NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	Subject Code: MIN-601			Course Title: Additive Manufacturing		
2.	Contact Hours:	L: 3	T: 1	P: 2	2/2	
3.	Examination Duration	n (Hrs.): Th	eory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 15-30	PRS: 20	MTE: 15-25	ETE: 30-40	PRE: 0
5.	Credits: 4	6. Semester: Autumn 7. Subject Area: P		CC		

8. Pre-requisite: Nil

9. Objective: To provide knowledge about the part fabrication from design to product using different additive manufacturing routes.

10. Details of the Course

S.No.	Contents		
		hours	
1.	Role of additive manufacturing in product design and development, geometric	10	
	modeling, curves design, surface designs and various solid modeling techniques for		
	additive manufacturing, transformations for computer graphics		
2.	Process planning for additive manufacturing, STL file generation, defects in STL	10	
	files, repairing algorithms, slicing, slicing techniques like local and adaptive slice.		
3.	Classification of additive manufacturing (AM) processes, AM based rapid	12	
	prototyping (RP) Systems like Stereo-lithography, Fused Deposition Modeling		
	(FDM), Selective Laser Sintering (SLS), Laminated Object Manufacturing (LOM),		
	3-D Printing, laser-engineered net shaping (LENS), direct metal deposition (DMD).		
4.	Accuracy issues in additive manufacturing, properties of metallic and non-metallic	10	
	additive manufactured surfaces, stresses induced in additive manufacturing (AM)		
	processes.		
	Surface roughness problem in rapid prototyping, part deposition orientation, issues		
	like accuracy, surface finish, build time, support structure, cost etc.		
	Total	42	

11. List of Experiments

- 1. Part drawing using solid modelling techniques
- 2. Part fabrication using FDM
- 3. Part fabrication using SLA
- 4. Effect of machining parameters on the surface roughness of 3D printed parts
- 5. Term project on product design

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Chua, C.K., Leong, K.F., Rapid Prototyping: Principles and	2000
	Applications in Manufacturing, John Wiley and Sons Inc.	
2.	Pham, D.T., Demov, S.S., Rapid Manufacturing: The Technologies	2001
	and Applications of Rapid Prototyping and Rapid Tooling, Springer-	
	Verlag London Limited.	
3.	Zeid, I., Mastering CAD/CAM, Tata Mc Craw Hill, 2006	2006
4.	Gibson, I., Software Solutions for Rapid Prototyping, Professional	2002
	Engineering Publication Ltd.	
5.	Mortenson, M.E., Geometric Modelling, John Wiley and Sons, Inc.,	1997

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	Subject Code: MIN-613Course			Title: Fusion Join	ing Technologie	es
2.	Contact Hours:	L: 3	T: 1	P: 2	2/2	
3.	Examination Duration	n (Hrs.): Th	eory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 15-30	PRS: 20	MTE: 15-25	ETE: 30-40	PRE: 0
5.	Credits: 4	6. Semester: Autumn 7. Subject Area: PCC		CC		

8. Pre-requisite: Nil

9. Objective: To provide knowledge of fundamentals of joining, underlying principles, mechanisms related to fusion-joining technologies like arc heating, resistance heating, and radiation heating for developing sound joints.

10. Details of the Course

S.No.	Contents		
		hours	
1.	Fundamentals: Introduction, principles of fusion joining, heat sources, power	10	
	density, weld pool protection, weld thermal cycle and joint performance, metal		
	properties and weldability, weld and heat affected zone, gas metal and slag metal		
	reactions and solid state transformation in weld and HAZ		
2.	Arc: Fundamentals of arc welding, physics welding arc, arc forces, metal transfer,		
	arc efficiency, dilution, bead geometry, principle, process parameters and	12	
	performance of joints by welding processes: GMAW, GTAW, PAW, SAW and		
	their variants like P-GTAW, A-GTAW, hot wire GTAW, P-GMAW, FCAW, NGW		
3.	Resistance: Fundamentals of resistance welding, spot, seam, protection, HF	8	
	induction and resistance welding, flash-butt, stud welding		
4.	Radiation: Fundamentals of radiation based welding processes, melt-in and key hole	5	
	modes, principle, process parameters and performance of joints by LBW, EBW,		
	selection of power density and scanning speed in LBW, vacuum for EBW,		
	application and limitation of radiation based welding process		
5.	Misc. processes: Fundamentals, principles, parameters and joint performance of	7	
	ES/GW, brazing and soldering, thermite welding, cutting, weld surfacing		
	Total	42	

11. List of Experiments

- 1. Effect of welding parameters of SAW GMAW and GTAW processes on joint characteristics.
- 2. Effect of shielding gases on performance characteristics of GMAW process.
- 3. Effect of welding fluxes in submerged arc welding process on joint characteristics
- 4. Effect of welding parameters of spot welding of steel sheets on joint characteristics.
- 5. Effect of welding parameters on dilution, bead geometry and wear resistance of the weld surfacing
- 6. Effect joint design overlays, clearance on braze / solder joint characteristics

S No	Name of Authors/Book/Publisher	Vear of
5.110		Publication / Reprint
1.	J. Norrish: Advanced Welding Processes, Woodhead publishing	2006
2.	Lancaster J. F., "The Metallurgy of Welding", 6th Ed., William	1999
	Andrew Publishing.	
3.	Welding Handbook, Volumes 1, 2 & 3, 9th Ed., American Welding	2001
	Society.	
4.	ASM Metals Handbook", Vol. 6, ASM International Publication.	1993
5.	Larry J. and Jeffus L., "Welding Principles and Application", 5th Ed.,	2002
	Delmer Publication.	
6.	Messler R. W., "Principles of Welding (Processes, Physics, Chemistry	1999
	and Metallurgy)", John Wiley & Sons	
7.	Richard L Little, Welding and welding technology, Mc Graw Hill,	2020

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	Subject Code: MIN-614			rse Title: Solid S	State Joining Tee	chnologies
2.	Contact Hours:	L: 3	T: 1	P: 2	2/2	
3.	Examination Duration	n (Hrs.): T	heory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 15-30	PRS: 20	MTE: 15-25	ETE: 30-40	PRE: 0
5.	Credits: 4	6. Semes	ster: Autumn	7. St	ubject Area: PO	CC

8. Pre-requisite: Nil

9. Objective: To provide knowledge of fundamental approaches to solid state joining technologies, underlying principles, mechanisms related to solid state joining technologies like micro and macro scale deformation, diffusion, adhesion for developing sound joints.

10. Details of the Course

S.No.	Contents	Contact
		hours
1.	Fundamentals: Introduction, feasibility and applications, comparison with fusion	10
	joining technologies, principles of solid state joining, metal properties and	
	weldability by solid state joining, weld and heat affected zone, deformation and its	
	effect on microstructure and properties of weld and HAZ	
2.	Macro-deformation based joining: Fundamentals of macro-deformation joining,	8
	forge welding, friction welding, friction stir welding and its variants	
3.	Micro-deformation based joining: Fundamentals of micro-deformation joining,	8
	ultrasonic welding, explosive welding, roll bonding	
4.	Diffusion based joining: Fundamentals of diffusion based joining process, diffusion	6
	bonding and its variants like transient liquid phase bonding, mechanisms,	
	interlayers, surface cleaning, process parameters, approaches to improve the	
	productivity of diffusion bonding	
5.	Adhesive joining: Fundamentals, design of adhesive joint, joint configuration,	4
	overlap, adhesive thickness, principles, procedure, adhesives, curing, applications	
	and limitations	
6.	Heat treatment of weld joints for improving joint performance: Principle, Fe-C	6
	diagram CCT diagram, stress relieving, normalizing, tempering, precipitation	
	hardening, effect of PWHT on microstructure and properties of weld joints	
	Total	42

11. List of Experiments

- 1. Effect of welding parameters of FSW processes on joint characteristics.
- 2. Effect of welding parameters of ultrasonic welding on joint characteristics.
- 3. Effect of surface conditions and diffusion bonding parameters on joint characteristics
- 4. Effect of adhesive joint design on load carrying capacity of adhesive joints

- 5. Effect of procedure of adhesive joining on characteristic of adhesive joints
- 6. Effect PWHT on microstructure and characteristics of joint interface and HAZ

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	J. Norrish: Advanced Welding Processes, Woodhead publishing	2006
2.	Richard L Little, Welding and welding technology, Mc Graw Hill	2020
3.	Welding Handbook, Volume 2 & 3, 9th Ed., American Welding	2001
	Society.	
4.	ASM Metals Handbook", Vol. 6, ASM International Publication.	1993
5.	Larry J. and Jeffus L., "Welding Principles and Application", 5th Ed.,	2002
	Delmer Publication.	
6.	Messler R. W., "Principles of Welding (Processes, Physics, Chemistry	1999
	and Metallurgy)", John Wiley & Sons.	
7.	Procedure Handbook of Arc Welding", Lincoln Electric Co., USA.	2004
8.	Tylecote R.F., "The Solid phase welding of Metals", Edward Arnold	1968
	Pub. Ltd.	

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	. Subject Code: MIN-615 Course Title: Material Characterization and Testi				sting	
2.	Contact Hours:	L: 3	T: 1	P: 1	2/2	
3.	Examination Duratio	n (Hrs.): Th	neory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 15-30	PRS: 20	MTE: 15-25	ETE: 30-40	PRE: 0
5.	Credits: 4	6. Semest	er: Autumn	7. S	ubject Area: P	CC
•						

- 8. Pre-requisite: Nil
- **9. Objective:** To give students a thorough and conceptual understanding of various materials characterization and testing techniques.

S.No.	Contents		
		hours	
1.	Introduction: Engineering materials, properties of materials; crystal structure,	3	
	strengthening mechanisms in metals; fundamentals of materials characterization;		
	basic sample preparation and interpretation of data.		
2.	Optical Microscopy: Fundamentals of optics, optical microscope and image	5	
	formation, depth of field and depth of focus; specimen preparation, metallographic		
	principles, applications.		
3.	Electron Microscopy: Scanning electron microscopy- working principle, electron	8	
	specimen interaction, instrumentation and applications of SEM, chemical analysis		
	in SEM (EDS & WDS), electron backscatter diffraction, applications of EBSD;		
	transmission electron microscopy- instrument details and imaging modes, specimen		
	preparation methods.		
4.	X-ray Diffraction: Properties of x-rays, geometry of crystals, Bragg's law,	10	
	diffraction methods, intensity of diffracted beams, structure factor calculations,		
	diffractometer measurement; applications of XRD- phase identification, crystal		
	structure and phase diagram determination, crystallite size, and lattice parameter		
	determination.		
5.	Thermal and Thermomechanical Methods: Thermal gravimetric analysis (TGA),	9	
	differential thermal analysis (DTA), differential scanning calorimetry (DSC), and		
	dynamic mechanical analysis (DMA), thermomechanical analysis (TMA).		
6.	Mechanical Testing: Uniaxial tension test, compression test, three and four point	7	
	bending test, hardness tests, impact tests, creep and stress rupture tests, fatigue test		
	and failure analysis.		
	Total	42	

11. List of Experiments

- 1. Sample preparation for optical and SEM observations.
- 2. Grain size determination of given metallic sample using optical microscopy.
- 3. Microstructural study and chemical analysis using SEM.
- 4. To demonstrate the TEM sample preparation and TEM analysis.
- 5. Determination of phases in multiphase powder sample using XRD.
- 6. DSC/DTA analysis.
- 7. To study dynamic mechanical behavior of polymers.
- 8. To determine the tensile properties of given samples.
- 9. To determine the hardness of given metallic sample by Brinell, Vikcers, and Rockwell hardness tester.
- 10. To determine the impact strength of given metallic sample by Izod and Charpy methods.
- 11. To perform fatigue test on given sample.

S.No.	Name of Authors/Book/Publisher	Year of	
		Publication / Reprint	
1.	Leng, Y., "Materials Characterization: Introduction to Microscopic	2019	
	and Spectroscopic Methods", John Wiley & Sons	2017	
2.	Douglas B. Murphy, "Fundamentals of Light Microscopy and	2001	
	Electronic Imaging", Wiley Liss Inc. USA	2001	
3.	Cullity, B. D. and Stock, S. R., "Elements of X-Ray Diffraction",	2014	
	Pearson Education Limited	2014	
4.	Williams, D. B. and Carter, C. Barry, "Transmission Electron	1006	
	Microscopy", Springer	1990	
5.	Bhargava, A. K. and Sharma, C. P., "Mechanical Behaviour and	2014	
	Testing of Materials", PHI Learning Pvt. Ltd, Delhi	2014	

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	Subject Code: MIN-62	22 Course 7	f itle : Metallur	rgical aspects in j	oining and addit	tive manufacturing
2.	Contact Hours:	L: 3	T: 1	P :	2/2	
3.	Examination Duration	n (Hrs.): Th	eory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 15-30	PRS: 20	MTE: 15-25	ETE: 30-40	PRE: 0
5.	Credits: 4	6. Semeste	er: Spring	7. S	ubject Area: Pl	EC

- 8. Pre-requisite: Nil
- **9. Objective:** To provide knowledge of physical metallurgy related to heat affected zone and weld zone, interfaces in case of joining and additive manufacturing.

S.No.	Contents	Contact
		hours
1.	Physical metallurgy: Basic terminology, importance of metallurgical changes	12
	in metal joining and additive manufacturing, effect of material characteristics	
	namely composition, mechanical properties, physical properties on joining and	
	additive manufacturing, metallurgical transformation in fusion zone and heat	
	affected zone, autogenous and heterogeneous welding, carbon equivalent and	
	hardenability, relevance of Fe-C, CCT and Schaffer in fusion, metal	
	strengthening mechanisms	
2.	Solidification and weld zone: Gas metal reactions, liquid metal reactions,	
	solidification mechanisms, grain refinement techniques, inoculation, arc	10
	pulsation, external excitation, cleanliness of weld metal, affinity of atmospheric	
	gases with molten metals, approaches for protection of molten weld metal,	
	solidification cracking, porosity and inclusions	
3.	Heat affected zone: Transformation in HAZ, factors affecting changes in	10
	microstructure and mechanical properties of HAZ, HAZ of weld joint of	
	precipitation hardened, transformation hardened and dispersion hardened metals,	
	liquation cracking, hardening and softening of HAZ	
4.	Metallurgical aspects of solid state joining: Deformation induced metallurgical	
	transformation, grain refinement, work hardening, metallurgical discontinuities	6
	related to solid state joining, factors determining the joint performance of solid state	
	joints	
5.	Additive manufacturing of metal: Re-melting, need of shielding in additive	
	manufacturing, solidification, heat source and quality, metallurgical transformation	4
	and anisotropy in AM components, sintering during power metallurgy	
	Total	42

11. List of Experiments

- a) Study of microstructure and hardness profile of fusion weld joint.
- b) Study of microstructure and hardness profile of joint by solid state joining.
- c) Effect of shielding gases and basicity index on soundness of the weld joint.
- d) Metallurgical transformation weld and HAZ of fusion weld joints of PH aluminium alloy and carbon steel.
- e) Effect of heat input on metallurgical transformation in fusion weld joints.
- f) Study of sintering conditions of microstructure during AM using power metallurgy route.

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Lancaster J F., "Metallurgy of Welding", Allen & Unwin Co.	2000
2.	S D Avner, "Introduction to physical metallurgy", TMH	2011
3.	ASM Handbook "Welding, Brazing and soldering", Vol. 6, ASM	1003
	International, ASM, Ohio.	1995
4.	Kou S., Welding metallurgy, 2nd edition, Wiley Publications	2003
5.	Baldev Raj, V Shankar, A K Bhaduri, "Welding for engineers",	2006
	Narosa publishing house, India	2000
6.	K Esterling, "Introduction to Physical Metallurgy of Welding", BH	1991
7.	Gene Mathers, "Welding of Aluminium and alloys", Wood Head Pub.	2002
	UK.	2002

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	Subject Code: MIN-62	23	Course Title: Inspection and Testing for Quality Assurance			
2.	Contact Hours:	L: 3	T: 1	P: 1	2/2	
3.	Examination Duration	n (Hrs.): Th	eory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 15-30	PRS: 20	MTE: 15-25	ETE: 30-40	PRE: 0
5.	Credits: 4	6. Semeste	er: Spring	7. S	ubject Area: PI	EC

8. Pre-requisite: Nil

9. Objective: To provide knowledge of joint inspection and testing, types of discontinuities and their prevention, different destructive and non-destructive techniques for weld joints, codes for welding inspections, Welding Procedure and Performance Qualifications.

S.No.	Contents	Contact
		hours
1.	Introduction: Types and purposes of weld joint testing, important terms in	4
	joining, symbols for welding and testing	
2.	Discontinuities in Weld Joints: Classification of discontinuities in weldments,	4
	occurrence, causes and prevention of discontinuities, location, orientation and	
	extent of discontinuities, method for testing weld and base metal imperfections	
3.	Destructive Testing (DT): Chemical tests, metallographic tests, hardness tests,	8
	mechanical test for groove and fillet welds of full section, reduced section and all-	
	weld-metal tensile tests, root, face and side bend tests, fillet weld break tests, fillet	
	weld shear strength test	
4.	Non-Destructive Testing (NDT): Visual inspection, dye-penetrant test, magnetic	12
	particle testing; Ultrasonic testing- principle of ultrasonic testing, types of	
	ultrasonic probes, standard blocks for calibration; Radiographic inspection –	
	principle of radiography, X-ray tubes, Gamma-ray sources, interpretation of	
	radiographs, defect discernibility, Eddy current inspection; Proof test, leak tests:	
	NDT, AWS (American Welding Society) standards, safety in NDT	
5.	Inspection of Weld Joints: Duties and requirement of an inspector before, during	6
	and after welding, codes governing welding inspection, ASME (American Society	
	of Mechanical Engineers) Codes	
6.	Welding Procedure and Performance Qualifications: Standard procedure for	8
	specification and qualification of welding procedure, operator qualification,	
	standard method of recording of qualification tests, welding procedure	
	specification (WPS), procedure qualification record (PQR) and Welding	
	performance qualification (WPQ).	
	Total	42

11. List of Experiments

- 1. Visual inspection for weld quality
- 2. Dye-penetrant inspection of surface defects in welded joints
- 3. Magnetic particle inspection surface defects in welded joints
- 4. Ultrasonic inspection for assessing sub-surface defects
- 5. Radiographic inspection of weld joints

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	"Welding Inspection Handbook", 4 rd Ed., American Welding Society	2015
2.	"Welding Hand Book", Vol. 5, 9th Ed., American Welding Society	2003
3.	"ASME Code Section IX", ASME	1998
4.	"Structural Welding Code – Steel", AWS D1.1:2000 AWS	2000
5.	"Specifications for Welding Procedure & Performance Qualification",	1009
6.	ANSI /AWS B2.1:1998, 1998	1998
7.	Jeffus, L., "Welding: Principles and Applications", 8th Ed., Delmar	2016
	Cengage Learning	2010

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	Subject Code: MIN-6	24 Course 7	Fitle : Design a	and Analysis of .	Joints	
2.	Contact Hours:	L: 3	T: 1	P: 2	2/2	
3.	Examination Duration	n (Hrs.): Th	eory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 15-30	PRS: 20	MTE: 15-25	ETE: 30-40	PRE: 0
5.	Credits: 4	6. Semest	er: Spring	7. Su	ubject Area: Pl	EC

8. Pre-requisite: Nil

9. Objective: To provide basic knowledge to design weld joints, different types of weld joints and connections, design of joints for static and dynamic loading, applications of various joints in industries, heat flow and residual stress related to joining.

S.No.	Contents	Contact		
		hours		
1.	Introduction: Introduction to design, engineering properties of steels, weldability			
	of structural steels, carbon equivalent, tensile, impact, fatigue and creep properties			
	of welded joints, theories of failures.			
2.	Basic terms: Type of welds and weld joints, description of welds terminology,	6		
	welding symbols, edge preparation, sizing of welds in structure, type of			
	connections in welded structures, combined groove and fillet weld connections.			
3.	Design for Static Loading: Weld calculations for lap, butt and fillet welds,	6		
	analysis of connections for direct tension, compression and shear loading			
	conditions, resistance to moment by combined tension and compression.			
4.	Design for Fatigue loading: Introduction, mechanism of fatigue fracture, residual	8		
	fatigue strength, factors affecting fatigue life, design of welded joints for fatigue			
	loading, fatigue behaviour of hollow section joints, methods for improving the			
	fatigue strength of welded joints, reliability analysis and safety factors applied to			
	fatigue design with reference to fracture toughness.			
5.	Industrial Applications of Weld Design: Design of tubular structure, circular and	8		
	rectangular hollow sections under static loading; design of weld joint for pressure			
	vessel and automobile applications; design of brazed and soldered joints.			
6.	Heat flow in Welding: Heat flow in welding, effect of welding parameters on heat	8		
	distribution, calculation of peak temperature, weld thermal cycle, cooling rate and			
	solidification time, effect of heat flow on joint performance, residual stresses in			
	weld, stress corrosion			
	Total	42		

11. List of Experiments

- 1. Study the effect of type of weld on tensile properties of weld joint
- 2. Development of weld thermal cycle during arc welding
- 3. Measurement of residual stress in welded joints
- 4. Measurement of hardness, toughness and fracture toughness of welded joints
- 5. Study stress corrosion cracking behaviour of stainless steel joints

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Fuchs, H. O. and Stephen, R I., "Metal Fatigue in Engineering", John	2000
	Wiley & Sons.	2000
2.	Gray, T. G. F. and Spence, J., "Rational Welding Design",	1002
	Butterworths.	1992
3.	"Welding Hand Book", Vol. 2 & 3, 9th Ed., American Welding	2001
	Society.	2001
4.	Dieter, G., "Mechanical Metallurgy", McGraw Hill.	1988
5.	Messler, R.W. Jr., "Principles of Welding", John Wiley & Sons.	1999

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

- Subject Code: MIN-625 Course Title: Safety Analysis of Metallic Joints 1. 2. Contact Hours: **L:** 3 **T:** 1 **P:** 0 **3.** Examination Duration (Hrs.): **Theory:** 3 Practical: 0 Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0 4. 5. Credits: 4 6. Semester: Spring 7. Subject Area: PEC 8. Pre-requisite: Nil
- **9. Objective:** To provide knowledge fundamental of failure, fracture mechanics, stress localization for safety and reliability analysis of the weld joints.

S.No.	Contents	Contact
1.	Fundamentals: Definition of safety and definition of safety concept; basic mechanism of failure of components; brittle and ductile fracture; collapse fatigue fracture mechanism and representations at sub-microscopic and macroscopic levels through Mohr's circle; specific problems of safety related to weldments; definition and safety relevance of weld imperfections.	9
2.	Conventional Methods for Safety Analysis: Concepts of strength and toughness of engineering materials; determination and consequences of stress and strain state; material - stress and strain state embitterment, their reasons and consequences; effects of notches, stress state in notched component, safety analysis and assessment of notched components using notch theory; semi quantitative fracture analysis diagrams; limitations of conventional methods.	9
3.	Fracture Mechanics: Concepts of stress-strain state of cracked components; Introduction and basic principles of fracture mechanics; Linear Elastic Fracture Mechanics (LEFM); stress intensity factor; determination of fracture toughness.	8
4.	Methods for Safety Analysis: Limitations of LEFM; Modified LEFM, General yielding criterion; Plastic Limit Load Calculations (PLLC); Principles of Two Criteria Approach (TCA); Failure assessment diagram (CEGB Report R-6); Mechanism of cyclic crack growth; Paris law; Modifications of Paris law; Effects of temperature and environment; Elastic plastic fracture mechanics (EPFM); Stable crack growth; COD concept (CTOD BS: 5762); R-curve technique; Instability diagram.	8
5.	Application of Safety Concepts to Welded Structures: Material imperfections and stress states in weldments; Quality - degradation in welded structures; CODE requirements; Case studies as examples of failures; Design and service requirements for engineering structures fabricated by welding i.e. welded structures.	8
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Anderson T. L., "Fracture Mechanics: Fundamentals and	2000
	Applications", 3 rd Edition, Taylor & Francis Group.	
2.	Latzko D.G.H, "Post Yield Fracture Mechanics", 2 nd Edition, Elsevier	1984
	Applied Science Publication.	
3.	Broek D., "Elementary Engineering Fracture Mechanics", Martinus	1982
	Nijhoff.	
4.	Farahmand Bahram.,"Fracture Mechanics of Metals, Composites,	2000
	Welds and Bolted Joints", Hardcover, Kluwer Academic Publishers.	
5.	Maddox S.J., "Fatigue of Welded Structures", 2 nd Edition, Woodhead	1991
	Publishing.	
6.	Gurney T.R.,"Fatigue of Welded Structures", Cambridge University	1979
	Press.	

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	Subject Code: MIN-627			Course Title: Hybrid Joining Technologies			
2.	Contact Hours:	L: 2	T: 1	P :	0		
3.	Examination Duratio	n (Hrs.): Tł	neory: 2	Practical: ()		
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0	
5.	Credits: 3	6. Semest	ter: Spring	pring 7. Subject Area: PEC		PEC	
0	D						

- 8. Pre-requisite: Nil
- **9. Objective:** To introduce need and basis hybridization of joining techniques and develop understanding on common hybrid joining technologies used primarily in automotive sector.

10. Details of the Course

S.No.	Contents	Contact
		hours
1.	Introduction: Requirement of hybrid joining, fundamental principles, types of	2
	hybrid joining technologies, and applications	
2.	Hybrid adhesive bonding with mechanical joining: Adhesive bonding in	6
	conjunction with mechanical point joints, adhesive bonding and clinching, adhesive	
	bonding and self-piercing riveting, adhesive bonding and blind riveting, adhesive	
	bonding combined with other mechanical fasteners, adhesive injection fasteners,	
	hem flange bonding	
3.	Hybrid adhesive bonding with solid state joining techniques: Adhesive bonding	6
	and magnetic pulse welding, adhesive bonding and friction stir spot welding,	
	adhesive bonding and ultrasonic welding	
4.	Hybrid adhesive bonding with fusion welding: Adhesive bonding combined with	
	resistance spot welding process, adhesive bonding combined with laser welding	6
	process, adhesive bonding combined with TIG/MIG welding process	
5.	Hybrid fusion welding techniques: Laser – arc welding processes, Laser - MIG	
	welding, Laser - TIG welding, Laser - plasma arc welding, Laser - MIG tandem	6
	welding process, MIG plasma welding	
6.	Advances in hybrid joining: Research trends in hybridization of joining	2
	technologies, development in hybrid joining technologies for unique industrial	
	applications	
	Total	28

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Flemming Ove Olsen, "Hybrid laser-arc welding", Woodhead	2009
	Publishing, Cambridge UK	
2.	Sergio T. Amancio Filho, Lucian-Attila Blaga, "Joining of polymer-	2018

	metal hybrid structures: principles and applications", John Wiley &	
	Sons, USA	
3.	Mahadzir Ishak, "Joining Technologies", Intech Open, Croatia	2016
4.	F.M.De. Wit, J.A. Poulis, "Joining technologies for automotive	2012
	components", Advanced materials in automotive engineering,	
	Woodhead Publishing, (:315-29), Cambridge UK	
5.	Horst E. Friedrich, Barry L. Mordike, "Magnesium technology",	2006
	Springer-Verlag Berlin Heidelberg	
6.	L.F. da Silva, A. Pirondi, A. Öchsner, "Hybrid adhesive joints",	2011
	Springer Science & Business Media, Heidelberg New York	
7.	H. Fricke, T. Vallée, "Hybrid joining techniques", Advanced Joining	2021
	Processes, (pp. 353-381), Elsevier, United States	
8.	R.W. Messler, "Joining of materials and structures: from pragmatic	2004
	process to enabling technology", Elsevier Butterworth-Heinemann;	
	Oxford UK	
9.	"Welding Handbook" Vol. 3, 9th Edition", American Welding	2001
	Society	
10.	Rubino F et al., "Ultrasonic welding of magnesium alloys: a review",	2020
	Materials and Manufacturing Processes; 35(10):1051-68, Italy	
11.	Dawei Z et al., "Review on joining process of carbon fiber-reinforced	2018
	polymer and metal: methods and joining process", Rare Metal	
	Materials and Engineering; 47(12):3686-96, China	
12.	Graham DP et al., "The development and scalability of a high strength,	2014
	damage tolerant, hybrid joining scheme for composite-metal	
	structures", Composites Part A: Applied Science and Manufacturing;	
	64:11-24, Bristol UK	

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

- 1. Subject Code: MIN-628Course Title: FEM for manufacturing processes2. Contact Hours:L: 3T: 1P: 2/2
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0

4. Relative Weightage: CWS: 15-30 **PRS:** 20 **MTE:** 15-25 **ETE:** 30-40 **PRE:** 0

- 5. Credits: 46. Semester: Spring7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: To provide knowledge of FEM and its application in various manufacturing processes.

S.No.	Contents	Contact
		hours
1.	Introduction to finite element methods: Fundamentals of finite element (FE)	10
	method, elastic stress analysis, weighted residue technique, material non-linearity,	
	heat conduction, fluid flow, structure of a FE model, steps of a FE model, FE	
	solver, X-FEM and interface tracking methods, Finite Element Modelling of	
	Machining, model formulation, mesh, elements, boundary, contact, material	
	Modelling, friction modelling, adaptive meshing, FEM software	
2.	FEM in Metal Cutting: Performance of machining FEM models, high speed	8
	machining modelling, 3D machining modelling, FEM modelling of	
	micromachining, Modelling of Grinding, Non-Conventional Machining, Soft	
	Computing in Machining, Molecular Dynamics	
3.	FEM in casting and welding: Heat source model in conduction mode welding	10
	processes, FE formulation, incorporation of temperature dependent properties,	
	incorporation of latent heat of melting and solidifications, FE-based fluid flow	
	model in fusion welding processes, FE-based elastic-plastic stress model of welding	
	processes, yield criteria, hardening rule, flow rule, models, FE formulation,	
	prediction of residual stress and distortion, incorporation of phase transformation	
	effect, demonstration of thermo-mechanical model development using commercial	
	software	
4.	Finite Element Modelling of Forming and Rolling Processes: Background on the	
	FEM, flow formulation of the cold rolling processes, updated Lagrangian	7
	formulation of cold rolling processes, formulation for hot rolling processes, heat	
	transfer equations, material behaviour	
5.	Combining the Finite Element Method and Artificial Intelligence in	
	Manufacturing Modelling and Optimization: A brief overview on AI techniques,	7
	AI techniques for modelling, AI techniques for optimizing, Approaches for	
	combining the FEM and AI in machining, Neural network-based modelling,	
	Genetic algorithm-based optimization	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Angelos P. Markopoulos, Finite Element Method in Machining	2013
	Processes, Springer	
2.	J. Paulo Davim, Finite Element Method in Manufacturing Processes,	Jan 2011
	WILEY	
3.	Edward R. Champion, Finite Element Analysis in Manufacturing	1992
	Engineering, McGraw-Hill	
4.	J N Reddy: An Introduction to the Finite Element Method, 3rd Eds.,	2006
	Tata McGraw Hill	
5.	S Kalpakjian and S R Schmid: Manufacturing Engineering and	2018
	Technology, 7th Ed., Pearson	
6.	O P Gupta, Finite and Boundary Element Methods in Engineering, 1st	1999
	Edition, Oxford & IBH Publishing.	
7.	O C Zienkiewicz, The Finite Element Method, 4th Edition, Tata	1991
	McGraw Hill	
8.	J. A. Goldak and A. Mehdi, Computational Welding Mechanics,	2005
	Springer, NY	
9.	M-K Besharati-Givi and P. Asadi: Advances in Friction-Stir Welding	2014
	and Processing, Woodhead Publishing Limited	
10.	J. Norrish: Advanced Welding Processes, Woodhead publishing	2006
11.	C Lakshmana Rao and Abhijit P Deshpande: Modelling of	2010
	Engineering Materials, Ane Books Pvt. Ltd., New Delhi, India	
12.	S. Bag and A. De: Computational models for GTA and laser welding	2013
	processes, Lap-Lambert Academic Publishing Co. Ltd., Germany,	
	ISBN 978-3-659-42994-1	

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	. Subject Code: MIN-629			Course Title: Reverse Engineering and Rapid Toolin			
2.	Contact Hours:	L: 2	T: 0	P: 2	2/2		
3.	Examination Duration	n (Hrs.): The	eory: 2	Practical: 0			
4.	Relative Weightage:	CWS: 15-30	PRS: 20	MTE: 15-25	ETE: 30-40	PRE:	0
5.	Credits: 3	6. Semeste	er: Spring	7. Sı	ıbject Area: PI	EC	

- 8. Pre-requisite: MIN-601
- 9. Objective: To familiarise students with the principles of reverse engineering and rapid tooling.

10. Details of the Course

S.No.	Contents	Contact hours
1.	Introduction to reverse engineering : Historical background, Use in modern industry, Applications and generic process of RE, Tools and techniques in RE, object scanning, contact scanners, noncontact scanners, destructive methods, coordinate measuring machine	6
2.	Processing of point cloud data : Data processing, curve generation, surface generation, solid generation, removal of noise, .STL file generation, model verification.	10
3.	Introduction to Rapid tooling: Definition and classification of rapid tooling, direct and indirect rapid tooling techniques like soft tooling and hard tooling techniques, its working principle and applications. Case studies related to indirect rapid tooling.	12
	Total	28

11. List of Experiments:

- 1. Reverse engineering using CMM.
- 2. Reverse engineering using 3D scanner.
- 3. Indirect rapid tooling using casting.
- 4. Term project based on RE and RT.

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Katheryn, A. Ingle, "Reverse Engineering", McGraw-Hill.	1994
2.	Aiken Peter, "Data Reverse Engineering", McGraw-Hill.	1996
3.	Linda Wills, "Reverse Engineering", Kluiver Academic Publishers.	1996
4.	Donald R. Honsa , "Co-ordinate Measurement and reverse	1996
	engineering", American Gear Manufacturers Association	

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

1.	Subject Code: MIN-630			Course Title	e: Residu	ual Stress and I	Distortion
2.	Contact Hours:	L: 2	Т:	1	P:	0	
3.	Examination Duration	n (Hrs.): 7	Theory: 2	Prac	ctical: 0		
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20	0-30	ETE: 40-50	PRE: 0
5.	Credits: 3	6. Seme	ster: Spring		7. S	ubject Area: 1	PEC

8. Pre-requisite: Nil

9. Objective: To impart knowledge on importance, causes and mechanisms of residual stress and distortion, factors affecting residual stresses, effect of residual stress and its control, methods of residual stress and distortion measurements.

S.No.	Contents	Contact
		hours
1.	Residual stresses: Causes of residual stress, types of residual stresses, mechanisms	4
	of residual stress formation, residual stress in weld joint, casting, and formed	
	components, distribution of residual stress, effect of residual stress,	
2.	Residual stress in weld joints: Effect of welding procedure and weld thermal	6
	cycle, base metal characteristics on residuals stresses, heat flow in welding, heat	
	distribution, peak temperatures, cooling rate, influence of residual stresses in static	
	and dynamic loading, distortion in weldments, effect of specimen size and weight	
	on residual stress, residual stress in similar & dissimilar metal weld joints.	
3.	Residual stress measurement methods: Deep-hole drilling, incremental center-	4
	hole drilling, ring core, Sachs boring, slitting, ultrasound and X-ray diffraction.	
4.	Control of residual stress: Developing suitable welding procedure, weld joint	4
	design, selection of suitable filler/electrode/interlayer, stress-relieving treatment,	
	heat treatment, overloading, mechanical vibrations etc.	
5.	Distortion: Types of distortion-longitudinal, transverse, angular, bowing, causes of	
	distortion heat input, restraint, inherent stresses in parent metal, control of	6
	distortion-joint design, assembly procedure-pre-setting method: restrained method,	
	welding procedure, welding process, type and size of electrode welding rod and	
	wire, number of passes, and welding position, welding parameters, welding	
	sequence and techniques, other techniques for distortion control.	
6.	Correction of distortion: Manual, use of press, local heating - hot shrinkage, use	
	of heat strip, use of heat triangle, Concept of residual stresses, distortion in cutting,	4
	factors causing distortion, distortion control techniques in cutting	
	Total	28

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Welding Technology for Engineers, Eds. Baldev Raj, V. Shankar, A.K.	2009
	Bhaduri, Narora Publishing House, 3rd Reprint	
2.	V. M. Radhakrishnan, "Welding Technology and Design", Revised	
	Second Ed., New Age International Publishers.	
3.	A Guide to Designing Welds, J.G. Hicks, Wood-head Publishing Ltd.	2001
4.	The Science and Practice of Welding, Vol-1 : Welding Science and	1996
	Technology	
5.	Messler R.W., "Principles of Welding", John Wiley & Sons	1999
6.	Welding Handbook 9th edition, Vol- 1: Residual stress and distortion	2001

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

- **1.** Subject Code: MIN-631Course Title: Dissimilar Metal Joining
- Contact Hours: L: 3 T: 1 P: 0
 Examination Duration (Hrs.): Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Spring7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To provide knowledge of issues encountered during dissimilar metal joining, approaches to overcome problems related to dissimilar metal joining, methods suitable for dissimilar metal joining.

S.No.	Contents	Contact
		hours
1.	Introduction: Basic terminology, fundamental causes of issues in dissimilar	12
	metal joining, common challenges in dissimilar metal joining, applications of	
	dissimilar metal joining, base metal properties and their influence on dissimilar	
	metal joining, fundamental approaches to address issues of dissimilar metal	
	joining, dilution, selection of filler/interlayer material, fillers metals and	
	interlayers, Schaeffler diagram, joint design, identification of weak zone in	
	dissimilar metal joints, preheat and post weld heat treatment	
2.	Fusion Arc Welding Processes: Asymmetric weld and embrittlement of fusion	10
	weld joints of dissimilar metals, cracking, residual stress and distortion issues in	
	fusion weld of dissimilar metals, brazing, and braze welding using unique	
	approaches for dissimilar joining by activate flux, hot-wire and pulse GTAW,	
	pulse-GMAW, narrow gap welding, spot welding, case studies related to	
	dissimilar metal joining of stainless steel-low alloy steel, aluminium-steel,	
	copper to steel, nickel-steel	
3.	Radiation welding: Typical problems of dissimilar joining by radiation based	6
	processes (LBW/EBW), unique approaches of dissimilar metal joining by laser	
	and electron bean welding, melt in and keyhole modes of joining, typical case	
	studies of dissimilar joining of iron-copper, stainless steel-low carbon steel,	
	low carbon steel-Ni & Cu alloy by LBW and EBW.	
4.	Solid state joining : Issues and requirement of dissimilar metal joining by	
	solid state joining processes, unique approaches of dissimilar metal joining by	10
	friction stir welding, diffusion bonding, ultrasonic welding, explosive bonding,	
	and roll cladding, mechanical fastening, adhesive joining, application of	
	interlayer typical case studies of solid state joining of Al-steel, Al-Cu, Al-Mg,	
	metal-polymer, copper-steels, titanium-steels	
5.	Quality assessment of dissimilar metal joint: Inspection, characterization and	
	their interpretation of results related to mechanical testing, non-destructive	4
	testing of dissimilar joints, case studies	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Kazakov, "Diffusion Bonding of Materials" Mir Publishers,	2013
	Moscow	
2.	Pierpaolo Carlone.,"Dissimilar Metal Welding" MDPI,	2019
	Switzerland	
3.	William M. Steen, "Laser Material Processing", springer.UK.	2010
4.	Mohammad Kazem., "Advances in friction Stir Welding and	2014
	Processing", Wood head, UK.	
5.	W.H.Kearns "Metals and their Weldability", welding Handbook,	1984
	AWS	
6.	Baldev Raj, V Shankar, A K Bhaduri, "Welding Technology for	2006
	Engineers", Narosa publishing house, India	
7.	"Welding Handbook" Vol. 3, 9th Edition", American Welding	2002
8.	"Metals Handbook", Vol. 6, ASM International Publication	1993