pressure casting, tape casting; Additives in forming process, plastic forming methods: extrusion and injection moulding.	6
5	Sintering of ceramics : Defects and defect chemistry; Solid state sintering, atomic mechanisms, coarsening, densification, sintering kinetics: sintering stages, coarsening and grain growth kinetics; Liquid phase sintering: introduction, the different stages, controlling kinetics and thermodynamic factors; Problems of sintering.	8
6	Ceramic phase diagrams: Binary systems: complete solid solubility, eutectic diagrams with partials solid solubility and no intermediate	4

	compounds, partial solid solubility with formation of intermediate compounds; Ternary systems.	
7	Mechanical behavior of ceramics : Theory of brittle fracture; cracking; strength variability; properties: Hardness, compressive strength, flexural strength, elastic modulus, fracture toughness; toughening mechanisms.	4
8	Glasses : Glass formation : kinetics and criteria for glass formation; glass structure; glass properties: glass transition temperature, thermodynamic considerations; Glass-ceramics: processing, properties and industrial applications.	4
	Total	42

S. No.	Name of Authors /Books/ Publisher	Year of Publication/ Reprint
1.	Barsoum M. W., Fundamentals of Ceramics, The McGraw-Hill	1997
1.	Companies, Inc.	
2.	Kingery W.D., Bowen H.K. and Uhlmann D.R., Introduction	1991
	to Ceramics, 2 nd Ed., John Wiley	
3.	Richerson, D.W., "Modern Ceramic Engineering – Properties,	1992
	Processing and use in Design", Marcel Dekker, Inc.	
4.	Rahaman, M. N., "Ceramic Processing and Sintering", Marcel	1995
	Dekker Inc.	
5.	Carter C.B. and Norton M.G., Ceramic Materials: Science and	2013
	Engineering., 2 nd Ed. Springer	

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN-514	Course Title: Powder Metallurgy
2. Contact Hours:	L: 3 ; T: 1; P: 0
3. Examination Duration (Hrs):	Theory:03Practical:00
4. Relative Weight : CWS: 2	2 5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0
5. Credits: 0 4	6. Semesters: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: PEC

9. Objective: To introduce the concepts of powder metallurgy with special reference to recent development of powder metallurgy products

SI.	Contents	Contact
No.		Hours
1	Introduction: Scope, limitations in making components, application of powder metallurgy	3
2	Powder production: Production methods like physical, chemical, mechanical methods; Single fluid atomization like rotating electrode atomization, roller atomization, rotating disc atomization; Two fluid atomization like gas atomization, water atomization, oil atomization etc. Reduction methods, carbonyl process, hydride-dehydride process, electrolytic method	8
3	Powder characterization: Particle size and Size distribution using sieving, sedimentation method, Andreasen pipette method, size distribution functions like normal distribution, log-normal distribution, Rosin-Rammler distribution, particle shape, shape factors, specific surface area of powder, flow rate, tap density, apparent density, compressibility, pyrophoricity, explosivity, toxicity of powder	8
4	Powder compaction: Die compaction, isostatic pressing, single level and multi level part compaction, repressing, plane strain compression, powder forging, powder roll compaction, powder extrusion	8
5	Sintering: Theory of sintering, sintering practice, furnaces and atmosphere control, activated sintering techniques, after sintering treatments; industrial sintering practice for various and non-ferrous products	8
6	Applications of powder metallurgy: Self-lubricating bearing, magnetic materials, tungsten carbide tool bits, bearing materials, dispersion strengthen materials for high temperature applications and manufacture of diamond based cutting tools, break pads	7
	Total	42

Sl. No.	Name of Books/Authors/Publisher	Year of Publication/
- 1		Reprint
I	German R.M., Powder Metallurgy and Particulate Materials	2005
	Processing, MPIF.	
2	Masuda H., Powder Technology Handbook, Taylor & Francis	2006
3	Sands R.L. and Shakespeare C.R., Powder Metallurgy Practice and	1970
	Applications, Newness Publication	
4	Powder Metal Technologies and Applications, Metals Handbook,	1989
	Vol.7, 9 th edition, ASM	
5	Upadhyaya G.S., Powder Metallurgy Technology, Cambridge	1996
	Press	

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN- 516	Course Title: Principles of Materials Selection
2. Contact Hours:	L: 3 ; T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0
4. Relative Weight : CWS: 2	2 5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0
5. Credits: 0 4	6. Semesters: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: PEC

9. Objective: To introduce the salient materials selection criteria for various engineering applications

Sl. No.	Contents	Contact Hours
1	Introduction : Selection criteria, service requirement, design fabricability, functionability, structure-property relationship reappraisal of the role of microstructure; Crystal structure and defect structure vis- à-vis properties; Materials and their applications, compositions, codes and properties	6
2	Ferrous materials: Applications of important ferrous materials like stainless steels, maraging steels, tool and die steels, high speed steels, and alloyed cast irons: their composition, heat treatment and properties	8
3	Non-ferrous materials: Applications of important non ferrous metals like Cu base, Al base, Ti base and Mg base alloys- their compositions, heat treatment, and properties	5
4	Composites: Some important composites like metal-matrix and composite, ceramic matrix composites- their composition, preparation, properties and their applications, some important structural ceramics	6
5	Polymers: Thermoplastic, thermo-setting polymers and elastomers, structures, properties and specific applications	6
6	Wear and corrosion resistant materials: Important wear resistant alloys for hydro and thermal power stations, low and high temperature materials	7
7	Case studies: Case studies highlighting selection of materials for specific applications	4
	Total	42

Sl. No.	Name of Books/Authors/Publisher	Year of Publication/
		Reprint
1	Ashby M.F., Materials Selection in Mechanical Design, 4 th Ed.,	2010
	Butterworth-Heinemann	
2	Budinski K.G and Budinski M.K., Engineering Materials: Properties	2009
	and selection, 9 th Ed., Prentice Hall	
3	Ashby M.F. and Johnson K., Materials and Design: The art and	2014
	science of materials selection in product design, 3 rd Ed., Butterworth-	
	Heinemann	
4	Martin J., Materials for Engineering, 2 nd Ed., Woodhead Publishing	2002

NAME OF DEPARTMENT: Department of Metallurgical and Materials Engineering

1. Subject Code: MTN-517	Course Title: High Temperature Materials	
2. Contact Hours:	L: 3; T: 1; P: 0	
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0	
4. Relative Weight : CWS: 2	5 PRS : 0 0 MTE : 2 5 ETE : 5 0 PRE : 0)
5. Credits: 0 4	6. Semester: Autumn/Spring	
7. Pre-requisite: Nil	8. Subject Area: PEC	

9. Objective: To impart knowledge on requirements for materials for high temperature use and the behavior of materials at high temperatures.

Sl. No.	Contents	Contact Hours
1	Introduction: Need for high temperature materials, historical development of high temperature materials, equipment for material testing at high temperatures, requirements of high temperature materials (mechanical properties and preferred microstructure, environmental resistance, erosion and wear).	5
2	Principles for high temperature strengthening: Metallic materials (solid solution strengthening, precipitation strengthening, dispersion strengthening grain size and grain boundary effects) Ceramic materials (phase control, defect tolerance, thermal shock resistance) composite materials.	7
3	Creep and stress rupture: Creep test, stress rupture test, structural changes during creep, mechanism of creep deformation, fracture at elevated temperatures.	6
4	Creep- fatigue interaction : Modes of high temperature fracture and fatigue fracture, creep-fatigue interaction (creep accelerated by fatigue), fatigue-creep interaction (fatigue accelerated by creep), micro-mechanism of damage, fracture criterion for creep fatigue, creep-fatigue failure mapping, creep-fatigue testing, influence of environment.	7
5	Materials for high temperature: Metals / alloys, superalloys, steels, titanium and its alloys, ceramics (Alumina, Zirconia, Silicon carbide, Silicon nitride, Glass ceramics) composites (Metal matrix composites, ceramic matrix composites) carbon – carbon composites.	7

6	Coatings for protection against high temperature corrosion and erosion: Corrosion / oxidation resistant coatings (metallic, ceramic, rare and reactive metal reinforced coatings), high temperature erosion and wear, thermal barrier coats.	6
7	Case studies: Applications in industry, aerospace, defense and nuclear industry.	4
	Total	42

Sl. No.	Authors/Name of Books/ Publisher	Year of Publications/ Reprint
1	Meetham, G. W., Van de Voorde, M. H., "Materials for High	2000
	Temperature Engineering Applications (Engineering Materials)",	
	1 st Ed., Springer.	
2	Chan R. W., "High temperature structural materials", Chapman &	1996
	Hall.	
3	Reed R. C., "The Super-alloys: Fundamentals and Applications",	2008
	Cambridge University Press.	
4	Birks, N., Meier, G. H., and Pettit, F. S., "Introduction to the	2009
	High Temperature Oxidation of Metals", Cambridge University	
	Press.	
5	Bose, S., "High Temperature Coatings", Butterworth-Heinemann.	2007

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering	
1. Subject Code: MTN-518	Course Title: Theory of Metal Forming	
2. Contact Hours:	L: 3 ; T: 1; P: 0	
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0	
4. Relative Weight : CWS: 2.5	5 PRS : 00 MTE : 25 ETE : 50 PRE : 00	
5. Credits: 0 4 6. Semester: Autumn/Spring		
7. Pre-requisite: MT-501	8. Subject Area: PEC	

9. Objective: To impart knowledge on fundamentals of various metal forming processes.

Sl. No.	Contents	Contact Hours
1.	Stress tensor and yield criteria: Single crystal versus polycrystal, state of stress, representing stress as tensor, principal stresses, stress deviator, yield criteria, comparison of yield criteria, octahedral shear stress and shear strain	8
2	Fundamentals of metal forming: Classification of forming processes, mechanics of metal working, flow stress determination, effect of temperature, strain rate and metallurgical structure on metal working, friction and lubrication; Deformation zone geometry, workability, residual stresses, strain rate sensitivity, superplasticity	10
3	Forging and rolling: Classification, calculation of forging loads, forging defects- causes and remedies, residual stresses in forging; Rolling- Classification of rolling processes, forces and geometrical relationship in rolling, analysis of rolling load, torque and power, rolling defects	8
4	Extrusion and drawing: Direct and indirect extrusion, variables affecting extrusion, deformation pattern, simple analysis of extrusion	8
5	Sheet metal forming and other processes: Forming methods - shearing, blanking, bending, stretch forming, deep drawing defects in formed part, sheet metal formability, formability limit diagram	8
	Total	42

Sl. No.	Name of Authors/ Books/ Publisher	Year of Publication/ Reprint
1	Dieter G.E., Mechanical Metallurgy, McGraw-Hill	1995
2	Hosford, W.F. Caddell, R.M., Metal Forming – Mechanics and Metallurgy, Cambridge University Press	2011
3	Avitzur A., Metal Forming - Processes and Analysis, Tata McGraw-Hill	1977
4	Juneja B.L., Fundamentals of Metal Forming Processes, New Age International	2010
5	Taylor A., Soo-Oh I.K. and Gegel H.L., Metal Forming: Fundamentals and Applications, ASM	1983
6	Rowe G.W., Sturgess C.E.N., Hartley P. and Pillinger I., Finite- Element Plasticity and Metal Forming Analysis, Cambridge University Press	2005

NAME OF DEPAR	ГМЕМТ	: Metallurgical and Materials Engineering
1. Subject Code:	MTN-522	Course Title: Composite Materials
2. Contact Hours:		L: 3 ; T: 1; P: 0
3. Examination Dur	ation (Hrs):	Theory:03Practical:00
 4. Relative Weight 5. Credits: 0 4 		2 5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0 6. Semester: Autumn/Spring
7. Pre-requisite: Ni	l	8. Subject Area: PEC

9. Objective: To provide an in-depth knowledge on the constituents that make-up a composite materials and its various applications

Sl. No.	Contents	Contact Hours
1	Introduction: Definition, classification, distribution and topology of constituents and interfacial bonding of matrix and reinforcing components	4
2	Composite materials: Metal matrix composites, polymer matrix composites and ceramic matrix composites	5
3	Performance analysis of composites: Combination effects- summation, complementation and interaction; Quantitative analysis- black box approach and analytical approach - thermoelasticity, plasticity and creep; Composites models- Law of mixtures, shear lag model, laminated plate model and Eshelby's model, others models	6
4	Strengthening of composites: Strengthening of matrix, role of matrix in continuous fibre composite, stress distribution in fibre and matrix, critical length of fibre for full strengthening, analysis of uniaxial tensile stress-strain curve of unidirectional continuous and short fibre composite, estimation of minimum and critical amount of fibre to gain a composite strength, analysis of strength during angular loading fibre composite, particle strengthening of matrix	6
5	Fabrication: Selection of components, wetting of components, chemical reactivity of components, incorporation of reinforcing components in matrix; Metal matrix, polymer matrix and ceramic matrix composites, in-situ composites and inorganic nano filler polymer composites	8
6	Fracture and safety of composites: Griffith theory of brittle fracture and modification for structural materials, basic fracture mechanics of composite- fracture toughness, COD and J-integral approaches, fatigue crack growth rate; Fracture mechanics of brittle matrix fibre composite, fracture mechanics of metal matrix fibre	6

	composite, experimental evaluation- fibre composite; Elementary reliability analysis	
7	Joining of composites: Welding, brazing, adhesive joining, weld bonding and mechanical fastening	4
8	Application of Composite Materials: Civil constructions of structures/pannels, aerospace industries, automobile and other surface transport industries, packaging industries, house hold and sports components	3
	Total	42

Sl. No.	Name of Authors/ Books/ Publisher	Year of Publication/
		Reprint
1	Hull D. and Clyne T.W., An Introduction to Composite Materials,	2013
	2 nd Ed., Cambridge University Press	
2	Chawla K.K., Composite Materials: Science and Engineering	2012
	3 rd Ed., Springer	
3	Chawla K.K., Ceramic Matrix Composites, 2 nd Ed., Springer	2003
4	Chawla N. Chawla K.K., Metal Matrix Composites, 2 nd Ed.	2013
	Springer	
5	Shojiro O., Mechanical Properties of Metallic Composites, Marcel	2002
	Dekker	

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN-526	Course Title: Failure Analysis
2. Contact Hours:	L: 3 ; T: 1; P: 0
3. Examination Duration (Hrs):	Theory:03Practical:00
4. Relative Weight : CWS:	2 5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0
5. Credits: $0 4$	6. Semester: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: PEC

9. Objective: To impart knowledge on the analysis of the probability of failure under various service conditions and methods to ensure safety

10. Details of Course:

_

SI.	Contents	Contact
No.		Hours
1	Sources of failure: Material problems including chemical	4
	composition, microstructure, faulty selection, faulty heat treatment,	
	corrosion susceptibility and defects; Mechanical irregularities	
	including faulty design, mismatch and notch effects; Wrong welding	
	fabrication and abnormal service conditions	4
2	Failure analysis : First hand documentation, planning of steps of	4
	analysis, collection of back ground data and samples, selection,	
3	cleaning and preservation of fracture surface Failure analysis methodology: Use of advanced instruments,	12
3	macroscopic and microscopic examinations of fracture surface,	12
	selective application of non-destructive testing, mechanical testing	
	and stress analysis, metallographic examination and analysis; Bulk	
	and micro chemical analysis	
4	Fracture: Mechanisms and models of fracture, ductile flat-face and	6
	shear-face tensile fractures, brittle inter-granular and trans-granular	-
	fractures, embrittlement failure- Strain-age, quench-age, temper,	
	hydrogen, sigma-phase and neutron embrittlement and blue	
	brittleness; Factors influencing different types of fracture	
5	Fracture mechanics (FM): Applications of FM under static and	6
	dynamic loading, application of NDT for defect assessment and	
	monitoring, analysis of failure mechanism, safety and residual life	
	estimation	
6	Failure mechanism: Fatigue, corrosion, stress corrosion cracking	6
	and elevated or cryogenic temperature failure- Metallurgical and	
	mechanical factors affecting these failures, loading condition and	
	stages of fracture, macroscopic and microscopic salient features of	

	failure	
7	Result analysis and reporting : Correlations of observations and evidences, documentation, logical conclusions and remedial measures	
	Total	42

Sl. No.	Name of Authors/ Books/ Publisher	Year of Publication/
		Reprint
1	Shipley R.J. and Becker W.T., Failure Analysis and Prevention,	2002
	ASM handbook, Vol. 11, ASM International	
2	Colangelo V.J. and Heiser F.A., Analysis of Metallurgical	1987
	Failure, 2 nd edition, Wiley-Interscience	
3	Powell G.W. and Mahmoud S.E., Failure Analysis and	1986
	Prevention, Metals Handbook, Vol. 11, 9 th edition, ASM	
	International	
4	Cooper T.D., Prevention of structural failure-the role of	1975
	quantitative nondestructive evaluation, ASM International	
5	Sachs N.W., Practical Plant Failure Analysis: A guide to	2006
	understanding machinery deterioration and improving equipment	
	reliability, Dekker Mechanical Engineering, CRC press	
6	Gulati R. and Smith R., Maintenance and Reliability Best	2009
	Practices, Industrial Press	

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN-528	8 Course Title : Tribology of Engineering Materials
2. Contact Hours:	L: 3 ; T: 1; P: 0
3. Examination Duration (Hrs): Theory: 0 3 Practical: 0 0
 4. Relative Weight : CWS: 5. Credits: 0 4 	2 5 PRS : 0 0 MTE : 2 5 ETE : 5 0 PRE : 0 0 6. Semester: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: PEC

9. Objective: The impart knowledge on friction and methods to minimize wear of engineering components

Sl. No.	Contents	Contact Hours
1	Surface properties and surfaces in contact: Nature of metallic	
	surface, surface geometry, measurement of surface topography,	
	quantifying surface roughness, contact between surfaces; Friction, the	8
	laws of friction, measurement of friction, origin of friction, theories of	
	friction adhesion- theory, extension of the adhesion theory	
2	Wear: Types of wear, adhesive wear, Archard's law, abrasive wear,	
	erosion wear, factors affecting corrosive wear, wear map, various	
	wear testing methods- pin on disc, pin on drum, slurry wear, air jet	12
	and water jet erosion as per ASTM standards	
3	Tribological properties of solid materials: Hardness, strength,	11
	ductility and work hardening rate, effect of crystal structure, effect of	
	microstructure, mutual solubility of rubbing pairs and effect of	
	temperature	
4	Surface treatments to reduce wear: Surface treatments with or	
	without change of composition, surface coating- welding, flame,	11
	spraying, plasma spraying, electroplating and electroless coating,	
	chemical vapour deposition (CVD) and physical vapour deposition	
	(PVD), super hard coatings	
	Total	42

Sl. No.	Name of Authors/ Books/ Publisher	Year of Publication/
1	Hutchings I.M., Tribology – Friction and wear of engineering	Reprint
1	Materials, Edward Arnold	1992
2	Arnold R.D., Davies P.B., Halling J. and Whomes T.L.,	1991
	Tribology – Principles and Design Applications, Springer	
	Verlag	
3	Bhushan B., Introduction to Tribology, John Wiley	2002
4	Bhushan B., Principles and Applications of Tribology, John	1999
	Wiley	
5	Stachowiak G and Batchelor A.W., Engineering Tribology, 4 th	2013
	Ed. Elsevier Butterworth-Heinemann	

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN-530	Course Title: Nanomaterials and Applications
2. Contact Hours:	L: 3 T: 1 P: 0
3. Examination Duration (Hrs):	Theory:3Practical:0
4. Relative Weight : CWS: 2	2 5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0
5. Credits: 0 4	6. Semester: Autumn/Spring
7. Pre-requisite: MT-501	8. Subject Area: PEC

9. Objective: To impart knowledge on the synthesis and properties of nanostructured materials and their importance as advanced materials

Sl. No.	Contents	Contact Hours
1	Nanomaterials: Introduction, Classification: 0D, 1D, 2D, 3D nanomaterials and nano-composites, their mechanical, electrical, optical, magnetic properties; Nanomaterials versus bulk materials	5
2	Thermodynamics and kinetics of nanostructured materials: Size and interface/interphase effects, interfacial thermodynamics, phase diagrams, diffusivity, grain growth, and thermal stability of nanomaterials	8
3	Processing: Bottom-up and top-down approaches for the synthesis of nanomaterials, mechanical alloying, chemical routes, severe plastic deformation, and electrical wire explosion technique	8
4	Structural characteristics : Principles of emerging nanoscale X-ray techniques such as small angle X-ray scattering and X-ray absorption fine structure (XAFS), electron and neutron diffraction techniques and their application to nanomaterials; Grain size, phase formation, texture, stress analysis	8
5	Deformation Behavior: Elastic and plastic deformation, mechanisms of plastic deformation- lattice dislocation motion, evolution of grain boundary defect structures, comparison between deformation mechanisms and effect of grain size distribution, grain boundary sliding and triple junction migration, triple junction diffusion, abnormal Hall-Petch effect dependence, localization of plastic flow and rotational plastic deformation in nanostructured materials. Nanoindentation techniques- principles and measurement of elastic and plastic properties of nanomaterials	9
6	Case studies: Design issues and applications of nanomaterials in various industries	4

		Total	42
--	--	-------	----

Sl. No.	Name of Authors/ Books/ Publisher	Year of Publication/ Reprint
1	Poole C.P, and Owens F.J., Introduction to Nanotechnology, John Wiley	2003
2	Nalwa H.S., Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers	2004
3	Koch C.C., Nanostructured Materials: Processing, Properties and Applications, William Andrew	2006
4	Zehetbauer M.J. and Zhu Y.T., Bulk Nanostructured Materials, Wiley	2008
5	Wang Z.L., Characterization of Nanophase Materials, Wiley	2000
6	Gutkin Y., Ovid'ko I.A. and Gutkin M., Plastic Deformation in Nanocrystalline Materials, Springer	2004
7	Fischer A.C., Nanoindentation, Springer	2002

NAME OF DEPARTMENT: Department of Metallurgical and Materials Engineering

1. Subject Code: MTN-531 **Course Title**: Electronic Materials 2. Contact Hours: L: 3; T: 1; P: 0 **3. Examination Duration (Hrs):** Theory: 0 3 **Practical**: 0 0 4. Relative Weight : CWS: **PRS:** 0 0 **MTE:** 2 5 2 5 ETE: 5 0 PRE: 0 0 5. Credits: 6 Semester: Autumn/Spring 0 4

7. Pre-requisite: Nil8. Subject Area:PEC

9. Objective: To introduce fundamental principles of electronic materials, their properties and applications.

Sl. No.	Contents	Contact Hours
1.	Electrical and thermal conduction: Kinetic molecular theory of matter and its application to conduction, Drude Model of electrical conduction, temperature dependence of resistivity, Matthiessen's rule, Nordheim's rule, resistivity of mixtures, Hall effect, thermal and electrical conduction, electrical conductivity of semiconductors and ionia amatols.	9
2	and ionic crystals, Modern theory of solids: Hydrogen molecule, band theory of solids, semiconductors, density of states in an energy band, Boltzmann statistics, Fermi-Dirac statistics, Quantum theory of metals, Fermi energy significance, Contact potential, Seebeck effect, thermionic emission, field emission, Brillouin zones and origin of band gap, conductors, semiconductors and insulators	9
3	Semiconductors: Intrinsic and extrinsic semiconductors, temperature dependence of conductivity, Direct and indirect semiconductors, recombination and minority carrier injection, optical absorption, peizorestivity, Schottky junction, Ohmic contacts and thermo-eleciric coolers	9
4	Dielectric materials : Polarization and relative permittivity, electronic polarization, polarization mechanisms, dielectric constant and dielectric loss, dielectric breakdown, capacitor dielectric materials, piezoelectricity, ferroelectricity and pyroelectricity	7
5	Magnetic properties: Magnetization of matter, magnetic materials classification – diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, ferrimagnetism, origin of ferromagnetism and exchange interaction, saturation magnetization, Curie temperature, magnetic domains, soft and hard magnetic materials; Superconductivity, Meissner effect, Josephson's effect, superconducting solenoids, AMR and GMR and their applications	8

|--|

Sl. No.	Authors/Name of Books/ Publisher	Year of Publications
1.	Kasap S.O., Principles of Electronic Materials and Devices, 3 rd Ed., McGraw-Hill	2009
2.	Hummel R.E., Electronic Properties of Materials, 4 th Ed., Springer	2011
3.	Streetman B. and Bannerjee S., Solid State Electronic Devices, 6 th Ed., Printice Hall	2005
4.	Callister W.D., Materials Science and Engineering, 7 th Ed., Wiley India (P) Ltd.	2010
5.	Raghavan V., Materials Science and Engineering, 5 th Ed., PHI	2011

NAME OF DEPAR	: Metallurgical and Materials Engineering	
1. Subject Code:	MTN-532	Course Title: Corrosion Protection Methods
2. Contact Hours:		L: 3 ; T: 1; P: 0
3. Examination Dur	ation (Hrs):	Theory:03Practical:00
 4. Relative Weight 5. Credits: 0 4 	ſ	5 PRS: 0 0 MTE: 2 5 ETE: 5 0 PRE: 0 0 Semester: Autumn/Spring

7. Pre-requisite: Nil 8. Subject Area: PEC

9. Objective: To impart knowledge on the principles related to protection of materials against corrosion.

SI.	Contents	Contact
No.		Hours
1.	Introduction: Importance and economics of corrosion, principles of	4
	corrosion	
2	Forms of corrosion: Classification of different forms of corrosion-	8
	general corrosion, selective corrosion including pitting corrosion,	
	crevice corrosion, intergranular corrosion, filiform corrosion, stress	
	corrosion cracking, corrosion fatigue, fretting corrosion, cavitation	
	corrosion, dezincification, dealuminization, graphitization, erosion-	
	corrosion	
3	Principle behind protection of materials against corrosion:	8
_	Protection against corrosion by modifying physical, chemical and/or	-
	mechanical aspects of materials- coating, alloying, heat treatment	
4	Protection by modifying the environmental parameters:	9
•	Concentration, pH, temperature, velocity, oxidizing agents, suspended	-
	particles, use of inhibitors	
5	Protection against corrosion by modification of external circuit: By	9
5	anodic and cathodic protection, problems encountered, study of	,
	mechanisms involved, some case studies	
6	Systematic approach for protection: protection with respect to	4
0	various corrosive environments under different parametric conditions	7
	*	12
	Total	42

Sl. No.	Name of Authors/ Books/ Publisher	Year of Publication/ Reprint
1.	Fontana M.G., Corrosion Engineering, 3 rd Ed., McGraw Hill	2005
2.	Plendek R.V., Design and Corrosion Control, The Macmillan Press	1977
3.	Annual book of ASTM standards, ASTM	1978
4.	Roberge P.R., Handbook of Corrosion Engineering, McGraw Hill	2000
5.	Revie W.R. and Uhlig H.H., Corrosion and Corrosion Control, 4 th Ed., Willey	2008

NAME OF DEPAR	TMENT	Metallurgical and Materials Engine	ering
1. Subject Code:	MTN-542	Course Title: Biomaterials	
2. Contact Hours:		L: 3 ; T: 1; P: 0	
3. Examination Dur	ation (Hrs):	Theory:03Practical:00	
4. Relative Weight	: CWS: 2	5 prs : 0 0 mte : 2 5 ete : 5	5 0 PRE: 0 0
5. Credits: 0 4	_	6. Semester: Autumn/Spring	
7. Pre-requisite: Nil		8. Subject Area: PEC	

9. Objective: To impart knowledge on structure-property relationship in biomaterials and their applications as implants.

SI. No	Contents	Contact Hours
1	Introduction: Historical background, construction materials, impact of biomaterials, strength of biological tissues, performance of implants, tissue response to implants, interfacial phenomena, safety and efficacy testing	4
2	Metallic and Ceramic materials: Stainless steels, Co-Cr alloys, Ti- based alloys, Nitinol, biological tolerance of implant metals, ceramic implant materials, alumina, yittria stabilized zirconia, hydroxyapatite glass ceramics carbons, restorable ceramics, composites	6
3	Polymeric implant materials: Polymers in biomedical use, polyethylene, polypropylene, acrylic polymer, hydrogels, polyurethans, polyamides, biogradable synthetic polymers, silicon rubber, micro-organisms in polymeric implants, polymer sterilization	6
4	Dental Materials: Tooth composition and mechanical properties, impression materials, bones, liners, and varnishes for cavities, filling and restorative materials, oral implants, use of collagen in dentistry	4
5	Cardiovascular and Orthopedic implants: Artificial heart, aorta and valves, geometry of circulation, vascular implants, cardiac pace makers, bone composition and properties, fracture healing, joint replacement, knee joint repair, bone regeneration with restorable materials	6
6	Tissue Engineering Materials and Regeneration : Substrate scaffolds materials, cellular aspects, viability, stem cells, bladder regeneration, cartilage regeneration, skin regeneration, regeneration in cardiovascular system	6
7	Tissue response to implants: Normal wound healing process, body response to implants, blood compatibility, carcinogenicity	3
8	Degradation of Materials in the biological environment: Chemical	4

	and biochemical degradation of polymers, degradation effects on metals and ceramics, pathological classification of biomaterials	
9	Case studies: Selection and design of biomaterials, implant and device	3
	failures	
	Total	42

SI. No.	Name of Authors/Books/Publisher	Year of Publication/ Reprint
1	Park J.B. and Bronzino J.D., Biomaterials: Principals and Applications, CRC Press	2003
2	Park J.B., Biomaterials Science and Engineering, Springer Press	1984
3	Rattner B.D., Hoffman A.S, Schoen F.J., Lemons J.E., Biomaterials Science: An Introduction to Materials in Medicine, Academic Press	2004
4	Park J.B. and Lakes R.S., Biomaterials: An Introduction, 3 rd edition, Springer press	2007
5	Bhat, S.V., Biomaterials, 2 nd edition, Narosa Publishing	2006

NAME OF DEPARTMENT	: Metallurgical and Materials Engineering
1. Subject Code: MTN-558	Course Title: Energy Storage Materials
2. Contact Hours:	L: 3 ; T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical : 0 0
4. Relative Weight : CWS:	2 5 PRS : 0 0 MTE : 2 5 ETE : 5 0 PRE : 0 0
5. Credits: 0 4	6. Semester: Autumn/Spring
7. Pre-requisite: Nil	8. Subject Area: PEC

9. Objective: To impart knowledge on different types of energy storage materials, their functions and applications

Sl. No.	Contents	Contact Hours
1	Introduction : Basics of solid state chemistry, defect structure of solids, surface and interface analysis	6
2	Materials for energy storage: Fuel cells, different types, materials used, mechanism of operation, applications; Solar cells – introduction on photovoltaics, materials used, principle of operation, applications; Storage batteries – battery technology, assembly, electrochemical tests; Supercapacitors – theory, high power super capacitor from carbon nanotubes; Hydrogen storage materials – mechanism of hydrogen storage	12
3	Material Analysis: Thermal, structural and morphological analysis of the energy storage materials, different experimental techniques used	6
4	Rechargable lithium ion battery: Intercalation compounds, anodes and composite anodes, cathode materials, polymeric electrolyte, currents trends of lithium ion batteries for consumer applications	8
5	Nanoscale materials: Nano crystalline materials, nanocomposites, nanotubes, energy storage capacity of the nanostructured materials	6
6.	Magnetocaloric materials : Different types of materials, application of the magnetocaloric effect	4
	Total	42

Sl. No.	Name of Authors/ Books/ Publisher	Year of Publication/
		Reprint
1	Nazri G.A., Pistoia G., Lithium Batteries: Science and Technology,	2004
	Kluwer Academic Publishers	
2	Kumta P.K., Supercapacitors: Fundamentals, Systems, Applications,	2009
	Emerging trends, Wiley-VCH Verlag	
3	Markvart T. and Castaner L., Solar cells: Materials, Manufacture	2003
	and Application, Elsevier	
4	Walker G., Solid State Hydrogen Storage: Materials and Chemistry,	2008
	Woodhead Publishing	
5.	Tishin A.M. and Spichkin, Y.I., The Magnetocaloric Effect and its	2003
	Applications, IOP publishing	