NAME OF DEPTT./	CENTRE:	D E	Departm Engineer	nent ring	of Elect	ronics	s & Com	muni	cation	
1. Subject Code: E	CN-511	C	Course T	itle:	Digita	l Com	municat	tion S	ystems	
2. Contact Hours:	L: 3		Т	: 0			P: 0			
3. Examination Dura	tion (Hrs.):	Т	`heory		3	Pr	actical		0	
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ЕТЕ	50	PRE	0
5. Credits: 3	6. 5	Semes	ster: Au	tum	1	7. Su	bject Are	ea: CO	ORE	
8. Pre-requisite:	NIL									

9. Objective: To introduce the students to the principles, techniques and applications of digital communication.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Block diagram and sub-system description of a digital communication	5
	system. Sampling of low-pass and band-pass signals, analysis of	
	instantaneous, natural and flat-top sampling, signal reconstruction;	
	PAM and bandwidth considerations.	
2.	PCM, signal to quantization noise ratio analysis of linear and non-	4
	linear quantizers; Line codes and bandwidth considerations; PCM-	
	TDM hierarchies, frame structures, frame synchronization and bit	
	stuffing. □.	
3.	Quantization noise analysis of DM and ADM; DPCM and ADPCM;	5
	Low bit rate coding of speech and video signals. \Box	
4.	Baseband transmission, matched filter, performance in additive	5
	Gaussian noise; Intersymbol interference (ISI), Nyquist criterion for	
	zero ISI, sinusoidal roll-off filtering, correlative coding, equalizers	
	and adaptive equalizers; Digital subscriber lines.	
5.	Geometric representation of signals, maximum likelihood decoding;	3
	Correlation receiver, equivalence with matched filter	
6.	Generation, detection and probability of error analysis of OOK,	8
	BPSK, coherent and non-coherent FSK, QPSK and DPSK; QAM,	

	MSK and multicarrier modulation; Comparison of bandwidth and bit	
	rate of digital modulation schemes. \Box	
7.	Types of satellite orbits, satellite transponder, multiple access	4
	techniques, basic link design.	
8.	Cellular concepts, propagation characteristics, GSM and CDMA	4
	standards.	
9.	Optical fiber propagation, loss and dispersion, types of fibers; Optical	4
	sources and detectors, connectors and splices; Optical link. \Box	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Haykin, S., "Communication Systems", 4th Ed., John Wiley & Sons.	2001
2.	Lathi, B.P. and Ding, Z., "Modern Digital and Analog Communication Systems", Intl. 4th Ed., Oxford University Press.	2009
3.	Proakis, J.G. and Saheli, M., "Digital Communications", 5 th Ed., McGraw-Hill.	2008
4.	Sklar, B., and Ray, P.K., "Digital Communication: Fundamentals and Applications", 2nd Ed., Dorling Kindersley (India).	2009
5.	Carlson, A.B., Crilly, P.B. and Rutledge, J.C., "Communication Systems: An Introduction to Signals and Noise in Electrical Communication", 4th Ed., McGraw-Hill.	2002

NAME OF DEPTT./	CENTRE:	Department of Electronics & Communication Engineering						
1. Subject Code: E	CN-512	Course Title:	Inform	nation	and Co	mmu	nication	Theory
2. Contact Hours:	L: 3	T: 0			P: 0			
3. Examination Dura	tion (Hrs.):	Theory	3	Pra	actical		0	
4. Relative Weight	: CWS 25	PRS 0	MTE	25	ETE	50	PRE	0
5. Credits: 3	6. Sen	nester: Autum	n	7. Sub	ject Are	ea: CO	ORE	
8. Pre-requisite:	NIL							

9. Objective: To provide the essential concepts of information and communication theory and their applications.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to detection and estimation problem in communication.	2
2.	The meaning and axioms of probability; Random variables; Examples	6
	of commonly used random variables and their density and distribution	
	functions; Moments and characteristic functions.	
3.	Bivariate distributions and functions of two random variables, joint	4
	moments and characteristic functions, conditional distributions and	
	expected values.	
4.	Binary hypothesis testing: Bayes, Neyman-Pearson, maximum	6
	likelihood, MAP and minimum probability of error criteria; Bayes,	
	ML and MAP estimation.	
5.	Information, entropy, source coding theorem, Markov sources;	8
	Channel capacity theorems for discrete and continuous ensembles;	
	Introduction to rate distortion function.	
6.	Correlation matrix and characteristic functions of sequences of	6
	random variables, jointly normal random variables; Mean square	
	estimation, stochastic convergence and limit theorems; Random	
	number generation.	
7.	Random processes, correlation function and power spectrum, random	10

process through linear systems, KLT, ergodicity; Spectral	
estimation.	
Total	42

S.	Name of Books / Authors/ Publishers	Year of
No.		Publication /
		Reprint
1.	Papoulis, A. and Pillai, S.U., "Probability, Random Variables and	2002
	Stochastic Processes", Tata McGraw-Hill.	
2.	Cover, T.M. and Thomas, J.A., "Elements of Information Theory", 2 nd	2006
	Ed., Wiley Interscience.	
3.	Van Trees, H.L., "Detection, Estimation and Modulation Theory",	2001
	Part I, Wiley Interscience.	
4.	Bose, R., "Information Theory, Coding and Cryptography", Tata	2003
	McGraw-Hill.	
5.	Sayood, K., "Data Compression", Harcourt India.	2000

NAME OF DEPTT./CENTRE:	Department of El Engineering	lectronics & Communication
1. Subject Code: ECN-513	Course Title: Te	elecommunication Networks
2. Contact Hours: L: 3	T: 0	P: 0
3. Examination Duration (Hrs.):	Theory 3	Practical 0
4. Relative Weight : CWS	25 PRS 0 MT	FE 25 ETE 50 PRE 0
5. Credits: 3 6.	Semester: Spring	7. Subject Area: PE

- 8. Pre-requisite: NIL
- 9. Objective: This course is designed to provide an in depth study of communication networks with emphasis on development of analytical tools and quantitative performance evaluation.
- 10. Details of Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction to communication networks, network topologies,	3
	internetworking, circuit and packet switching; Layered architecture	
	and protocols, OSI reference model and functions of various layers,	
	overview of TCP / IP, ISDN and SS – 7 protocol architectures.	
2.	Brief characterization of communication channels and fundamental	3
	limits in digital transmission; Line codes and modems; Transmission	
	media and transmission impairments; Synchronous and	
	asynchronous time division multiplexing, SONET and SDH.	
3.	Error detection: Parity check, polynomial representation, cyclic	6
	redundancy checks and their capabilities; Error control: Stop and	
	wait, go - back n and selective repeat ARQ strategies, correctness	
	and throughput analysis; Framing and optimum frame size; HDLC	
	and LAPB protocols, throughput analysis of HDLC.	
4.	Introduction to queuing models, modeling of arrivals, interarrival	15
	times and service times, Poisson process; Little's theorem, proof and	
	examples; Continuous-time discrete event process and Markov	
	chain, Birth-Death process; Analysis and applications of M/M/1,	
	M/M/m, M/M/m/m, M/M/m/K and M/M/ ∞ queues; M/G/1 queue,	

	vacation, reservation, polling, and priority; G/G/1 queue; Network of queues, Kleinrock's independence assumption, Burke's and Jackson's theorems.	
5.	Classification and performance measures of MAC protocols; Pure- ALOHA and slotted-ALOHA, Markov chain modeling, stability, BEB and other stabilization techniques; Splitting algorithms; Non- persistent, 1-persistent and p-persistent CSMA, performance evaluation; CSMA/CD and CSMA/CA; Polling, reservation and token ring protocols; Overview of IEEE 802 standards and frame structures of 802.3 and 802.5.	8
6.	Main issues in routing, virtual circuit and datagram routing; Classification of routing algorithms; Shortest path algorithms: Bellman-Ford, Dijkstra and Floyd-Warshall; Distributed asynchronous Bellman-Ford algorithm.	4
7.	Objectives and means of flow and congestion control, End-to-end and node by node windows, performance analysis and simplified queuing models; Rate control schemes: Time window, modeling and performance of leaky bucket algorithm.	3
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Bertsekas, D. and Gallager, R., "Data Networks", 2 nd Ed., Prentice-Hall	1992
	of India.	
2.	Kumar, A., Manjunath, D. and Kuri, J., "Communication Networking:	2004
	An Analytical Approach", Morgan Kaufmann.	
3.	Schwartz, M., "Telecommunication Networks: Protocols, Modeling and	1987
	Analysis", Pearson Education.	
4.	Stallings, W., "Data and Computer Communication", 8th Ed., Pearson	2007
	Education.	
5.	Walrand, J., "Communication Networks", 2 nd Ed., McGraw-Hill.	2009
6.	Kleinrock, L., "Queuing Systems: Theory", 2 nd Ed., Wiley Blackwell.	2008

NAME OF DEPTT.	CENTRE:	Department Engineering	of Elect	tronics	& Com	muni	cation	
1. Subject Code: E	CN-515	Course Title:	Codin	ng The	ory and	Appl	ications	1
2. Contact Hours:	L: 3	T: 0	I		P: 0			
3. Examination Dura	ation (Hrs.):	Theory	3	Pr	actical		0	
4. Relative Weight	: CWS	25 PRS 0	MTE	25	ЕТЕ	50	PRE	0
5. Credits: 3	6. Se	emester: Spring	5	7. Sul	bject Are	ea: CO	ORE	
8. Pre-requisite:	NIL							

9. Objective: To provide an in-depth study of the design of good forward error correction codes and their efficient decoding.

10. Details of Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction to forward error correction and reliable information	2
	transmission; Discrete communication channels and Shannon's	
	theorems revisited.	
2.	Introduction to groups, rings and fields; Finite fields based on integer	6
	and polynomial rings; Binary field arithmetic, construction and	
	properties of GF (2 ^m); Vector spaces and linear algebra; Logic circuits	
	for finite field arithmetic.	
3.	Structure of Linear Block Codes, encoding, minimum distance, error	6
	detection and correction capabilities, syndrome; Standard array and	
	decoding of block codes; Probability of undetected error over binary	
	symmetric channel; Examples of block codes: Hamming, SEC-DED,	
	Reed-Muller, Golay.	
4.	Polynomial and matrix description of Cyclic Codes, encoding,	6
	decoding; Hamming code and Golay code; Shortened and quasi-	
	cyclic codes; Error trapping decoding.	
5.	Binary primitive BCH codes, Berlekamp's iterative algorithm for	8
	BCH decoding, decoder implementation; Non-binary BCH and Reed-	

	Solomon (R-S) codes, decoding of R-S codes by Berlekamp's	
	algorithm; Frequency domain representation and decoding of R-S	
	codes.	
6.	Convolutional codes, encoding, trellis description, structural and	8
	distance properties; Viterbi algorithm (VA), implementation and	
	performance of VA; SOVA and BCJR algorithms.	
7.	Introduction to Turbo and LDPC codes; Iterative decoding of Turbo	4
	codes; Trellis coded modulation.	
8.	Burst-error correction, interleaving and concatenation.	2
	Total	42

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	Lin, S. and Costello Jr., D.J., "Error Control Coding", 2 nd Ed., Pearson	2004
	Prentice-Hall.	
2.	Blahut, R.E., "Algebraic Codes for Data Transmission", 2 nd Ed.,	2003
	Cambridge University Press.	
3.	Vucetic, B. and Yuan, J., "Turbo Codes: Principles and Applications",	2000
	Springer.	
4.	McEliece, R., "Theory of Information and Coding", 2 nd Ed.,	2002
	Cambridge University Press.	
5.	Huffman, W.C. and Pless, V., "Fundamentals of Error Correcting	2003
	Codes", Cambridge University Press.	
6.	Moon, T.K., "Error Correction Coding: Mathematical Methods and	2005
	Algorithms", Wiley Interscience.	

NAME OF DEPTT.	/CENTRE:	Departm Engineer	ent o ing	of Electi	ronics	& Com	muni	cation	
1. Subject Code: ECN-516		Course Title: Ad Te		Advanced Digital Communicatio Techniques				tion	
2. Contact Hours:	L: 3	T:	0			P: 0			
3. Examination Dura	ation (Hrs.):	Theory		3	Pr	actical		0	
4. Relative Weight	: CWS 25	5 PRS	0	MTE	25	ETE	50	PRE	0
5. Credits: 3	6. Sen	nester: Spr	ing		7. Sul	oject Are	a: PE		

- 8. Pre-requisite: NIL
- 9. Objective: To expose the students to advanced topics in digital communication with emphasis on source coding, signal design and optimum receiver structures.
- 10. Details of Course:

Sl. No.	Contents	Contact Hours
1.	Vector quantization; Sub-band coding of speech, audio and video signals;	6
	Linear predictive coding of speech, CELP coders; MPEG standards for audio and video.	
2.	Characterization of bandpass signals and systems, orthonormal expansion of signals, representation of digitally modulated signals; Non-linear modulation methods with memory.	6
3.	Optimum demodulation of known signals in additive white Gaussian noise; Probability of error for binary and M-ary signaling, and DPSK demodulator.	6
4.	Carrier and symbol synchronization techniques.	4
5.	Characterization of band-limited channels and ISI, signal design for zero ISI and controlled ISI.	4
6.	Optimum demodulator for ISI and AWGN; Linear equalization and decision feedback equalization, adaptive equalizers.	6
7.	Characterisation of fading dispersive channel, tapped delay line model, optimum demodulation for binary signaling, Rake receiver.	5
8.	Direct sequence spread spectrum and CDMA systems, DSSS performance in AWGN and fading channel.	5
	Total	42

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	Proakis, J.G. and Saheli, M., "Digital Communications", 5 th Ed.,	2008
	McGraw-Hill.	
2.	Barry, J.R., Lee, E.A. and Messerschmitt, D.G., "Digital	2004
	Communication", 3 rd Ed., Kluwer.	
3.	Benedetto, S. and Biglieri, E., "Principles of Digital Transmission:	1999
	Wireless Applications", Springer.	
4.	Sayood, K., "Introduction to Data Compression", 3 rd Ed., Morgan	2006
	Kaufman.	

NAME OF DEPTT./CENTRE:	Department of Elect Engineering	ronics & Commun	ication
1. Subject Code: ECN-518	Course Title: Speecl	າ and Audio Proc	essing
2. Contact Hours: L: 3	T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weight : CWS 25	PRS 0 MTE	25 ETE 50	PRE 0
5. Credits: 3 6. Sem	ester: Spring	7. Subject Area: Pl	E

- 8. Pre-requisite: NIL
- 9. Objective: To acquaint the students with the concepts in speech and audio processing, and their applications in communication systems.
- 10. Details of Course:

Sl.	Contents	Contact
No.		Hours
1.	Digital speech processing and its applications, production and	7
	classification of speech sounds, lossless tube models, digital models for	
	speech signals; Analysis and synthesis of pole-zero speech models,	
	Levinson recursion, lattice synthesis filter.	
2.	Time dependent processing of speech, pitch period estimation, frequency	6
	domain pitch estimation; Discrete-time short-time Fourier transform and	
	its application, phase vocoder, channel vocoder.	
3.	Homomorphic speech processing, waveform coders, hybrid coders and vector quantization of speech; Model based coding: Linear predictive, RELP, MELP, CELP; Speech synthesis.	9
4.	Principles of speech recognition, spectral distance measures, dynamic time warping, word recognition using phoneme units, hidden Markov models and word recognition, speech recognition systems, speaker recognition.	7
5.	Ear physiology, psychoacoustics, perception model and auditory system as filter bank; Filter bank design and modified discrete cosine transform algorithm for audio compression in MP3 and AAC coders; Standards for high-fidelity audio coding.	7
6.	Tree-structured filter banks, multicomplementary filter banks; Properties	6

of wavelets and scaling functions, wavelet transform; Filter banks and wavelets, applications of wavelet signal processing in audio and speech coding.	
Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Rabiner, L.R. and Schafer, R.W., "Digital Processing of Speech	2006
	Signals", Pearson Education.	
2.	Quatieri, T.F., "Discrete-Time Speech Signal Processing: Principles	2002
	and Practice", Pearson Education.	
3.	Furui, S., "Digital Speech Processing, Synthesis and Recognition",	2000
	2 nd Ed., CRC Press.	
4.	Fliege, N.J., "Multi Rate Digital Signal Processing", John Wiley &	1999
	Sons.	
5.	Spanias, A., Painter, T. and Venkatraman, A., "Audio Signal	2007
	Processing and Coding", John Wiley & Sons.	
6.	Gold, B. and Morgan, N., "Speech and Audio Signal Processing",	2002
	John Wiley & Sons.	

NAME OF DEPTT./CENTRE:	Department of Elec Engineering	Department of Electronics & Communication Engineering					
1. Subject Code: ECN-522	Course Title: Digit	al Signal Processing & Ap	plications				
2. Contact Hours: L: 3	T: 0	P: 0					
3. Examination Duration (Hrs.):	Theory 3	Practical 0					
4. Relative Weight : CWS	25 PRS 0 MTE	25 ETE 50 PRE	2 0				
5. Credits: 3 6. S	Semester: Autumn	7. Subject Area: PE					
8. Pre-requisite: NIL							

9. Objective: To introduce the students to the principles, techniques and applications of digital signal processing.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Advantages and limitations of digital signal processing; Review of	7
	discrete time signal and system analysis using Fourier transform and	
	z-transform; Sampling and discrete time processing of continuous	
	time signals.	
2.	Structures for discrete time systems; Design of digital FIR and IIR	6
	filters.	
3.	Multirate DSP and its application in sampling rate conversion, audio	6
	coding and high quality A/D conversion . \Box	
4.	Properties and applications of DFT, FFT and decimation algorithms;	5
	DCT and its application in multimedia coding.	
5.	Spectral analysis using FFT; Wiener filtering, adaptive filters; LMS	8
	and RLS adaptive filtering algorithms; Application of adaptive	
	filtering to echo cancellation and equalization	
6.	General and special purpose hardware for DSP; Real time digital	6
	signal processing using TMS 320 family.; Implementation of DSP	
	algorithm on digital signal processors	
	Total	4
		42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Proakis, J.G, "Digital Signal Processing: Principle, Algorithms and Applications", 4th Ed., Pearson.	2007
2.	Oppenheim, A.V. and Schafer, R.W, "Discrete-Time Signal Processing", 3rd Ed., Peaerson.	2009
3.	Porat, B. "A Course in Digital Signal Processing", 1 st Ed., John Wiley & Sons.	1996
4.	Mitra, S.K., "Digital Signal Processing A Computer-Based Approach", 4th Ed., McGraw-Hill.	2010
5.	Weltch , T.B., Wright, C.H.G. and Morrow, G.M., "Real-Time Digital Signal Processing from MATLAB to C with the TMS320C6x DSPs.", 2nd Ed., CRC Press.	2012

NAME OF DEPT./CENTRE:	Electronics and	Computer Engineering
1. Subject Code: ECN-523	Course Title: Robotic	cs and Computer Vision
2. Contact Hours:	L: 3 T: 0	P: 0
3. Examination Duration (Hrs.):	Theory 0 3	Practical ⁰ 0
4. Relative Weight: CWS	₂₅ PRS ₀₀ MTE	₂₅ ETE ₅₀ PRE ₀₀
5.Credits: 0 3	6. Semester	\checkmark
7. Pre-requisite: EC- 321 or eq	Autumn uivalent	Spring Both

- 8. Subject Area: **DEC**
- 9.Objective: The course introduces the fundamentals of robot dynamics, its features and performance, controller techniques, and image analysis for obstacle avoidance.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Definition, structure and application areas of Robotics;	4
	Introduction to the range of robots currently in use.	
2.	Direct kinematics of the robot arm, link description and its	6
	connection; Frame assignment; Concept of actuator space, joint	
	space and Cartesian space; Inverse kinematics, algebraic solution,	
	geometric solution; Solvabilitly considerations and examples.	
3.	Manipulator dynamics, basic equations, Newton-Euler dynamic	8
	formulation; Lagrange formulation of the manipulator dynamics;	
	Simulation.	
4.	Controller design, linear and non-linear control approaches, special	9
	considerations like coupling, time-variation and model uncertainty;	
	Computed torque, variable structure and adaptive control	
	techniques.	
5.	Digital image fundamentals, digitization and 2-D parameters, types	6
	of operation; Basic tools: Convolution, Fourier transforms and	
	statistical approaches.	
6.	Image analysis and processing, basic enhancement and restoration	9
	techniques, unsharp masking, noise suppression, distortion	
	suppression, segmentation, thresholding, edge finding, binary	
	mathematical morphology, grey-value mathematical morphology.	
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Fu, K.S., Gonzalez, R.C. and Lee, C.S.G., "Robotics: Control,	1987
	Sensing, Vision and Intelligence", McGraw-Hill.	
2.	Pratt, W.K., "Digital Image Processing", 2 nd Ed., John Wiley &	1991
	Sons.	
3.	Gonzalez, R.C. and Woods, R.E., "Digital Image Processing", 3 rd	2008
	Ed., Prentice-Hall.	
4.	Klafter, R.D., Chmielewski, T.A. and Negin, M., "Robotic	2007
	Engineering An Integrated Approach", Prentice-Hall of India.	
5.	Schilling, R. J., "Fundamental of Robotics: Analysis and Control",	2007
	Prentice-Hall of India.	
6.	Sciavicco, L., "Modeling and Control of Robot Manipulators",	2003
	McGraw-Hill.	

NAME OF DEPT./CENTRE:	Electronics and	d Communication E	ngineering
1. Subject Code: ECN- 531	Course Title: Microv	wave Engineering	
2. Contact Hours:	L: 3 T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 0 3	Practical ⁰ 0	
4. Relative Weight: CWS 25	PRS 00 MTE 00	25 ETE 50 PRE	00
5. Credits: 0 4 6. Sem	nester √ Autumn	Spring Both	

- 7. Pre-requisite: NIL
- 8. Subject Area: PCC
- 9. Objective: To introduce the students to the field theory and circuit theory concepts in the analysis and design of microwave guiding structures and passive components.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Transmission Lines and Waveguides: Review of TEM, TE, and TM	10
	mode solutions of Maxwell's equations; TEM mode transmission lines:	
	lossless line, line with small losses, power flow in a terminated line; Quasi-	
	TEM mode lines: Fields in microstriplines and striplines, losses in	
	microstrips, microstrip discontinuities, coupled lines, slot lines and coplanar	
	waveguides; Surface waveguides: Surface waves along an impedance plane,	
	dielectric-coated conducting plane, slab waveguide, corrugated plane; Wave	
	velocities.	
2.	Microwave Circuit Theory Principles: Equivalent voltages and currents;	8
	Z, Y, S, and ABCD parameters; Equivalent circuit representation of	
	microwave junctions; Scattering parameter analysis of microwave	
	junctions; Coupling of waveguides through probes, loops, and apertures.	
3.	Impedance Transformers: Review of single-, double- and triple-stub	6
	tuners, waveguide reactive elements, quarter-wave transformers, design of	
	maximally flat and Chebyshev transformers; Introduction to tapered	
	transmission lines.	
4.	Power Dividers and Couplers: Scattering matrix of 3- and 4-port	6
	junctions; Design of T-junction and Wilkinson power dividers; Design of	
	90° and 180° hybrids.	

5.	Filters: Analysis of periodic structures, Floquet's theorem, filter design by	6	
	insertion loss method, maximally flat and Chebyshev designs.		
6.	Resonators: Principles of microwave resonators, loaded, unloaded and	6	
	external Q, open and shorted TEM lines as resonators, microstrip		
	resonators, dielectric resonators.		
	Total	42	

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Collin, R.E., "Foundations for Microwave Engineering", 2 nd Ed., John	2000
	Wiley & Sons.	
2.	Pozar, D.M., "Microwave Engineering", 3 rd Ed., John Wiley & Sons.	2004
3.	Edwards, T.C. and Steer M.B., "Foundations for Interconnects and	2001
	Microstrip Design", 3 rd Ed., John Wiley & Sons.	
4.	Ludwig, R. and Bretchko, P., "RF Circuit Design", Pearson Education.	2000
5.	Hunter, I., "Theory and Design of Microwave Filters", IEE Press.	2001
6.	Misra, D.K., "Radio-frequency and Microwave Communication	2001
	Circuits", John Wiley & Sons.	

NAME OF DEPT/CENTRE: Electronics and Communication Engineering

1. Subject Code: ECN-532 Course	e Title: Advanced	IEMFT	
2. Contact Hours:	L: 3	T: 0	P: 0
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weight: CWS 25	PRS 0 MTE	25 ETE (50 PRE 0
5. Credits: 3 6. Seme	ster: Autumn	7. Subject Are	ea: PCC

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the students to analytical techniques used in solving electromagnetic field theory problems.
- 10. Details of Course:

SI.	Contents	Contact
No.		Hours
1.	Electromagnetic waves: Coordinate systems; Maxwell's equations for time-varying fields and boundary conditions; Poynting vector; Wave equation; Wave polarization; Wave propagation in perfect and lossy dielectrics; Reflection of waves on a material boundary; Wave functions.	10
2.	Fundamental Theorems and Concepts: Electric and magnetic current sources; Duality; Image theory; Equivalence principle; Babinet's principle; Induction theorem; Reciprocity theorem; Auxiliary potentials; Construction of general solutions from wave functions; Radiation fields.	7
3.	Plane Wave Functions: Elementary wave functions in rectangular coordinates; TE, TM, and hybrid modes in rectangular waveguides; Partially filled waveguides; Rectangular cavity; Modal expansion of fields in a waveguide; Apertures in conducting screens.	8
4.	Cylindrical Wave Functions: Elementary wave functions in cylindrical coordinates; Homogeneously filled and partially filled circular waveguides; Radial waveguides; Cylindrical cavities; Sources of cylindrical waves.	8
5.	Spherical Wave Functions: Elementary wave functions in spherical coordinates; Spherical resonator; Sources of spherical waves.	4
6.	Wave Propagation in Anisotropic Media: Plane wave propagation in anisotropic and uniaxial crystals; TEM wave propagation in Ferrites; Faraday rotation.	5
	Total	42

SI.	Name of Authors / Books /Publishers	Year of
No.		Publication
1.	Harrington, R.F., "Time-harmonic Electromagnetic Fields",	2001
	Wiley-IEEE Press.	
2.	Ramo, S., Whinnery, J.R., and Van Duzer, T., "Fields and	1994
	Waves in Communication Electronics", 3 rd Ed., John Wiley &	
	Sons.	
3.	Collin, R.E., "Foundations for Microwave Engineering", 2 nd Ed.,	2000
	John Wiley & Sons.	
4.	Balanis, C.E., "Advanced Engineering Electromagnetics", Wiley	2008
	India Pvt. Ltd., Reprint	

NAME OF DEPT./CENTRE:	Electronics and Communication Engineering
1. Subject Code: ECN- 534	Course Title: Antenna Theory and Design
2. Contact Hours:	L: 3 T: 0 P: 0
3. Examination Duration (Hrs.):	Theory 0 3 Practical 0 0
4. Relative Weight: CWS 25	PRS 00 MTE 25 ETE 50 PRE 00 00
5. Credits: 0 3 6. Semes	^{ter} √ Autumn Spring Both

- 7. Pre-requisite: NIL
- 8. Subject Area: PCC
- 9. Objective: The objective of this course is to provide an in-depth understanding of modern antenna concepts, and practical antenna design for various applications.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Fundamental Concepts: Radiation pattern, near- and far-field regions, reciprocity, directivity and gain, effective aperture, polarization, input impedance, efficiency, Friis transmission equation, radiation integrals and auxiliary potential functions.	6
2.	Radiation from Wires and Loops: Infinitesimal dipole, finite-length dipole, linear elements near conductors, dipoles for mobile communication, small circular loop.	6
3.	Aperture Antennas: Huygens' principle, radiation from rectangular and circular apertures, design considerations, Babinet's principle, Fourier transform method in aperture antenna theory.	8
4.	Horn and Reflector Antennas: Radiation from sectoral and pyramidal horns, design concepts, prime-focus parabolic reflector and cassegrain antennas.	6
5.	Microstrip Antennas: Basic characteristics, feeding methods, methods of analysis, design of rectangular and circular patch antennas.	6
6.	Antenna Arrays: Analysis of uniformly spaced arrays with uniform and non-uniform excitation amplitudes, extension to planar arrays, synthesis of antenna arrays using Schelkunoff polynomial method, Fourier transform method, and Woodward-Lawson method.	10
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Balanis, C.A., "Antenna Theory and Design", 3 rd Ed., John Wiley &	2005
	Sons.	
2.	Jordan, E.C. and Balmain, K.G., "Electromagnetic Waves and Radiating	1993
	Systems", 2 nd Ed., Prentice-Hall of India.	
3.	Stutzman, W.L. and Thiele, H.A., "Antenna Theory and Design", 2 nd	1998
	Ed., John Wiley & Sons.	
4.	Elliot, R.S., "Antenna Theory and Design", Revised edition, Wiley-	2003
	IEEE Press.	
5.	Garg, R., Bhartia, P., Bahl, I. and Ittipiboon, A., "Microstrip Antenna	2001
	Design Handbook", Artech House.	

NAME OF DEPT./CENTRE:	Electronics and Communication Engineering
1. Subject Code: ECN–539	Course Title: Fiber Optic Systems
2. Contact Hours:	L: 3 T: 0 P: 0
3. Examination Duration (Hrs.):	Theory 0 3 Practical 0 0
4. Relative Weight: CWS 25	PRS 00 MTE 25 ETE 50 PRE 00 00
5. Credits: 0 3 6. Semo	ester √ Autumn Spring Both

- 7. Pre-requisite: NIL
- 8. Subject Area: PEC
- 9. Objective: To provide the concepts of optical fibres, sources and detectors used in optical communication systems.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Planar Optical Waveguides: Wave propagation in planar optical	5
	velocity, dispersion.	
2.	Optical Fibre Waveguides: Wave propagation in cylindrical fibres, modes and mode coupling, step and graded index fibres, single-mode fibres.	5
3.	Transmission Characteristics of Fibres: Attenuation, material absorption and scattering loss, bend loss, intra-modal and inter-modal dispersion in step and graded fibres, overall dispersion in single and multi-mode fibres.	7
4.	Optical Fibre Connection: Optical fiber cables, stability of characteristics, fibre alignment; Fibre splices, connectors, couplers.	4
5.	Optical Sources: Absorption and emission of radiation, population inversion and laser oscillation, p-n junction, recombination and diffusion, stimulated emission and lasing, hetero-junctions, single-frequency injection lasers and their characteristics, light emitting diode structures and their characteristics.	6
6.	Optical Detectors: Optical detection principles, p-n, p-i-n, and avalanche photodiodes.	3

7.	Optical Communication System: System description and design	5
	considerations of an optical fibre communication system, noise in	
	detection process, power budgeting, rise time budgeting, maximum	
	transmission distance.	
8.	Optical networks: WDM concepts and principles, basic networks,	7
	SONET/SDH, broadcast-and-select WDM networks, wavelength-routed	
	networks, nonlinear effects on network performance, performance of	
	WDM & EDFA systems; Solitons; Optical CDMA.	
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Senior, J.M., "Optical Fiber Communications", 2nd Ed., Prentice-Hall	1999
	of India.	
2.	Keiser, G., "Optical Fiber Communications," 3 rd Ed., McGraw-Hill.	2000
3.	Ghatak, A. and Thyagarajan, K., "Introduction to Fiber Optics",	1999
	Cambridge University Press.	
4.	Cheo, P.K., "Fiber Optics and Optoelectronics", 2 nd Ed., Prentice-Hall.	1990
5.	Govar, J., "Optical Communication Systems", 2 nd Ed., Prentice-Hall	1996
	of India.	
6.	Snyder, A.W. and Love, J.D., "Optical Waveguide Theory", Chapman	1983
	& Hall.	

NAME OF DEPT./CENTRE:	Electronics and Communication Engineering
1. Subject Code: ECN – 541	Course Title: Computational Techniques for Microwaves
2. Contact Hours:	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.):	Theory ^{0 3} Practical ^{0 0}
4. Relative Weight: CWS 2	5 PRS 00 MTE 25 ETE 50 PRE 00 00
5. Credits: 0 4 6. Se	mester √ Autumn Spring Both
7. Pre-requisite: NIL	

- 8. Subject Area: PEC
- 9. Objective: The objective of this course is to introduce the students to advanced computational techniques for the solution of partial differential equations and integral equations encountered in electromagnetic boundary value problems.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Fundamental Concepts: Review of Maxwell's equations and boundary	6
	conditions, integral equations versus differential equations, radiation and edge	
	conditions, modal representation of fields in bounded and unbounded media.	
2.	Green's Functions: Green's function technique for the solution of partial	12
	differential equations, classification of Green's functions, various methods for	
	the determination of Green's functions including Fourier transform technique	
	and Ohm-Rayleigh technique, dyadic Green's functions, determination of	
	Green's functions for free space, transmission lines, waveguides, and	
	microstrips.	
3.	Integral Equations: Formulation of typical problems in terms of integral	12
	equations: wire antennas, scattering, apertures in conducting screens and	
	waveguides, discontinuities in waveguides and microstriplines; Solution of	
	Integral equations: General Method of Moments (MoM) for the solution of	
	integro-differential equations, choice of expansion and weighting functions,	
	application of MoM to typical electromagnetic problems.	
4.	Finite Element Method: Typical finite elements, Solution of two-	6
	dimensional Laplace and Poisson's equations, solution of scalar Helmholtz	
	equation.	
5.	Finite-difference Time-domain Method: Finite differences, finite difference	6

Total	42
programming aspects, absorbing boundary conditions.	
dispersion, Yee's finite difference algorithm, stability conditions,	
representation of Maxwell's equations and wave equation numerical	

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Collin, R.E., "Field Theory of Guided Waves", 2 nd Ed., Wiley-IEEE	1991
	Press.	
2.	Peterson, A.F, Ray, S.L. and Mittra, R., "Computational Methods for	1998
	Electromagnetics", Wiley-IEEE Press.	
3.	Harrington, R.F., "Field Computation by Moment Methods", Wiley-	1993
	IEEE Press.	
4.	Sadiku, M.N.O., "Numerical Techniques in Electromagnetics", 2 nd Ed.,	2001
	CRC Press.	
5.	Stutzman, W.L. and Thiele, H.A., "Antenna Theory and Design", 2 nd	1998
	Ed., John Wiley & Sons.	
6.	Volakis, J.L., Chatterjee, A. and Kempel, L.C., "Finite Method for	1998
	Electromagnetics", Wiley-IEEE Press.	
7.	Taflov, A. and Hagness, S.C., "Computational Electrodynamics", 3 rd	2005
	Ed., Artech House.	

NAME OF DEPT./CENTRE:	Electronics and Communication Engineering
1. Subject Code: ECN-542	Course Title: Microwave Integrated Circuits
2. Contact Hours:	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.):	Theory ^{0 3} Practical ^{0 0}
4. Relative Weight: CWS 2	5 PRS 00 MTE 25 ETE 50 PRE 00 00
5. Credits: 0 4 6. See	mester √ Autumn Spring Both
7. Pre-requisite: NIL	

8. Subject Area: PEC

- 9. Objective: To introduce the students to the advanced topics of Microwave Integrated Circuits in Microstrip Technology.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Planar Transmission Lines and Lumped Elements for MICs:	10
	Fundamentals of the theory of transmission lines, Foundations of Microstrip	
	lines, Striplines, Higher modes in microstrips and striplines, Slotlines,	
	Coplanar waveguides, Coplanar strips; Launching Techniques: Coaxial line	
	to microstrip transition, Rectangular waveguide to microstrip transition,	
	microstrip to slot-line transition, microstrip to coplanar waveguide (CPW)	
	transition; Lumped Components: Capacitors, Inductors and Resistors.	
2.	Discontinuities and Bends: Introduction, open-circuit end correction,	5
	corners, symmetrical step, T-junction, series gaps, Bends	
3.	Microwave Planar Filters: Periodic structures, Filter design by the Image	10
	Parameter method, Filter design by the Insertion Loss method, Filter	
	transformations, Filter implementation, Stepped-Impedance Low-Pass	
	filters, Coupled line filters, Filters using coupled resonators.	
4.	4-Port Network Design: Introduction; Even-and odd-mode analysis;	
	Branch-line couple, Branch-line coupler with improved coupling	
	performance, Branch-line coupler with multiple sections; Introduction to	
	Hybrid-ring couplers, qualitative description and complete analysis of	7
	hybrid-ring couplers, Hybrid-ring couplers with modified ring impedances;	
	Introduction to parallel-coupled lines and directional couplers; Even- and	
	odd-analysis of parallel-coupled lines; Coupled-line parameters; Multiple-	

	section directional couplers; The Lange Coupler	
5.	Nonlinear RF Circuits: Introduction; Power Gain Relations; Simultaneous conjugate Matching; Stability Considerations; Power gain for matched, unmatched, unilateral conditions; Noise characterization and design options; Switches: Pin Diode switches, FET switches, MEMS switches; Variable attenuators, Phase shifters, Detectors and Mixers; Amplifiers: Small signal amplifiers, Low noise amplifiers, Power amplifiers; Oscillators.	10
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Fooks, E.H. and Zakarevicius, R.A., "Microwave Engineering Using	1990
	Microstrip Circuits," Prentice-Hall.	
2.	Franco di Paolo, "Networks and Devices using Planar Transmission	2000
	Lines," CRC Press.	
3.	Pozar, D.M., "Microwave Engineering", 3 rd Ed., John Wiley & Sons.	2004
4.	Roberto Sorrentino and Giovanni Bianchi, "Mirowave and RF	2010
	Engineering" John Wiley & Sons.	
5.	Ludwig, R. and Bretchko, P., "RF Circuit Design", Pearson Education.	2000
6.	Misra, D.K., "Radio-frequency and Microwave Communication	2001
	Circuits", John Wiley & Sons.	

NAME OF DEPT./CENTRE:	Electronics and Communication Engineering
1. Subject Code: ECN-543	Course Title: High Power mm/THz Wave Engineering
2. Contact Hours:	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.):	Theory ^{0 3} Practical ^{0 0}
4. Relative Weight: CWS 25	PRS 00 MTE 25 ETE 50 PRE 00 00
5. Credits: 0 4 6. Sen	nester √ Autumn Spring Both
7. Pre-requisite: NIL	

8. Subject Area: PEC

9. Objective: To introduce the students to the basic principles and design aspects of gyrotrons

10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Review of Gyro-Devices and Principle of Gyrotron: Introduction,	8
	Classification of Fast Wave Microwave Sources, Gyrotron Oscillator and	
	Gyroklystron Amplifier, Cyclotron Autoresonance Maser (CARM), Gyro-	
	TWT (Travelling Wave Tube) and Gyrotwystron Amplifier, Gyro-BWO	
	(Backward Wave Oscillator), Overview of Gyro-Devices, Magnicons and	
	Gyroharmonic Converters, Free Electron Lasers, Basic Principle of	
	Gyrotrons, Eigenmodes of Tapered, Open Resonator Cavities, Physical	
	Model for the High Frequency Fields in a Resonator, Coaxial Cavity	
	Structures, Complex Cavities	
2.	Calculation of RF Behaviour and Practical Considerations: Equation of	10
	Motion, Self-Consistent Calculations, Dimensionless Variables, Mode	
	Competition in Gyrotron Oscillators, Energy Transfer to a Single Mode,	
	Mode Suppression, Startup, Time Dependent Formulation, Current	
	Neutralization, Mode Competition with Different Harmonics, Wall Losses,	
	Voltage Depression and Limiting Current, Choice of Beam Radius, Fresnel	
	Parameter, Starting Current, Rieke Diagrams for Gyrotrons	
3.	Electron Optical and Guiding System: Introduction, Magnetron Injection	8
	Gun-General Remarks Preliminary Design, Codes for the Design of MIGs,	
	Design Procedure of MIGs, Beam Guidance, Beam Dump-Collecting	
	System-General Remarks, Theory of Depressed Collectors, Magnetic	
	Decompression, Design of Depressed Collectors for Gyrotrons, Some	

	General Remarks	
4.	Output Taper, Quasi-optical Launcher and RF Window: Output Taper,	8
	Methods of Taper Analysis and Synthesis, Quasi-optical Mode Converter,	
	Basic Principle of Quasi-optical Mode Converters, Improved Quasi-optical	
	Mode Converters, Remarks about RF Window, Practical Aspects of High	
	Power Windows, Theory of Disc Type Windows, Broadband Output	
	Windows, Diamond Windows for Gyrotrons, Concluding Remarks.	
5.	Applications and Examples: Introduction, ECRH Applications, ECR	8
	Discharges for Generation of Multiply Charged Ions and Soft X-Rays, High	
	Frequency Broadband ESR Spectroscopy, Processing of Advanced	
	Ceramics, Experimental Setup, Experimental Results, Millimeter-	
	Wavelength Radar, Active Millimeter Wave Meteorology-Cloud Radar,	
	Space Debris Monitoring Radar, High Power Nanosecond Radar, RF-	
	Drivers for TeV Linear Colliders, A Very High-Power 140 GHz	
	Conventional Gyrotron, A 165 GHz Coaxial Gyrotron, Multifrequency	
	Gyrotron, Second Harmonic Gyrotrons, Concluding Remarks	
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Kartikeyan, Borie & Thumm. "Gyrotrons: High Power Micorwave and	2004
	Millimeter Wave Technology", Springer.	
2.	Gregory S. Nusinovich "Introduction to the Physics of Gyrotrons", John	2004
	Hopkins University Press.	
3.	A. S. Gilmour, Jr. "Klystrons, Traveling Wave Tubes, Magnetrons,	2011
	Crossed-Field Amplifiers, and Gyrotrons", Artech House.	

NAME OF DEPTT./CENTRE :	Dept. of Electronics and Communication	n Engg.
1. Subject Code: ECN - 544	Course Title: Advanced Radar Engi	neering
2. Contact Hours: L: 3	T: 1 P: 0	
3. Examination Duration (Hrs.):	Theory 0 3 Practical 0 0	
4. Relative Weightage: CWS	25 PRS 00 MTE 25 ETE 50 PRE	00
5. Credits: 0 4 6. Set	emester Autumn Spring Both	
7. Pre-requisite: NIL	8. Subject Area: PEC	

9. Objective: The objective of this course is to introduce different type of radar systems for military and civilian applications to the students.

10. Details of Course:

Sl.	Particulars	Contact
No.		Hours
1.	Basic radar definitions; radar equation; receiver noise; probability of detection and	
	signal-to-noise ratio; receiver bandwidth; target cross-section and cross-section	6
	fluctuations with statistical description of RCS; antenna coverage and gain; system	
	losses,	
2	Signal Models for Radar: Amplitude models, range equation and its distributed	
	target forms, Clutter: signal to clutter ratio, temporal and spatial correlation of	-
	clutter, compound models for RCS; Noise model and signal to noise ratio; spatial	1
	model: variation with angle, variation with range, projections, multipath, spectral	
	models.	
3.	Types of Radar: CW, FMCW and multiple-frequency CW radars; MTI: delay line	
	cancelers; transversal filters; low, medium, and high-prf radars; staggered prf;	
	multiple prf ranging; digital MTI; doppler filter bank and its generation; Reflection	12
	of radar waves; Tracking radars: conical scan radar; error signal of conical-scan	
	radar; monopulse radars; error signal of amplitude comparison monopulse	
4.	FUNDAMENTALS for DETECTION: Radar detection as hypothesis Testing:	
	Neyman-Pearson detection rule, likelihood ratio test; threshold detection of radar	6
	signals: non-coherent integration of nonfluctuating targets, Albersheim and	Ū
	Shnidaman equations; Binary integration.	
5.	Phased array and Imaging radar- Phase array working and feed systems;	
	Introduction to Beamforming: conventional beamforming, adaptive beamforming;	11
	Synthetic aperture radars(SAR) and pulse compression techniques; SAR	

Fundamentals: cross range resolution in Radar, synthetic aperture viewpo Stripmap SAR Data Characteristics: Stripmap SAR Geometry, Stripmap set; Strippmap SAR Image formation Algorithm, Introduction of Plolarin Interferometric SAR and its principle, Remote sensing applications of rad	int, SAR data netric and lars	
	Total	42

S.No.	Name of Books / Authors	Year of
		Publication
1.	Skolnik, M.I., "Introduction to radar systems", 2nd edition,	1997
	McGraw Hill	
2.	Hovanessian, S.A., "Radar system design and analysis", Artech	1984
	House	
3.	Levanon, N., "Radar principles", John Wiley & Sons	1988
4.	Richards, M. A., "Fundamental of Radar Signal Processing" Tata	2005
	McGrawhill	
5.	Sullivan, R. J., "Radar Foundations for Imaging and Advanced	2004
	Concepts" PHI	
6.	Harold Mott, "Remote Sensing with Polarimetric Radar" IEEE	2007
	Press	
7.	Nathanson, F E, "Radar Design Principles" Scitech Publishing,	2002
8.	Meikle Hamish "Modern Radar System" Artech House	2001

NAME OF DEPT./CENTRE:	Electronics and Computer Engineering
1. Subject Code: ECN–548	Course Title: RF and Microwave MEMS
2. Contact Hours:	L: 3 T: 0 P: 0
3. Examination Duration (Hrs.):	Theory ⁰³ Practical ⁰⁰
4. Relative Weight: CWS 25	PRS 00 MTE 25 ETE 50 PRE 00 00
5. Credits: 0 3 6. Sem	nester √ Autumn Spring Both
7. Pre-requisite: NIL	

- 8. Subject Area: PEC
- 9. Objective: To introduce the students to the new area of Microelectromechanical Systems (MEMS) and their applications in RF and wireless engineering.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction: RF MEMS for microwave applications, MEMS technology	6
	and fabrication, mechanical modeling of MEMS devices, MEMS materials	
	and fabrication techniques.	
2.	MEMS Switches: Introduction to MEMS switches; Capacitive shunt and	12
	series switches: Physical description, circuit model and electromagnetic	
	modeling; Techniques of MEMS switch fabrication and packaging; Design	
	of MEMS switches.	
3.	Inductors and Capacitors: Micromachined passive elements;	9
	Micromachined inductors: Effect of inductor layout, reduction of stray	
	capacitance of planar inductors, folded inductors, variable inductors and	
	polymer-based inductors; MEMS Capacitors: Gap-tuning and area-tuning	
	capacitors, dielectric tunable capacitors.	
4.	RF Filters and Phase Shifters: Modeling of mechanical filters,	6
	micromachined filters, surface acoustic wave filters, micromachined filters	
	for millimeter wave frequencies; Various types of MEMS phase shifters;	
	Ferroelectric phase shifters.	
5.	Transmission Lines and Antennas: Micromachined transmission lines,	6
	losses in transmission lines, coplanar transmission lines, micromachined	
	waveguide components; Micromachined antennas: Micromachining	
	techniques to improve antenna performance, reconfigurable antennas.	

6.	Integration and Packaging: Role of MEMS packages, types of MEMS	3
	packages, module packaging, packaging materials and reliability issues.	
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Varadan, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and their	2002
	Applications", John Wiley & Sons.	
2.	Rebeiz, G.M., "MEMS: Theory Design and Technology", John Wiley	1999
	& Sons.	
3.	De Los Santos, H.J, "RF MEMS Circuit Design for Wireless	1999
	Communications", Artech House.	
4.	Trimmer, W., "Micromechanics & MEMS", IEEE Press.	1996
5.	Madou, M., "Fundamentals of Microfabrication", CRC Press.	1997
6.	Sze, S.M., "Semiconductor Sensors", John Wiley & Sons.	1994

NAME OF DEPT. /CENTRE:	Electronics and	d Communication Eng	jineering
1. Subject Code: ECN–549	Course Title: RF CM	IOS Transceiver Design	
2. Contact Hours:	L: 3 T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 0 3	Practical ⁰ 0	
4. Relative Weight: CWS 28	5 PRS 00 MTE 00	25 ETE 50 PRE (00
5. Credits: 0 3 6. Ser	nester √ Autumn	Spring Both	

- 7. Pre-requisite: NIL
- 8. Subject Area: PEC
- 9. Objective: To introduce the students about the various concepts and components of RF CMOS transceiver structure.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	A review of MOS device physics: Introduction, FETs-short history,	2
	MOSFET physics-long channel approximations	
2.	Characteristics of passive components: Introduction, Inter connects at RF	4
	frequencies-skin effects, Resistors, Capacitors, Inductors, Transformers,	
	Interconnects at High Frequencies	
3.	Oscillators and Synthesizers: Introduction, The problem with purely linear	
	Oscillators, Resonators, A catalogue of tuned oscillators, Negative	6
	resistance oscillators, Frequency synthesizers	0
4.	Noise: Introduction, Thermal noise, Shot noise, Flicker noise, Popcorn	
	noise, Classical two-port noise theory, examples of noise calculation	6
	Phase noise: Introduction, General considerations, Role of linearity and	0
	time variation in phase noise, Circuit examples, Amplitude response	
5.	Phase-locked Loops: Introduction, History of PLLs, Linearized PLL	
	models, Noise properties of PLLs, Phase detectors, sequential phase	6
	detectors, Loop filters and charge pumps, PLL design examples	0
6.	RF power amplifiers: Introduction, class A, AB, B, and C power	8
	amplifiers, class D amplifiers, class E amplifiers, Class F amplifiers,	
	summery of PA characteristics, RF PA design examples	
7.	LNA design: Introduction, LNA topologies- power match vs. noise match,	6
	Power constrained noise optimization, Design examples, Linearity and	

	large-signal performance, Spurious free dynamic range	
8.	Mixers : Introductions, Mixer fundamentals, Nonlinear systems as linear mixers, Multiplier-based mixers, Sub sampling mixers	4
	Total	42

Sl.	Name of Books / Authors	Year of Publication
110.		1 ubilcation
1.	Robert Caverly, "CMOS RFIC Design Principles", ARTECH HOUSE,	2007
	INC.	
2.	Xiaopeng Li, Ismail, Mohammed, "Multi-standard CMOS wireless	2002
	receivers Analysis and design" The Springer International Series in	
	Engineering and Computer Science, Vol. 675.	
3.	Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated	2001
	Circuits" Cambridge Univ. Press	

7. Pre-requisite: NIL

8. Subject Area: PEC

9. Objective: To introduce the students to the concepts of radar signal processing.

10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Introduction to radar systems, History and applications of radar, Basic radar function, Radar classifications, elements of pulsed radar, The radar equation,	6
	A preview of basic radar signal processing. Signal models, Components of a radar signal, Amplitude models, Clutter,	
2.	Noise model and signal-to-noise ratio, Jamming, Frequency models: the Doppler shift, spatial models.	6
3.	Sampling and quantization of pulsed radar signals, Domains and criteria for sampling radar signals, Sampling in the fast time dimension, Sampling in slow time: selecting the pulse repetition interval, Sampling the Doppler spectrum,	7
4.	Radar waveforms, Introduction, The waveform matched filter, Matched filtering of moving targets, The radar ambiguity function, The pulse burst waveform, frequency-modulated pulse compression waveforms, The stepped frequency waveform, Phase-modulated pulse compression waveforms, Costas frequency codes.	8
5.	Doppler processing, Alternate forms of the Doppler spectrum, Moving target indication (MTI), Pulse Doppler processing, Dwell-to-dwell stagger, Additional Doppler processing issues, Clutter mapping and the moving target detector,	7

6	Detection of radar signals in noise: detection fundamentals, detection criteria, Threshold detection in coherent systems, Threshold detection of radar signals, binary integration, CFAR detection, CA CFAR, Additional CFAR topics	8
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Fundamentals of Radar Signal Processing, Mark A. Richards	2005
2.	Adaptive Radar Signal Processing, Simon Haykin	2006
3.	Skolnik, M.I., "Introduction to Radar Systems", 2 nd Ed., McGraw-Hill.	1997

7. Pre-requisite: NIL

8. Subject Area: PEC

- 9. Objective: To introduce the students to the theory of smart antennas and adaptive beam forming techniques.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Introduction, What is a Smart Antenna, Fundamentals of Electromagnetic Fields, Maxwell's Equations, Helmholtz Wave Equation, Propagation in Spherical Coordinates, Boundary Conditions, Plane wave Reflection and Transmission Coefficients, Propagation Over Flat Earth, Knife-Edge Diffraction.	10
2.	Antenna Fundamentals, Antenna Field Regions, Power Density, Radiation Intensity, Basic Antenna Nomenclature, Antenna pattern, Antenna bore sight, Principal plane patterns, Beam width, Directivity, Beam solid angle, Gain, Effective aperture, Friis Transmission Formula, Magnetic Vector Potential and the Far Field, Linear Antennas, Infinitesimal dipole, Finite length dipole, Loop Antennas, Loop of constant phasor current, Array Fundamentals, Linear Arrays, Two element array, Uniform N-element linear array, Uniform N-element linear array directivity, Array Weighting, Beam steered and weighted arrays, Circular Arrays, Beam steered circular arrays, Rectangular Planar Arrays, Fixed Beam Arrays, Butler matrices, Fixed Side lobe Canceling, Retro-directive Arrays, Passive retro-directive array, Active retro-directive array.	10
3.	Principles of Random Variables and Processes, Definition of Random Variables, Probability Density Functions, Expectation and Moments, Common Probability Density Functions, Gaussian density, Rayleigh	

	Total	42
4.	Angle-of-Arrival Estimation, Vector basics, Matrix basics, Array Correlation Matrix, AOA Estimation Methods, Bartlett AOA estimate, Capon AOA estimate, Linear prediction AOA estimate, Maximum entropy AOA estimate, Pisarenko harmonic decomposition AOA estimate, Min- norm AOA estimate, MUSIC AOA estimate, Root-MUSIC AOA estimate, ESPRIT AOA estimate, Smart Antennas, Introduction, The Historical Development of Smart Antennas, Fixed Weight Beam forming Basics, Maximum signal-to-interference ratio, Maximum likelihood, Minimum variance, Adaptive Beam forming, Least mean squares, Recursive least squares, Constant modulus, Least squares constant modulus, Conjugate gradient method,	12
	density, Uniform density, Exponential density, Rician density, Laplace density, Stationarity and Ergodicity, Autocorrelation and Power Spectral Density, Correlation Matrix, Propagation Channel Characteristics , Flat Earth Model, Multipath Propagation Mechanisms, Propagation Channel Basics, Fading, Fast fading modeling, Channel impulse response, Power delay profile, Prediction of power delay profiles, Power angular profile, Prediction of angular spread, Power delay-angular profile, Channel dispersion, Slow fading modeling, Improving Signal Quality, Equalization, Diversity, Channel coding, MIMO.	10

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Smart Antennas, T. K. Sarkar, Michael C. Wicks, M. Salazar-Palma,	
	Robert J. Bonneau, John Wiley & Sons, 2005	
2.	Introduction to Smart Antennas, Constantine A. Balanis, Panayiotis I.	2005
	Ioannides, Morgan & Claypool Publishers, 2007	
3.	Smart antennas for Wireless communications by Frank Gross & Various	2007
	Research Papers	

NAME OF DEPT./CENTRE:	Electronics and	I Communication E	ngineering
1. Subject Code: ECN- 552 Court	se Title: Soft Comput	ing Techniques for RF	Engineering
2. Contact Hours:	L: 3 T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 0 3	Practical 0 0	
4. Relative Weight: CWS 2	5 PRS 00 MTE 00	25 ETE 50 PRE	00
5. Credits: 0 3 6. Set	mester Autumn	√ Spring Both	
7. Pre-requisite: NIL			

8. Subject Area: PEC

9. Objective: To introduce the students to the basic techniques for soft computing.

10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Fuzzy Logic: Crisp set and Fuzzy set, Basic concepts of fuzzy sets, membership functions. Basic operations on fuzzy sets, Properties of fuzzy sets, Fuzzy relations; Propositional logic and Predicate logic, fuzzy If – Then rules, fuzzy mapping rules and fuzzy implication functions, Applications.	12
2.	Neural Networks: Basic concepts of neural networks, Neural network architectures, Learning methods, Architecture of a back propagation network, Applications	10
3.	Genetic Algorithms: Basic concepts of genetic algorithms, encoding, genetic modeling	10
4.	Hybrid Systems: Integration of neural networks, fuzzy logic and genetic algorithms.	10
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	S. Rajasekaran and G.A.Vijaylakshmi Pai Neural Networks Fuzzy	2003
	Logic, and Genetic Algorithms, Prentice Hall of India.	
2.	K.H.Lee First Course on Fuzzy Theory and Applications, Springer-	2005
	Verlag.	
3.	J. Yen and R. Langari Fuzzy Logic, Intelligence, Control and	2007
	Information, Pearson Education	

NAME OF DEPT./CENTRE:	Electronics and C	ommunication Engineering
1. Subject Code: ECN–554	Course Title: Microwa	ave and Millimeter Wave Circuits
2. Contact Hours:	L: 3 T: 0	P: 0
3. Examination Duration (Hrs.):	Theory 0 3	Practical 0 0
4. Relative Weightage: CWS 25	PRS 00 MTE 25 00	5 ETE 50 PRE 00
5. Credits: 0 3 6. Sen	nester Autumn Sp	√ oring Both
7. Pre-requisite: NIL		

- 8. Subject Area: PEC
- 9. Objective: To provide an in-depth treatment of the theory of different types of transmission line structures and their applications for the development of integrated circuits at microwave and millimeter wave frequencies.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Fundamental Concepts: Elements of microwave/millimeter wave integrated circuits: Classification of transmission lines: Planar quasi	5
	planar and 3-D structures their basic properties field distribution and	
	range of applications; Substrate materials and technology used for	
	fabrication.	
2.	Analysis of Planar Transmission Lines: Variational approach for the	12
	determination of capacitance of planar structures; Transverse	
	transmission line techniques for multi-dielectric planar structures;	
	Rigorous analysis of dielectric integrated guides; Use of effective	
	dielectric constant in the approximate analysis of dielectric guide.	
3.	Metamaterials: Theory of Composite Right/Left Handed (CRLH)	6
	transmission line metamaterials; Representation of CRLH metamaterial	
	by an equivalent homogeneous CRLH TL; L-C network implementation	
	and its physical realization.	
4.	Discontinuities: Analysis of discontinuities in planar and non-planar	5
	transmission lines and their equivalent circuit representation.	-

5.	Passive Circuits: Design and circuit realization of filters, couplers, phase shifters, and switches using planar and non-planar transmission lines.	8
6.	Active Circuits: Design and circuit realization of amplifiers and oscillators using planar and non-planar transmission lines.	6
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Edwards, T.C. and Steer M.B., "Foundations for Interconnects and	2001
	Microstrip Design", 3 rd Ed., John Wiley & Sons.	
2.	Wolf, I., "Coplanar Microwave Integrated Circuits", John Wiley &	2006
	Sons.	
3.	Bhat, B. and Koul, S.K., "Stripline Like Transmission Lines", John	1989
	Wiley & Sons.	
4.	Caloz, C. and Itoh, T., "Electromagnetic Metamaterials:	2005
	Transmission Line Theory and Microwave Applications", Wiley-	
	IEEE Press.	
5.	Bhat, B. and Koul, S. K., "Analysis, Design and Applications of	1987
	Finlines", Artech House.	
6.	Koul, S.K., "Millimeter Wave and Optical Dielectric Integrated	1997
	Guides and Circuits", John Wiley & Sons.	
7.	Ludwig, R. and Bretchko, P., "RF Circuit Design", Pearson	2000
	Education.	

NAME OF DEPT./CENTRE:	Electronics and	d Communicatio	on Engineering
1. Subject Code: ECN-555	Course Title: Microw	vave Imaging	
2. Contact Hours:	L: 3 T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 0 3	Practical ⁰	0
4. Relative Weight: CWS 25	5 PRS 00 MTE 00	25 ETE 50	PRE 00
5. Credits: 0 3 6. Ser	nester Autumn	√ Spring Both	I
7. Pre-requisite: NIL			
8. Subject Area: PEC			

- 9. Objective: To built up a concept for understanding the principle of microwave imaging and its applications
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Electromagnetic Scattering: Maxwell's equation, interface conditions, constitutive equations, Wave Equations and Their Solutions, Volume Scattering by Dielectric Targets, Volume Equivalence Principle, Integral Equations, Surface Scattering by Perfectly Electric Conducting Targets.	8
2.	Electromagnetic Inverse Scattering Problem: Two-Dimensional Inverse Scattering, Discretization of the Continuous Model, Scattering by Canonical Objects: The Case of Multilayer Elliptic Cylinders	6
3.	Imaging Configurations and Model Approximations: Objectives of the Reconstruction, Multiillumination Approaches, Tomographic Configurations, Scanning Configurations, Configurations for Buried-Object Detection, Born-Type Approximations, Extended Born Approximation, Rytov Approximation, Kirchhoff Approximation.	8
4.	Qualitative Reconstruction Methods: Generalized Solution of Linear Ill- Posed Problems, Regularization Methods, Singular Value Decomposition,	8

	Regularized Solution of a Linear System Using Singular Value Decomposition, Qualitative Methods for Object Localization and Shaping, Synthetic Focusing Techniques, Qualitative Methods for Imaging Based on Approximations.	
5.	Imaging Techniques: Back projection, w-k, beamforming, synthetic aperture imaging Kirchoff's method	6
6.	Microwave Imaging Apparatuses, Systems and Applications: Scanning Systems for Microwave Tomography, Antennas for Microwave Imaging, Civil and Industrial Applications, Medical Applications of Microwave Imaging, Shallow Subsurface Imaging.	6
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Matteo Pastorino, "Microwave Imaging", Wiley & Sons	2010
2.	V. C. Chen and H. Ling, "Time-Frequency Transforms for Radar	2002
	Imaging and Signal Analysis", Artech House	
3.	Bernard D. Steinberg, "Microwave Imaging Techniques", Wiley & Sons	1991
4.	Taylor, D.J., "Introduction to Ultra-wideband Radar Systems", CRC	1995
	Press.	
5.	D. R. Wehner, "High-Resolution Radar", 2nd Ed.,, Artech House	1994

NAME OF DEPT. /CENTRE: Eng	Electronio ineering	cs and Comr	nunication	
1.Subject Code: ECN-571	Course T MODELING	itle: SEMIC G	ONDUCTOR	DEVICE
2. Contact Hours:	L: 3	T: 0	P: 0	
3. Examination Duration (Hrs.): Theo	ory 03	Practical	00	
4. Relative Weight: CWS 25 PF	RS 00 MTE	25 ETE 50) PRE 00	
5. Credits: 0 3 6. Semester	√ Autumn	Spring E	Both	
7. Pre-requisite: EC -142 and UG - Eng	gineering Mat	hematics		

- 8. Subject Area: PCC and DEC
- 9. Objective: The course will provide adequate understanding ofsemiconductor device modeling aspects, useful for designing devices in electronic, and optoelectronic applications
- 10. Details of the Course:

Sl.	Contents	
No.		Hours
	Introduction to Numerical Modeling: Fundamental semiconductor equations,	
	Finite difference scheme, Error analysis, Solution of a system of Linear	
1.	Equations, Direct Method:LU-decomposition, Tri-diagonal system, Relaxation	12
	Method, Numerical solution of Non-Linear Equations: Newton-Raphson	
	method, Finite difference discretization example: Current continuity and	
	energy relations, Introduction to circuit simulations	
2.	Modeling of LASER diode: Rate equations, Numerical schemes: Small signal	
	modeling, and Large signal modeling, Equivalent circuits	7
	MESFET Modeling: Bridging betweentime and frequency domains:Harmonic	
3.	Balance Method, MESFET small signal and large signal equivalent circuit,	9
	numerical device simulation and parameter extraction	
	Quantum Physics Aspects of Device Modeling: Effective mass Schrödinger	
4.	equation, Matrix representation, Dirac notation, WKB Approximation, Time	
	dependent and independent perturbation theories, Fermi's golden rule, semi-	8
	classical transport in semiconductors: Boltzmann transport equation, numerical	
	scheme, Introduction to Monte Carlo simulations	

	Introduction to Quantum Effect Device Modeling: Double barrier resonant	
5.	tunneling diode, Device modeling through transfer matrix approach, Numerical	
	estimation of diode current density, coupled Poisson-Schrödinger scheme for	6
	electron transmission simulations	
	Total	42

Sl. No.	Name of Books/ Authors	Year of Publication
1.	Selberherr, S., Analysis and Simulation of Semiconductor Devices, Springer-Verlag	1984
2.	Arora, N., MOSFET Models for VLSI Circuit Simulation, Springer-Verlag	1993
3.	C.M. Snowden, and, E. Snowden, Introduction to Semiconductor Device Modeling, World-Scientific	1998
4.	W.J. McCalla, Fundamentals of Computer-Aided Circuit Simulation, Kluwer Academic	1987
5.	Leonard I. Schiff, Quantum Mechanics, Third Edn., Tata Mc-Graw-Hill	2010
5.	Research papers in specific area	

NAME OF DEPT. /CENTRE: Electronics and Communication Engineering				
1.Subject Code: ECN-572Course Title: MOS DEVICE PHYSICS				
2. Contact Hours:	L: 3	T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 0 3	Practic	al 00	
4. Relative Weight: CWS 25	PRS 00 MTE	25 ETE	50 PRE 00	
5. Credits: 0 3 6. Sem	ester √ Autumn	Spring	Both	
7. Pre-requisite: EC - 142				

- 8. Subject Area: PCC and DEC
- Objective: The course will provide detail understanding of Metal-Oxide-Semiconductor (MOS) Capacitor and allied field effect devices, required for designing VLSI&ULSI CMOS circuits
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
	MOS Capacitor: Energy band diagram of Metal-Oxide-Semiconductor	
	contacts, Mode of Operations: Accumulation, Depletion, Midgap, and	
1.	Inversion, 1D Electrostatics of MOS, Depletion Approximation, Accurate	10
	Solution of Poisson's Equation, CV characteristics of MOS, LFCV and HFCV,	
	Non-idealities in MOS, oxide fixed charges, interfacial charges, Midgap gate	
	Electrode, Poly-Silicon contact, Electrostatics of non-uniform substrate doping,	
	ultrathin gate-oxide and inversion layer quantization, quantum capacitance,	
	MOS parameter extraction	
	Physics of MOSFET:Drift-Diffusion Approach for IV, Gradual Channel	
2.	Approximation, Sub-threshold current and slope, Body effect, Pao&Sah	
	Model, Detail 2D effects in MOSFET, High field and doping dependent	15
	mobility models, High field effects and MOSFET reliability issues (SILC,	
	TDDB, & NBTI), Leakage mechanisms in thin gate oxide, High-K-Metal Gate	
	MOSFET devices and technology issues, Intrinsic MOSFET capacitances and	
	resistances, Meyer model	

3.	SOI MOSFET:FDSOI and PDSOI, 1D Electrostatics of FDSOI MOS, V _T		
	definitions, Back gate coupling and body effect parameter, IV characteristics		
	of FDSOI-FET, FDSOI-sub-threshold slope, Floating body effect, single		
	transistor latch, ZRAM device, Bulk and SOI FET: discussions referring to the		
	ITRS		
	Nanoscale Transistors: Diffusive, Quasi Ballistic & Ballistic Transports,		
	Ballistic planer and nanowire-FET modeling: semi-classical and quantum	6	
4.	treatments		
5.	Advanced MOSFETs:Strain Engineered Channel materials, Mobility in		
	strained materials, Electrostatics of double gate, and Fin-FET devices	4	
	Total	42	

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	S.M. Sze & Kwok K. Ng, Physics of Semiconductor Devices, Wiley	2007
	Yuan Taur&Tak H. Ning, Fundamentals of Modern VLSI Devices,	
2.	Cambridge	1998
	Mark Lundstrom& Jing Guo, Nanoscale Transistors: Device Physics,	
3.	Modeling & Simulation, Springer	2005
4.	YannisTsividis, Operation and Modeling of the MOS Transistor, Oxford	
	University Press	2 nd Edn.
5.	J.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, Springer	1997
6.	Research papers in specific area	

NAME OF DEPT. /CENTRE:	Electronics and Communication Engineering		
1. Subject Code: ECN-573	Course Title:	Digital VLSI (Circuit Design
2. Contact Hours:	L: 3	Т: 0	P: 0
3. Examination Duration (Hrs.):	Theory 0 3	Practical	0 0
4. Relative Weight: CWS 25	PRS 00 MTE	25 ETE 5	0 PRE 00
5. Credits: 0 3 6. Semeste	er √ Autumn	Spring	Both
7. Pre-requisite: EC – 142, EC -104, E	EC - 201		

8. Subject Area: PCC and DEC

9. Objective: To acquaint the students with the fundamental concepts of digital VLSI circuit design

10. Details of the Course:

Sl.	Contents	Contact	
No.			
1.	Review of MOSFET operation and CMOS process flow: MOS Threshold	6	
	voltage, MOSFET I-V characteristics: Long and short channel, MOSFET	I	
	capacitances, lumped and distributed RC model for interconnects, transmission	1	
	lines, CMOS process flow, Layout and design rules.	L	
2.	CMOS inverter: Static characteristics, power consumption, dynamic	6	
	behavior, buffer design using the method of logical effort.	L	
3.	Combinational logic: Transistor sizing in static CMOS logic gates, static	6	
	CMOS logic gate sizing considering method of logical effort, dynamic logic,		
	pass-transistor logic, common mode and other cross-coupled logic families.		
4.	Sequential logic: Static latches and flip-flops (FFs), dynamic latches and FFs,		
	sense-amplifier based FFs, NORA-CMOS, Schmitt trigger, monostable and		
	astable circuits.	L	
5.	Memories and array structures: MOS-ROM, SRAM cell, memory	6	
	peripheral circuits, signal to noise ratio, power dissipation,	1	
6.	Course Project: SPICE based project on a digital VLSI sub-system design	2	
6.	Timing issues: Timing fundamentals, clock distribution, jitter, self-timed	8	
	circuit design, synchronizers and arbiters, basic building blocks of PLLs, clock		

synthesis and synchronization using PLLs.	
Total	42

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, "Digital Integrated	2003
	Circuits: A Design Perspective," Prentics Hall	
2.	Sung-Mo Kang, Yusuf Liblebici, "CMOS Digital Integrated Circuits," Tata	2003
	Mc Graw Hill	
3.	R. Jacob Baker, "CMOS Mixed-Signal Circuit Design," Wiley India Pvt.	2009
	Ltd.	
4.	Ivan Sutherland, R. Sproull and D. Harris, "Logical Effort: Designing Fast	1999
	CMOS Circuits", Morgan Kaufmann	

NAME OF DEPT/CENTRE: Dept. of Electronics and Communication Engineering

1. Subject Code: ECN-57	4	Course Title:	Semicondu Devices & C	ctor Materi haracteriza	als, ition
2. Contact Hours:		L: 3	T: 0	P: 0	
3. Examination Duration (H	Irs.):	Theory 3	Practi	cal 0	
4. Relative Weight:	CWS 25	PRS 00	MTE 25	ETE 50	PRE 00
5. Credits: 3	6. Semest	er: Autumn	7. Subj	ect Area: PC DEC	C and

- 8. Pre-requisite: Nil
- 9. Objective: To provide a thorough knowledge of semiconductor materials, devices and their characterization.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Semiconductor properties: Crystal structure, intrinsic and	4
	doped crystals, excess carriers and current transport.	
2.	Band structure of semiconductors: Band structure, carrier	6
	energy and Fermi distributions for free carriers, donor and	
	acceptor impurities, determination of band gap, impurity	
	ionization, and critical temperatures for intrinsic ionization and	
	onset of impurity deionization.	
3.	Inhomogeneous impurity distribution: Impurity diffusion	4
	processes and prome derivations, built-in electric field and	
	Lunation diades n n junation tunnal diada, quasi Formi lavala	6
4.	depletion width capacitance and its application in doning profile	0
	determination I-V characteristics of narrow and wide base	
	diodes and their equivalent circuits breakdown mechanisms	
	small signal ac impedance	
5.	Bipolar transistor fundamentals: Formation of transistor.	6
	current gains, dc and low frequency characteristics, base	-
	resistance and power gain, drift and graded base transistors.	
6	Surface field effect transistors: Surface states, measurement of	6
	surface charge, Q-V/I-V characteristics and equivalent circuit	
	models of MOS capacitor and MOSFET.	
7	Metal-semiconductor junctions: Rectifying and ohmic	6
	contacts, role of surface states, application in energy level	
	characterization; Comparison of p-n junction and Schottky	
	diodes.	

8	Pressure effects: Dependence of energy bandgap on pressure, evaluation of energy pressure coefficients, direct-indirect conversion and identification of defect levels.	4
	Total	42

SI	Name of Authors / Books / Publishers	Vear of
No.	Tunie of Futuro 57 Dooks 71 ublishers	Publication
1.00		/Reprint
1.	Rabaey, J.M., Chandrakasan, A. and Nikolic B., "Digital	2006
	Integrated Circuits: A Design Perspective", 2nd Ed., Prentice-	
	Hall of India. 🗆	
2.	Kang, S. and Leblebici, Y., "CMOS Digital Integrated Circuits:	2003
	Analysis and Design", Tata McGraw-Hill.	
3.	Pucknell, D.A. and Eshraghian, K., "Basic VLSI Design", 3rd	1994
	Ed., Prentice-Hall of India.	
4.	Eshraghian, K., Pucknell, D.A. and Eshraghian, S., "Essentials	2005
	of VLSI Circuit and System", 2nd Ed., Prentice-Hall of India.	
5	Hodges, D.A., Jackson, H.G. and Saleh, R.A., "Analysis and	2005
	Design of Digital Integrated Circuits in Deep Submicron	
	Technology", 3rd Ed., Tata McGraw-Hill.	
6	Uyemera, P.J., "Introduction to VLSI Circuits and Systems", 4th	2003
	Ed., John Wiley & Sons.	

NAME OF DEPT/CENTRE: Dept. of Electronics and Communication Engineering

1. Subject Code: ECN–575	Course Tit	le: Microelec	tronics Lab	-1
2. Contact Hours:	L: 0	Т: 0	P: 3	
3. Examination Duration (Hrs.):	Theory 0	Practi	cal 03	
4. Relative Weight: CWS 0	PRS ₁₀₀	МТЕ _О Е	ETE ₀ P	RE 0
5. Credits: 2 6. Semester	er: Autumn	7. \$	Subject Area:	PCC

- 8. Pre-requisite: **EC 142**
- 9. Objective: To provide knowledge of characterization of devices and fabrication techniques.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
<u>N0.</u>	Study of Hall effect in semiconductors. (1) Four probe method for resistivity and bandgap measurement of semiconductors. (1) Study of Magneto resistance in semiconductors. (1) I-V characteristics of devices with variation in temperature.(1) C-V characteristics of p-n junction and MOS capacitor.(1) Device characteristics of LED, lasers and solar cells. (3) Study of working of diffusion furnace. (1) Fabrication and characterization of Schottky diodes. (1) Deposition of thin films using physical vapor deposition (vacuum evaporator) and spin coating techniques. (1) MOSFET process/device simulation and parameter extraction.	Hours
	(1)	
	Total	42

Sl.	Name of Authors / Books / Publishers	Year of
No.		Publication/Reprint
1.	Lindmayer, J. and Wrigley, C. Y., "Fundamentals of	2004
	Semiconductor Devices", D.Van Nostrand Co.	
2.	Streetman, B.G. and Banerjee, S., "Solid State	2008
	Electronic Devices", 6 th Ed., Prentice Hall of India.	
3.	Tyagi, M.S., "Introduction to Semiconductor Materials	1991
	and Devices", John Wiley & Sons.	

NAME OF DEPT./CENTRE: Electronics and Communicati Engineering			nmunication
1. Subject Code: ECN-576	Course Title:	Simulation	Laboratory 1
2. Contact Hours:	L: 0	Т: 0	P: 3
3. Examination Duration (Hrs.): The	neory 0 0	Practica	al 0 3
4. Relative Weight: CWS 00 PI	RS 100 MTE	00 ETE	00 PRE 00
5. Credits: 0 2 6. Semester	√ Autumn	Spring	Both
7. Pre-requisite: EC – 142, EC -104, EC	- 201		

- 8. Subject Area: PCC
- 9. Objective: To provide hands-on experience on the behavioral and structural modeling in a Hardware Description Language (HDL), SPICE circuit simulation and layout

10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1	 HDL based Behaviour and structural modeling of a VLSI sub-system in a HDL. Implementation and analysis of the sub-system of (1) in IC Compiler. SPICE and Layout Layout of an optimally sized CMOS combinational circuit driving a large load. Extraction and SPICE simulation of the layout in (1) 	14 x 4
	Total	56

SI.	Name of Books/ Authors	Year of
No		Publication
1.	Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, "Digital Integrated	2003
	Circuits: A Design Perspective," Prentics Hall	
2.	R. Jacob Baker, H. W. Li, D. E. Boyce, "CMOS, Circuit Design, Layout,	1997
	and Simulation," Wiley India Pvt. Ltd.	
3.	Bhasker, J., "A VHDL Primer," Pearson India.	2005
4.	Volnei A. Pedroni, "Circuit Design and Simulation with VHDL," 2nd	2008
	Ed. PHI India	

NAME OF DEPT/CENTRE: Dept. of Electronics and Communication Engineering

1. Subject Code: ECN-57	77	Course Ti	itle: VL	SI Techno	ology			
2. Contact Hours:		L:	3	T: 0	I	P: 0		
3. Examination Duration (I	Hrs.):	Theory	3	Pract	ical	0		
4. Relative Weight:	CWS 25	PRS	00 N	NTE 25	ETE	50	PRE	00
5. Credits: 3	6. Seme	ster: Sp i	ring	7. Subjec	et Area	: PCC	and DEC	

8. Pre-requisite: **EC - 142**

9. Objective: To provide knowledge of various processes and techniques for VLSI fabrication technologies.

10. Details of the Course:

Sl.	Contents	Contact
INO.		Hours
1.	Introduction to VLSI technology: Device scaling and Moore's law, basic device fabrication methods, alloy junction and planar process.	4
2.	Crystal growth: Czochralski and Bridgman techniques, Characterization methods and wafer specifications, defects in Si and GaAs.	4
3.	Oxidation: Surface passivation using oxidation. Deal-Grove model, oxide characterization, types of oxidation and their kinematics, thin oxide growth models, stacking faults, oxidation systems. \Box	4
4.	Diffusion and ion-implantation: Solutions of diffusion equation, diffusion systems, ion implantation technology, ion implant distributions, implantation damage and annealing, transient enhanced diffusion and rapid thermal processing.	6
5.	Epitaxy and thin film deposition: Thermodynamics of vapor phase growth, MOCVD, MBE, CVD, reaction rate and mass transport limited depositions, APCVD/LPVD, equipments and applications of CVD, PECVD, and PVD.	5
6	Etching: Wet etching, selectivity, isotropy and etch bias, common wet etchants, orientation dependent etching effects; Introduction to plasma technology, plasma etch mechanisms, selectivity and profile control plasma etch chemistries for various films, plasma etch systems.	4
7	Lithography: Optical lithography contact/proximity and projection printing, resolution and depth of focus, resist processing methods and resolution enhancement, advanced lithography techniques for nanoscale pattering, immersion, EUV,	5

SI.	Name of Authors / Books / Publishers	Year of
No.		Publication
		/Reprint
1.	Plummer, J.D., Deal, M.D. and Griffin, P.B., "Silicon VLSI	2000
	Technology: Fundamentals, Practice and Modeling", 3rd Ed.,	
	Prentice-Hall.	
2.	Sze, S.M., "VLSI Technology", 4th Ed., Tata McGraw-Hill.	1999
3.	Chang, C.Y. and Sze, S.M., "ULSI Technology", McGraw-Hill.	1996
4.	Gandhi, S. K., "VLSI Fabrication Principles: Silicon and Gallium Arsenide", John Wiley and Sons. □	2003
5	Campbell, S.A., "The Science and Engineering of Microelectronic Fabrication", 4th Ed., Oxford University Press.	1996

NAME OF DEPT./CENTRE:	Electronic Engineeri	cs and Co ng	mmunication
1. Subject Code: ECN-581	Course Title:	Analog VLS	SI Circuit Design
2. Contact Hours:	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 0 3	Practic	al 0 0
4. Relative Weight: CWS 25	PRS 00 MTE	25 ETE	50 PRE 00
5. Credits: 0 4 6. Semest	ter √ Autumn	Spring	Both
7. Pre-requisite: EC142 and EC-201			

8. Subject Area: PEC and DEC

- 9. Objective: To acquaint the students with basic CMOS analog building blocks and sub-system design.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction: Motivation for analog VLSI and mixed signal circuits in CMOS	1
	technologies and issues thereof.	
2.	CMOS device fundamentals: Basic MOS models, device capacitances,	3
	parasitic resistances, substrate models, transconductance, output resistance, f_T ,	
	frequency dependence of device parameters.	
3.	Single stage amplifiers: Common source amplifier, source degeneration,	5
	source follower, common gate amplifier, cascade stage.	
4.	Differential Amplifiers: Basic differential pair, common mode response,	4
	differential pair with MOS loads, Gilbert Cell, device mismatch effects, input	
	offset voltage.	
5.	Current Mirrors, Current and Voltage Reference: Basic current mirrors,	4
	cascode current mirrors, active current mirrors, low current biasing, supply	
	insensitive biasing, temperature insensitive biasing, impact of device	
	mismatch.	
6.	Frequency Response of Amplifiers: Miller effect, CS amplifier, source	4
	follower, CG amplifier, cascade stage, differential amplifier, Multistage	
	amplifier.	
7.	Feedback: Feedback topologies, effect of load, modeling input and output	3
	ports in feedback circuits	

8.	Noise: Statistical characteristics, types of noise, single stage amplifiers,	3
	differential pair, noise bandwidth, impact of feedback on noise.	
9.	Operational Amplifiers: Performance parameters, One-stage and two-stage	6
	Op Amps, gain boosting, comparison, common mode feedback, input range,	
	slew rate, power supply rejection, noise in Op Amps	
10.	Stability and Frequency Compensation: Multi pole systems, phase margin,	3
	frequency compensation	
11.	High Performance CMOS Op-Amp: Buffered Op-amps, High	6
	speed/Frequency Op-amps, Differential output op-amps, low noise and low	
	voltage op-amps	
	Total	42

SI.	Name of Books/Authors	Year of
N0.		Publication
1.	Razavi, B., "Design of Analog CMOS Integrated Circuits", 1 st Ed., Mc	2001
	Graw Hill.	
2.	Gray, P.R., Hurst, P. J., Lewis, S.H., Meyer, R.G., "Analysis and Design	2001
	of Analog Integrated Circuits", 4 th Ed., John Wiley and Sons.	
3.	Baker, R. J., Li, H. W. and Boyce, D. E., "CMOS Circuit Design	1998
	,Layout and Simulation", Prentice-Hall of India.	

NAME OF DEPT/CENTRE:	Dept. of Electronics and Communication Engineering		
1. Subject Code: ECN-582	Course Title:	Semiconductor N Devices and App	licrowave lications
2. Contact Hours:	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory	3 Practical	0
4. Relative Weight: CWS	6 25 PRS 00	MTE ₂₅ ETE	50 PRE 00
5. Credits: 4 6.	Semester: Spring	7. Subject Ar DEC	ea: PEC and

- 8. Pre-requisite: Nil
- 9. Objective: To introduce to the students the principles of operation of various microwave and millimeter wave semiconductor devices and their circuit applications.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Transient and ac behaviour of p-n junctions, effect of doping	8
	profile on the capacitance of p-n junctions, noise in p-n	
	junctions, high-frequency equivalent circuit, varactor diode and	
	its applications; Schottky effect, Schottky barrier diode and its	
	applications; Heterojunctions.	
2.	Tunneling process in p-n junction and MIS tunnel diodes, V-I	3
	characteristics and device performance, backward diode.	
3.	Impact ionization, IMPATT and other related diodes, small-	4
	signal analysis of IMPATT diodes.	
4.	Two-valley model of compound semiconductors, Vd-E	4
	characteristics, Gunn effect, modes of operation, small-signal	
	analysis of Gunn diode, power frequency limit.	
5.	Construction and operation of microwave PIN diodes, equivalent	3
	circuit, PIN diode switches, limiters and modulators.	
6.	High frequency limitations of BJT, microwave bipolar	7
	transistors, heterojunction bipolar transistors; Operating	
	characteristics of MISFETs and MESFETs, short-channel	
	effects, high electron mobility transistor.	

	techniques for fabrication of micro switches, capacitors and inductors.	
9.	Introduction to MEMS for RF applications: micromachining	3
8.	Design considerations for microwave and millimeter wave amplifiers and oscillators, circuit realization, noise performance.	7
	waveguides.	
7.	Characteristics and design of microstrips, slotlines and coplanar	3

Sl.	Name of Authors / Books / Publishers	Year of
No.		Publication
		/Reprint
1.	Sarrafzadeh, M. and Wong, C.K., "An Introduction to VLSI	1996
	Physical Design", 4 th Ed., McGraw-Hill.	
2.	Wolf, W., "Modern VLSI Design System on Silicon", 2 nd Ed.,	2000
	pearson Education.	
3.	Sait, S.M. and Youssef, H "VLSI Physical Design Automation:	1999
	Theory and practice", World scientific.	
4.	Dreschler, R., "Evolutionary Algorithm for VLSI CAD", 3 rd Ed.,	2002
	springer	
5.	Sherwani, N.A., "Algorithm for VLSI Physical Design	1999
	Automation", 2 nd ED., Kluwer.	
6	Lim, S.K., "Practical problems in VLSI physical Design	2008
	Automation", Springer.	

NAME OF DEPT/CENTRE: Dept. of Electronics and Communication Engineering

1. Subject Code: ECN-58	3 Course Title:	Optoelectronic M Devices	aterials and
2. Contact Hours:	L: 3	T: 1	P: 0
3. Examination Duration (H	Irs.): Theory	3 Practical	0
4. Relative Weight:	CWS 25 PRS 00	MTE ₂₅ ETE	50 PRE 00
5. Credits: 4	6. Semester: Spring	7. Subject A	rea: PEC and DEC

- 8. Pre-requisite: Nil
- 9. Objective: To develop understanding of optical materials, working of optoelectronic devices and their applications.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Optical processes in semiconductors, EHP formation and recombination, absorption and radiation in semiconductor, deep level transitions, Auger recombination, luminescence and time resolved photoluminescence, optical properties of photonic band-gap materials.	7
2.	Junction photodiode: PIN, heterojunction and avalanche photodiode; Comparisons of various photodetectors, measurement techniques for output pulse.	5
3.	Photovoltaic effect, V-I characteristics and spectral response of solar cells, heterojunction and cascaded solar cells, Schottky barrier and thin film solar cells, design of solar cell.	6
4.	Modulated barrier, MS and MSM photodiodes; Wavelength selective detection, coherent detection; Microcavity photodiode.	7
5.	Dynamic effects of MOS capacitor, basic structure and frequency response of charge coupled devices, buried channel charge coupled devices.	5
6.	Electroluminescent process, choice of light emitting diode (LED) material, device configuration and efficiency; LED: Principle of operation, LED structure, frequency response, defects, and reliability.	5

7.	Semiconductor laser diode, Einstein relations and population inversion, lasing condition and gain, junction lasers, hetrojunction laser, multi quantum well lasers, beam quantization and modulation.	7
	Total	42

Sl.	Name of Authors / Books / Publishers	Year of
No.		Publication
		/Reprint
1.	Liao, S.Y., "Microwave Devices and Circuits", 4thEd., Pearson	2002 🗆
	Education.	
2.	Rebeiz, M.G., "R.F. MEMS: Theory, Design and Technology",	2003
	2ndEd., Wiley-Interscience.	
3.	Sze, S.M., and Ng, K.K., "Physics of Semiconductor Devices",	2006
	3rdEd. Wiley-Interscience.	
4.	Glover, I.A., Pennoek, S.R. and Shepherd P.R., "Microwave	2005
	Devices, Circuits and Sub-Systems", 4th Ed., John Wiley &	
	Sons.	
5.	Golio, M., "RF and Microwave Semiconductor Devices	2002
	Handbook", CRC Press. \Box	
6	Zumbahlen, H.(ed.), "Linear Circuit Design Handbook",	2008
	Elsevier.	

NAME OF DEPT./CENTRE:	Electronics and Computer Engineering
1. Subject Code: ECN-584	Course Title: Mixed Signal Circuit Design
2. Contact Hours: 3	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.):	Theory 0 3 Practical 0 0
4. Relative Weight: CWS 25	PRS 00 MTE 25 ETE 50 PRE 00
5. Credits: 0 4 6. Semes	ter x Autumn Spring Both

7. Pre-requisite: Analog VLSI Circuit Design, Digital VLSI Circuit Design, MOS Device Physics

- 8. Subject Area: PEC and DEC
- 9. Objective: To acquaint students with CMOS mixed signal circuit design.
- 10. Details of the Course:

Contents	Contact
	Hours
Signals, Filters and Tools: Sinusoidal signal, Comb filters and representation	2
of signals	
Sampling and Aliasing: Impulse Sampling, Decimation, K-Path Sampling	3
Sample-and-Hold, Track-and-Hold, Implementation of S/H, Discrete Analog	
Integrator	
C	
Analog Filters: Integrator building blocks, MOSFET-C Integrator gm-C	5
Integrators, Discrete time Integrators, Filtering topologies, Bilinear and	
Biquadratic Transfer function	
Digital Filters: SPICE Models for DACs and ADCs, Sinc Shaped digital	6
filters, Bandpass and Highpass sinc Filters, Filtering topologies, FIR Filter,	
Concept of stability and Overflow	
Data Convertor SNR: Quantization noise, Signal-to-Noise Ration (SNR),	6
Concept of Spectral Density, Clock Jitter reduction techniques, Improving	
SNR using Averaging and Feedback	
Data Convertor Design: One bit ADC and DAC, Passive Noise shaping,	6
Improving SNR and Linearity, Improving Linearity using Active circuits,	
Noise Shaping Data Converters: First Order Noise Shaping, Second order	4
noise shaping, noise shaping topologies, Cascaded Modulators	
Bandpass Data Converters: Continuos Time bandpass noise shaping, Active	4
and Passive component bandpass modulators, switched capacitor bandpass	
modulator, Digital I/Q Extraction to bandpass	
	ContentsSignals, Filters and Tools: Sinusoidal signal, Comb filters and representation of signalsSampling and Aliasing: Impulse Sampling, Decimation, K-Path Sampling Sample-and-Hold, Track-and-Hold, Implementation of S/H, Discrete Analog IntegratorAnalog Filters: Integrator building blocks, MOSFET-C Integrator gm-C Integrators, Discrete time Integrators, Filtering topologies, Bilinear and Biquadratic Transfer functionDigital Filters: SPICE Models for DACs and ADCs, Sinc Shaped digital filters, Bandpass and Highpass sinc Filters, Filtering topologies, FIR Filter, Concept of stability and OverflowData Convertor SNR: Quantization noise, Signal-to-Noise Ration (SNR), Concept of Spectral Density, Clock Jitter reduction techniques, Improving SNR using Averaging and FeedbackData Convertor Design: One bit ADC and DAC, Passive Noise shaping, Improving SNR and Linearity, Improving Linearity using Active circuits, Noise Shaping Data Converters: First Order Noise Shaping, Second order noise shaping, noise shaping topologies, Cascaded ModulatorsBandpass Data Converters: Continuos Time bandpass noise shaping, Active and Passive component bandpass modulators, switched capacitor bandpass modulator, Digital I/Q Extraction to bandpass

9.	High Speed Data Converters: Topologies, path settling time, implementation,	6
	generation of clock signals and comparators, Clocked comparators, ADC	
	Total	42

SI.	Name of Books/Authors	Year of
No.		Publication
1.	Baker Jacob R, "CMOS Mixed signal Circuit Design," Wiley IEEE	2009
	Press	
2.	Baker Jacob R., "CMOS circuit design layout and simulation" Wiley IEEE	2010
3.	Razavi, B., "Design of Analog CMOS Integrated Circuits", 1 st Ed., Mc Graw Hill.	2001

NAME OF DEPT./CENTRE:	Electronics and Computer Engineering
1. Subject Code: ECN–585	Course Title: VLSI System Design
2. Contact Hours: 3	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.): Th	eory 0 3 Practical 0 0
4. Relative Weight: CWS 25 PF	S 00 MTE 25 ETE 50 PRE 00
5. Credits: 0 4 6. Semester	√ Autumn Spring Both
7. Pre-requisite: Digital Electronics, Non-	Linear Circuits

- 8. Subject Area: PEC and DEC
- 9. Objective:
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Introduction to Placement and Routing: PNR and Routing, Placement	4
2.	Optimisation, Routing Algorithms and its application to simple design issues Introduction to Static Timing Analysis: STA with ideal clocks, flip-flop behavior analysis using state diagrams, STA using clock jitters, Example Study for a real chip, Multiple Clock, data transition with respect to power analysis,	6
3.	Introduction to Clock Tree: Clock Tree synthesis- H-tree, Buffering, Synthesis timing, set-up analysis with multiple clock,	6
4.	Stack subsystem design, control timing, generation of control signals. Register to Register Transfer. Combinational Logic. The Programmable Logic Array. Basic concept, Circuit design, and stick diagram of example. Finite State Machines,	6
5.	Datapath Operators, Adder, Parity Generator, Comparator ALU, Multiplexer Multiplier, Shifter	6
6.	Design Abstraction, Design Description Language VHDL/VERILOG, Register Transfer Design, Data and Control Flow Representations, Scheduling and Allocation Algorithms, Data and Control Synthesis and Optimization	6

7.	Layout Generation: Partitioning, Floor Planning, Placement, Routing – Global, Channel and Switch box Routing, Power and Clock distribution, Pad Design	4
8.	Memory Units: Read-Only Memories – ROM Cells Read/Write Memory - SRAM and DRAM Cells, Address Decoder, Sense Amplifier, Programmable Logic Arrays, Application Specific IC Design issues	4
	Total	42

Sl. No.	Name of Books/Authors	Year of Publication
1.	Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic 'Digital Integrated Circuits: A Design Prespective. Second Edition, A Prentice- Hall Publication Hall, 2003	2003
2.	N.Weste and D.Harris, "CMOS VLSI Design: Circuits and Systems Perspective," Fourth edition, Addison Wesley, 2010	2010

NAME OF DEPT. /CENTRE:	Electronic Engineeri	cs and Co ng	mmunication
1. Subject Code: ECN–586	Course Title:	Device-Cir	cuit Interaction
2. Contact Hours:	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 0 3	Practic	al 0 0;
4. Relative Weight: CWS 25	PRS 00 MTE	25 ETE	50 PRE 00
5. Credits: 0 4 6. Semest	ter Autumn	√ Spring	Both
	FO 004		

7. Pre-requisite: EC – 142, EC -104, EC - 201

8. Subject Area: PEC and DEC

9. Objective: To acquaint the students with microelectronics device and circuit interaction issues.

10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Performance of Circuits using Short-Channel MOSFETs: Circuit	8
	performance considering short channel and narrow width effects, mechanical	
	stress.	
2.	Performance of Circuits using Nanoscale MOSFETs: Quantum	8
	confinement of carriers, quasi-ballistic transport and band-to-band tunneling,	
	impact of carrier confinement and quasi-ballistic transport on circuit	
	performance.	
3.	FinFETs and GAA Transistors: I-V characteristics, device capacitances,	12
	parasitic effects of extension regions, performance of simple combinational	
	gates and amplifiers, novel circuits using FinFETs and GAA devices.	
4.	Steep Slope Devices: Tunnel FETs, I-MOS, resonant TFETs, ferroelectric	8
	negative capacitance devices, circuits using steep slope devices.	
5.	Germanium and III-V Integration in MOSFETs: Mobility and injection	6
	velocity enhancement, hetero-junction issues at source/drain-channel interface,	
	performance of circuits using compound semiconductor devices.	
	Total	42

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	Yuan Taur and T. Ning, "Fundamentals of Modern VLSI Devices," Cambridge	1998
	University Press.	
2.	Mark Lundstrom and J. Guo, "Nanoscale Transistors: Device Physics,	2007
	Modeling and Simulation," Springer.	
3.	JP. Colinge, "FinFETs and Other Multi-Gate Transistors," Springer.	2009
4.	Selected papers from IEEE, Elsevier and IOP journals.	

NAME OF DEPT/CENTRE: Electronics and Communication Engineering

1. Subject Code: ECN-587	Course Title:	Nanoscale Devi	ces
2. Contact Hours:	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory	3 Practical	0
4. Relative Weight: CWS 25	PRS 00	MTE 25 ET	'E 50 PRE 00
5. Credits: 4 6. Seme	ster: Spring	7. Subje	ct Area: PEC and DEC

8. Pre-requisite: MOS device physics, VLSI technology

9. Objective: To provide knowledge of device physics/operation, technologies and issues in nanoscale CMOS and other emerging devices.

10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	CMOS scaling challenges in nanoscale regimes: Moor and Koomey's law, Leakage current mechanisms in nanoscale CMOS, leakage control and reduction techniques, process variations in devices and interconnects	6
2.	Device and technologies for sub 100nm CMOS: Silicidation and Cu-low k interconnects, strain silicon – biaxial stain and process induced strain; Metal-high k gate; Emerging CMOS technologies at 32nm scale and beyond – FINFETs, surround gate nanowire MOSFETs, heterostructure (III-V) and Si-Ge MOSFETs.	10
3.	Device scaling and ballistic MOSFET: Two dimensional scaling theory of single and multigate MOSFETs, generalized scale length, quantum confinement and tunneling in MOSFTEs, velocity saturation, carrier back scattering and injection velocity effects, scattering theory of MOSFETs.	10
4.	Emerging nanoscale devices: Si and hetero-structure nanowire MOSFETs, carbon nanotube MOSFETs, Tunnel FET, quantum wells, quantum wires and quantum dots; Single electron transistors, resonant tunneling devices.	10
Э.	devices – FINFETs, nanowire, carbon nanotubes and tunnel devices.	0
	Total	42
Sl.	Name of Authors / Books / Publishers	Year of
-----	---	-------------
No.		Publication
		/Reprint
1.	Lundstrom, M., "Nanoscale Transport: Device Physics,	2005
	Modeling, and Simulation", Springer.	
2.	Maiti, C.K., Chattopadhyay, S. and Bera, L.K., "Strained-Si and	2007
	Hetrostructure Field Effect Devices", Taylor and Francis.	
3.	Hanson, G.W., "Fundamentals of Nanoelectronics", Pearson	2008
	India.	
4.	Wong, B.P., Mittal, A., Cao Y. and Starr, G., "Nano-CMOS	2004
	Circuit and Physical Design", Wiley.	
5	Sandip Kundu, Aswin Sreedhar, "Nanoscale CMOS VLSI	2010
	Circuits: Design for Manufacturability" McGraw Hill	
6	Research and Review papers in specific area	

NAME OF DEPT. /CENTRE:	Electronics and Communication Engineering
1. Subject Code: ECN-588	Course Title: Performance and Reliability of VLSI Circuits
2. Contact Hours:	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.):	Theory ⁰³ Practical ⁰⁰
4. Relative Weight: CWS 25	PRS 00 MTE 25 ETE 50 PRE 00
5. Credits: 0 4 6. Semes	ter √ Autumn Spring Both
7. Pre-requisite: MOS Device Physic Design	cs, Digital VLSI Circuit Design, Analog VLSI Circuit

8. Subject Area: **PEC and DEC**

10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Nanoscale MOSFET Characteristics: Quasi-ballistic I-V characteristics,	5
	terminal capacitances of transistors considering quantum effects, parasitic	
	resistances in nanoscale MOSFETs.	
2.	Delay and Timing Models: Classical delay models of logic gates, logic gate	12
	delay models for nano-regime CMOS technologies, timing parameters of	
	sequential circuit elements, access-time of CMOS memories, impact of	
	process/temperature/supply-voltage variations on timing parameters.	
3.	Power Consumption: Models for dynamic power, short circuit power and	6
	leakage power of CMOS circuits, full-chip power estimation techniques,	
	impact of process/temperature variations on power consumption.	
4.	Reliability of CMOS Circuits: Circuit performance considering NBTI/PBTI,	11
	oxide breakdown, random telegraph noise, radiation damage.	
5.	Analog Circuit Performance Parameters: Impact of parasitic effects,	8
	process/temperature variation, device reliability effects.	

^{9.} Objective: To acquaint the students with state-of-the-art circuit performance and reliability models of VLSI circuits.

Total	42

Sl.	Name of Books/ Authors	Year of
INO.		Publication
1.	Yuan Taur and T. Ning, "Fundamentals of Modern VLSI Devices," Cambridge	1998
	University Press.	
2.	Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, "Digital Integrated	2003
	Circuits: A Design Perspective," Prentics Hall	
3.	Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata	2002
	McGraw-Hill.	
4.	Selected papers from IEEE, Elsevier and IOP journals.	

NAME OF DEPT. /CENTRE: Electronics and Communication Engineering

1.Subject Code: ECN–589	Course Title:	Advanced VL	SI Interconnects
2. Contact Hours:	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.): Theo	ory 03	Practica	I 00
4. Relative Weight: CWS 25 PF	RS 00 MTE	25 ETE	50 PRE 00
5. Credits: 0 4 6. Semester	Autumn	√ Spring	Both

7. Pre-requisite: EC – 201, Digital VLSI Circuit Design

8. Subject Area: PEC and DEC

- 9. Objective: To provide in depth knowledge of interconnect modeling and performance analysis; introduction and analysis of futuristic material based interconnects such GNRs, CNTs and fiber optics.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Preliminary concepts Interconnects for VLSI applications, metallic interconnects, optical interconnects, superconducting interconnects, advantages of copper interconnects, challenges posed by copper interconnects, fabrication process, even and odd mode capacitances, miller theorem, transmission line equations, resistive interconnection as ladder network, propagation modes in microstrip interconnection, slow wave mode propagation, propagation delays.	8
2.	Parasitic extraction Parasitic resistance, effect of surface/interface scattering and diffusion barrier on resistance, Capacitance: parallel-plate capacitance, fringing capacitance, coupling capacitance, methods of capacitance extraction, Inductance: self inductance, mutual inductance, methods of inductance extraction, high frequency losses, frequency dependent parasitics, skin effect, dispersion effect.	8

3.	Modeling of interconnects and Crosstalk analysis Elmore model, Transfer function model, even and odd mode model, Time domain analysis of multiconductor lines, Finite Difference Time Domain (FDTD) method, performance analysis using linear driver (Resistive) and nonlinear driver (CMOS), advanced interconnect techniques to avoid crosstalk.	8
4.	Future VLSI Interconnects Optical interconnects, Superconducting interconnects, Nanotechnology interconnects, Silicon nanowires, Carbon nanotubes, Graphene nanoribbons: system issues and challenges, material processing issues and challenges, design issues and challenges.	9
5.	Carbon nanotube and Graphene nanoribbon VLSI interconnects Quantum electrical properties: quantum conductance, quantum capacitance, kinetic inductance, Carbon nanotube (CNT) and Graphene nanoribbon (GNR) interconnects, electron scattering and lattice vibrations, electron mean free path, single-wall CNT and single layer GNR resistance model, multi-wall CNT and multi-layer GNR resistance model, transmission line interconnects, performance comparison of CNTs, GNRs and copper interconnects.	9
	Total	42

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	High-Speed VLSI Interconnects, Ashok K. Goel	2007
2.	Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications,	2009
	Y.S. Diamand	
3.	Carbon nanotube and Graphene Device Physics, H.S Philip Wong and Deji	2011
	Akinwande	

INDIAN INSTITUTE OF TECHNOLOGY

Name of Department: Electronics and Communication Engineering

1.	Subject Code: ECN-590	Course Title:	Organic Elec	ctronics			
2.	Contact Hours: L:	з Т	1	0			
3.	Examination Duration (Hrs):	Theory 3	Practical	0			
4.	Relative Weight: CWS	25 PRS	0 MTE	25 ETH	E 50	PRE	0
5.	Credits:	4					
6.	Semester:	Spring					
7.	Subject Area:	PEC and D	EC				

8. Pre-requisite: Semiconductors; electronic materials properties, Microelectronics, VLSI circuit

9. Objective: Study, modeling and simulation of organic material based devices and circuits. Acquaint the students with the conducting polymers, small-molecules, organic materials, different structures of OFETs, OLEDs and various applications of organic thin film transistors.

10. Details of the Course:-

Sl. No.	Contents	Contact Hours
1.	Organic and Inorganic Materials & Charge Transport:	8
	Introduction; Organic Materials: Conducting Polymers and Small Molecules, Organic Semiconductors: <i>p</i> -type, <i>n</i> -type, Ambipolar Semiconductors, Charge Transport in Organic Semiconductors, Charge Transport Models, Energy Band Diagram, <i>Organic and inorganic</i> <i>materials for</i> : Source, Drain and Gate electrodes, Insulators, Substrates; Comparison between Organic and Inorganic Semiconductors	
2	Comparison between Organic and Inorganic Semiconductors.	0
2.	Device Physics and Structures: Organic Thin Film Transistors: Overview of Organic Field Effect Transistor (OFET); Operating Principle; Classification of Various Structures of OFETs; Output and Transfer Characteristics; OFETs Performance Parameters: Impact of Structural Parameters on OFET; Extraction of Various Performance Parameters, Advantages, Disadvantages and Limitations.	8
3.	Organic Device Modeling and Fabrication Techniques: Modeling of OTFT Different Structures, Origin of Contact Resistance, Contact Resistance Extraction, Analysis of OFET Electrical Characteristics, Validation and Comparison of OFETs. Organic Devices and Circuits Fabrication Techniques.	8

	Inverter Circuits, Hybrid Complementary Inverters, Comparison between All P-Type, Fully Organic and Hybrid Complementary Inverter	
	Inverter Circuits, Hybrid Complementary Inverters, Comparison between All P-Type, Fully Organic and Hybrid Complementary Inverter Circuits: Logic Circuit Implementation: Organic Memory: Organic Static	
	Inverter Circuits, Hybrid Complementary Inverters, Comparison	
	Organic Inverters: Inverter Circuits based on Different Materials	
5.	OTFT Applications	8
	Characteristics, Advantages, Disadvantages and Limitations and	
	Organic Solar Cells: Introduction, Materials, various properties,	
	Transfer Characteristics; Various Optical, Electrical and Thermal properties, Advantages, Disadvantages and Limitations.	
	Organic Light Emitting Diodes (OLEDs): Introduction; Different	
4.	OLEDs and Organic Solar Cells	10

SL. No.	Name of Authors/Books/Publishers	Year of Publication/Reprint
	Text Books	•
1.	Hagen Klauk, Organic Electronics: Materials, Manufacturing and Applications, Wiley-VCH Verlag Gmbh & Co. KGaA, Germany.	2006
2.	Klaus Mullen, Ullrich Scherf, Organic Light Emitting Devices: Synthesis, Properties and Applications, Wiley-VCH Verlag Gmbh & Co. KGaA, Germany.	2005
	Reference Books	
1.	Hagen Klauk, Organic Electronics II: More Materials and Applications, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, Germany, 2012	2012
2.	Flora Li, Arokia Nathan, Yiliang Wu, Beng S. Ong, Organic Thin Film Transistor Integration: A Hybrid Approach, Wiley-VCH, Germany; 1 st Ed.	2011
3.	Wolfgang Brutting, <i>Physics of Organic Semiconductors</i> , Wiley- VCH Verlag Gmbh & Co. KGaA, Germany.	2005
4.	Dresselhaus, M.S., Dresselhaus, G. and Avouris, P., Carbon Nanotubes: Synthesis, Structure, Properties and Applications. New York: Springer- Verlag,	2001

NAME OF DEPT. /CENTRE:	Electronics and Communication Engineering
1. Subject Code: ECN–591	Course Title: VLSI Physical Design
2. Contact Hours:	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.): The	ory 0 3 Practical 0 0
4. Relative Weight: CWS 25 PR	S 00 MTE 25 ETE 50 PRE 00
5. Credits: 0 4 6. Semester	Autumn Spring Both

- 7. Pre-requisite: Digital VLSI Circuit Design
- 8. Subject Area: PEC and DEC
- 9. Objective: To develop understanding of state-of-the-art tools and algorithms, which address design tasks such as floor planning, module placement and signal routing for VLSI logic and physical level design
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction: Layout and design rules, materials for VLSI fabrication, basic	
	algorithmic concepts for physical design, physical design processes and	2
	complexities.	
2.	Partition: Kernigham-Lin's algorithm, Fiduccia Mattheyes algorithm,	6
	Krishnamurty extension, hMETIS algorithm, multilevel partition techniques.	
3.	Floor-Planning: Hierarchical design, wirelength estimation, slicing and non-	10
	slicing floorplan, polar graph representation, operator concept, Stockmeyer	
	algorithm for floorplanning, mixed integer linear program.	
4.	Placement: Design types: ASICs, SoC, microprocessor RLM; Placement	8
	techniques: Simulated annealing, partition-based, analytical, and Hall's	
	quadratic; Timing and congestion considerations.	
5.	Routing: Detailed, global and specialized routing, channel ordering, channel	12
	routing problems and constraint graphs, routing algorithms, Yoshimura and	
	Kuh's method, zone scanning and net merging, boundary terminal problem,	
	minimum density spanning forest problem, topological routing, cluster graph	
	representation.	

6.	Sequential Logic Optimization and Cell Binding: State based optimization, state minimization, algorithms; Library binding and its algorithms, concurrent	4
	binding	
	Total	42

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	Sarrafzadeh, M. and Wong, C.K., "An Introduction to VLSI Physical	1996
	Design", 4 th Ed., McGraw-Hill.	
2.	Wolf, W., "Modern VLSI Design System on Silicon", 2 nd Ed., Pearson	2000
	Education.	
3.	Sait, S.M. and Youssef, H., "VLSI Physical Design Automation: Theory	1999
	and Practice", World Scientific.	
4.	Dreschler, R., "Evolutionary Algorithms for VLSI CAD", 3 rd Ed., Springer	2002
5.	Sherwani, N.A., "Algorithm for VLSI Physical Design Automation", 2 nd	1999
	Ed., Kluwer.	
6.	Lim, S.K., "Practical Problems in VLSI Physical Design Automation",	2008
	Springer.	

NAME OF DEPT/CENTRE:	Dept. of Elect E	ronics and Com ngineering	munication
1. Subject Code: ECN-592	Course Title:	Compound Semi and RF Devices	conductors
2. Contact Hours:	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory	3 Practical	0
4. Relative Weight: CWS	25 PRS 00	MTE 25 ETE	50 PRE 00
5. Credits: 4 6.	Semester: Spring	7. Subject Ar	ea: PEC and DEC

- 8. Pre-requisite: Nil
- 9. Objective: To provide knowledge of various compound semiconductor alloys, and their growth, properties, devices and applications.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	III-V opto- and high frequency materials: Bonds, crytstal	10
	lattices, crystallographic planes and directions, direct and	
	indirect semiconductors and their comparison for optical	
	applications, optical processes of absorption and emission,	
	radiative and non-radiative deep level transitions, phase and	
	energy band diagrams of binary, ternary and quaternary alloys,	
	determination of cross-over compositions and band structures.	
2.	High frequency devices: Gunn diode, RWH mechanism, v-E	8
	characteristic, formation of domains, modes of operation in	
	resonant circuits, fabrication, control of v-E characteristics by	
	ternary and quaternary alloys.	
3.	Heterostructures: Introduction, abrupt isotype/anisotype	8
	junctions, band diagrams and band off-sets, electrical and	
	optoelectronic properties, symmetrical and asymmetrical p-n	
	diodes and their characteristics, 2-Dimensional Electron Gas (2-	
4		0
4.	Heterostructure devices: HBI, MOSFEI, HEMI, quantum	8
	well and tunneling structures, lasers, LED and photodetectors,	
	optoelectronic IC's and strained layer structures.	
5.	Miscellaneous devices: Compound semiconductor MESFETs,	8
	infrared and window effect in photovoltaic converters, strain	
	sensors and their sensitivities, QWITT and DOVETT devices.	
	Total	42

SI.	Name of Authors / Books / Publishers	Year of
No.		Publication
		/Reprint
1.	Arora, N., "MOSFET Models for VLSI Circuit Simulation:	1993
	Theory and Practice", 4th Ed., Springer-Verlag.	
2.	Tsividis, Y., "Operation and Modeling of the MOS Transistor",	2003
	2nd Ed., Oxford University Press.	
3.	Sze, S. M., and Ng, K. K., "Physics of Semiconductor Devices",	2006
	3rd Ed., Wiley-Interscience.	
4.	Liu, W., "MOSFET Models for Spice Simulation (including	2001
	BSIM3V3 and BSIM4)", Wiley-IEEE Press	

NAME OF DEPT. /CENTRE:	Electronic Engineerii	s and Com າg	munication
1. Subject Code: ECN-593	Course Title:	CAD for VLS	I
2. Contact Hours:	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.): The	neory 0 3	Practical	00
4. Relative Weight: CWS 25 PI	RS 00 MTE	25 ETE	50 PRE 00
5. Credits: 0 4 6. Semester	Autumn	√ Spring	Both

- 7. Pre-requisite: Digital VLSI Circuit Design, EC 201
- 8. Subject Area: PEC and DEC
- 9. Objective: To provide knowledge on the front end design aspects of VLSI chip manufacturing cycle.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction: Evolution of design automation; CMOS realizations of basic	3
	gates.	
2.	Circuit and system representation: Behavioral, structural and physical	4
	models, design flow.	
3.	Modeling techniques: Types of CAD tools, introduction to logic simulation	4
	and synthesis.	
4.	HDL: Syntax, hierarchical modeling, Verilog/VHDL construct, simulator	6
	directives, instantiating modules, gate level modeling.	
5.	Delay modeling: Event based and level sensitive timing control, memory	5
	initialization, conditional compilation, time scales for simulation.	
6.	Advanced modeling techniques: Static timing analysis, delay, switch level	5
	modeling, user defined primitive (UDP), memory modeling.	
7.	Logic synthesis: Logic synthesis of HDL construct, technology cell library,	6
	design constraints, synthesis of Verilog/VHDL construct.	
8.	Model optimization: Various optimization techniques, design size.	4
9.	FPGAs based system design: Commercial FPGA architecture, LUT and	5
	routing architecture, FPGA CAD flow; Typical case studies.	
	Total	42

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	Weste, N. and Eshraghian, K., "Principles of CMOS VLSI Design -A	2006
	Systems Perspective", 2 nd Ed., Addison Wesley.	
2.	Palnitkar, S., "Verilog HDL", 2 nd Ed., Pearson Education.	2004
3.	Wolf, W., "Modern VLSI Design: System on Chip", 2 nd Ed., Prentice Hall	2002
	of India.	

NAME OF DEPT. /CENTRE:	Electronics and Communication Engineering
1. Subject Code: ECN- 594	Course Title: VLSI Digital Signal Processing
2. Contact Hours:	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.): The	ory 0 3 Practical 0 0
4. Relative Weight: CWS 25 PRS	00 MTE 25 ETE 50 PRE 00
5. Credits: 0 4 6. Semester	Autumn Spring Both

- 7. Pre-requisite: Digital VLSI Circuit Design
- 8. Subject Area: PEC and DEC
- 9. Objective: To provide knowledge on transformations for high speed VLSI digital signal processing using pipelining, retiming, and parallel processing techniques.

10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Introduction to DSP Systems: Typical DSP programs, Area-speed-power	2
	tradeoffs, Representation methods of DSP systems	
2.	Iteration Bound: Iteration, Iteration period, Iteration bound, Algorithms to	4
	compute iteration bound – Longest path matrix, Minimum cycle matrix	
3.	Pipelining and Parallel Processing: Introduction to pipelining and parallel	5
	processing, Pipelining of FIR digital filters, Parallel processing, Pipelining and	
	parallel processing for low power	
4.	Retiming: Retiming formulation, Retiming for clock period minimization, K-	4
	slow transformation, Retiming 2-slow graph	
5.	Unfolding: Algorithm for unfolding, Properties of unfolding, Application of	6
	unfolding, Sample period reduction, Word and bit-level parallel processing	
6.	Folding: Folding technique, Folding transformation, Retiming for folding	4
7.	Fast Convolution: Introduction, Cook-Toom algorithm and modified Cook-	6
	Toom algorithm, Winograd algorithm and modified Winograd algorithm,	
	Iterated convolution, Cyclic convolution, Design of Fast convolution algorithm	
	by inspection.	
8.	Algorithmic Strength Reduction in Filters and Transforms: Introduction,	6
	Parallel FIR filters, Two-parallel and three-parallel low-complexity FIR filters,	

	3-parallel fast FIR filter, Parallel filter algorithms from linear convolutions,	
	Discrete Cosine Transform and Inverse DCT.	
9.	Pipelined and Parallel Recursive and Adaptive Filters: Introduction,	5
	Pipeling in 1 st order IIR digital filters, Pipelining in higher order IIR digital	
	filters, Parallel processing for IIR filters, Combined pipeling and parallel	
	processing for IIR filters.	
	Total	42

Sl.	Name of Books/ Authors	
No.		Publication
1.	Parhi, Keshab K., "VLSI Digital Signal Processing Systems: Design and	1999
	Implementation", John Willey & Sons.	
2.	John G. Proakis, Dimitris Manolakis: Digital Signal Processing: Principles,	2006
	Algorithms and Applications, 4th ed, Pearson.	
3.	Sen M. Kuo, Woon-Seng Gan: Digital Signal Processors: Architectures,	2005
	Implementations, and Applications, Prentice Hall.	

NAME OF DEPT. /CENTRE:	Electronic Engineering	cs and Co	mmunication
1.Subject Code: ECN- 595	Course Title:	VLSI Testin	ıg & Testability
2. Contact Hours: 42	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 0 3	Practic	_{al} 00
4. Relative Weight: CWS 25	PRS 00 MTE	25 ETE	50 PRE 00
5. Credits: 0 4 6. Sem	lester Autumn	√ Spring	Both

7. Pre-requisite: Introduction to analog and digital circuits and design, Physical VLSI Design

8. Subject Area: PEC and DEC

9. Objective: Upon completion of this course, students will be able to understand the VLSI chip testing mechanism, systems using existing test methodologies, equipments, and tools.

10. Details of the Course:

SI.	Contents	Contact
No.		Hours
	Motivation for testing, Design for testability, the problems of digital and analog	
1.	testing, Design for test, Software testing.	05
	Faults in Digital Circuits: Controllability, and Observability, Fault models - stuck-at	
	faults, Bridging faults, intermittent faults.	
	Digital Test Pattern Generation: Test pattern generation for combinational logic	
2.	circuits, Manual test pattern generation, Automatic test pattern generation - Roth's D-	07
	algorithm, Developments following Roth's D algorithm, Pseudorandom test pattern	
	generation, Test pattern generation for sequential circuits, Exhaustive, non-exhaustive	
	and pseudorandom 70 test pattern Generation, Delay fault testing.	
3.	Signatures and Self Test: Input compression output compression arithmetic, Reed-	
	Muller and spectral coefficients, Arithmetic and Reed-Muller coefficients, Spectral	10
	coefficients, Coefficient test signatures, Signature analysis and online self test.	
	Testability Techniques: Partitioning and ad-hoc methods and scan-path testing,	
	Boundary scan and IEEE standard 1149.1, Offline built in Self Test (BIST), Hardware	
	description languages and test.	
4.	Testing of Analog and Digital circuits: Testing techniques for Filters, A/D	
	Converters, Programmable logic devices and DSP, Test generation algorithms for	12
	combinational logic circuits – fault table, Boolean difference, Path sensitilization, D-	
	algorithm, Podem, Fault simulation techniques – serial single fault propagation,	

	Deductive, Parallel and concurrent simulation, Test generation for a sequential logic,	
	Design for testability – adhoc and structured methods, Scan design, Partial scan,	
	Boundary scan, Pseudo-random techniques for test vector generation and response	
	compression, Built-in-Self test, PLA test and DFT.	
5.	Memory Design and Testing: Memory Fault Modeling, testing, And Memory	08
	Design For Testability And Fault Tolerance RAM Fault Modeling, Electrical Testing,	
	Peusdo Random Testing-Megabit DRAM Testing-Nonvolatile Memory Modeling and	
	Testing-IDDQ Fault Modeling and Testing-Application Specific Memory Testing.	
	Total	42

SI.	Name of Books/ Authors	Year of
No.		Publication
1.	M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital,	2000
	Memory, and Mixed-Signal VLSI Circuits, Kluwer Academic Publishers.	
2.	A.K Sharma, Semiconductor Memories Technology, Testing and Reliability, IEEE	
	Press.	

NAME OF DEPT. /CENTRE:	Electronics and Communication Engineering			
1.Subject Code: ECN-596	Course Title: MEMS & NEMS			
2. Contact Hours:	L: 3	T: 1 P: 0		
3. Examination Duration (Hrs.): Theor	y 03	Practica	al 00	
4. Relative Weight: CWS 25 PRS	600 MTE	25 ETE	50 PRE 00	
5. Credits: 0 4 6. Semester	Autumn	√ Spring	Both	
7. Pre-requisite: VLSI Technology				

- 8. Subject Area: PEC and DEC
- 9. Objective: The course will provide understanding of underlying principles of MEMS and NEMS devices, and will provide insight to design related technologies.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction to Micro-fabrication: Cleaning, Oxidation, Diffusion, Mask	
	making, Lithography, Etching, Ion Implantation, CVD, PVD, Metallization;	
	Surface micromachining and Bulk Micromachining, DRIE, LIGA, Fabrication	8
	of high aspect ratio deformable structures	
	Elasticity in Materials: Stress, strain calculations, Normal and Shear strains	
2.	and constitutive relations, Plane stress, biaxial stress, residual stress, energy	
	relations, Load-deflection calculations in beams, cantilevers (rectangular cross	14
	section), Elastic deformation in square plate, Resonant frequency calculations:	
	Rayleigh-Ritz method	
3.	MEMS Capacitive Switch:Lumped model, pull-in voltage, Electromechanical	
	deflection modeling, pull-in instability, switching time and pull-in voltage	
	scaling, Physical effects in nanoscale gap-size, squeeze-film damping,	12
	perforated MEMS Capacitive switch, Comb actuators, Accelerometer, Pressure	
	sensor, Energy approach: Lagrangian Mechanics applicable to MEMS	
	capacitive switches, Reliability in RF-capacitive switch	
	MEMS Sensors: Thermal sensor, Interaction of Thermal-Electrical Fields,	
4.	Numerical design of thermal sensors, Bio-MEMS design problems	4

5.	Optical MEMS: 2-D, 3-D switches, design examples	4
	Total	42

Sl.	Name of Books/ Authors	Year of
No.		Publication
1.	Rebeiz, G.M., RF MEMS: Theory Design and Technology, Wiley	1999
2.	Stephen D. Senturia, Microsystem Design, Kluwer Academic	2001
3.	Madou, M., Fundamentals of Microfabrication, CRC Press	1997
4.	Sandana A., Engineering biosensors: kinetics and design applications,	2002
	Academic Press	
5.	Related research papers	

NAME OF DEPTT./CENTRE:	Department o Engineering	of Electronics & Con	nmunication
1. Subject Code: ECN-612	Course Title:	Wireless Network	S
2. Contact Hours: L: 3	T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory	3 Practical	0
4. Relative Weight : CWS 25	PRS 0	MTE 25 ETE	50 PRE 0
5. Credits: 3 6. Sem	nester: Spring	7. Subject Ar	ea: CORE

- 8. Pre-requisite: NIL
- 9. Objective: To acquaint the students with the concepts and the issues involved in the design of wireless networks.

SI.	Contents	Contact
No.		Hours
1.	Wireless network topologies, infrastructure and ad-hoc networks,	5
	different generations of wireless networks; The cellular concept and	
	design fundamentals, coverage and capacity expansion techniques.	
2.	Large scale path loss modeling and shadow fading, indoor and outdoor propagation models; Multipath and Doppler, impulse response model of multipath channel, types of small scale fading	5
	Rayleigh and Ricean fading, simulation model.	
3.	Constant envelope modulation techniques, GMSK; OQPSK and $\pi/4$ QPSK; Spread spectrum modulation and RAKE receiver; OFDM;	5
	Performance in fading and multipath channels.	
4.	Fixed assignment and andom access; Capacity and performance of FDMA, TDMA, DS/CDMA and FH/CDMA; WCDMA and OFDMA; Access techniques for WLAN, Bluetooth and mobile data networks; Quality of service enabled wireless access, access methods for integrated services.	6
5.	Location and handoff management, classification of handoffs and handoff algorithms, mobile IP; Power control, and techniques of	6

	power control, power saving mechanisms, energy efficient designs; Security in wireless networks.	
6.	GSM: Reference architecture, registration, call establishment, handoff mechanisms, communication in the infrastructure, GPRS; IS-95: reference architecture, physical layer, radio resource and mobility management; IMT 2000: Physical layer, handoff, power control; Introduction to cordless systems and wireless local loop technologies.	5
7.	Reference and layered architecture of IEEE 802.11 WLANs, physical layer alternatives, MAC scheme and frame format, handoff and power management; Protocol architecture, physical and MAC layer of Hiperlan-1 and Hiperlan-2; IP telephony using WLANs.	5
8.	Wireless home networking; HomeRF; Bluetooth: Protocol stack, physical and MAC layer.	3
9.	Broadband wireless access and IEEE 802.16; Next generation broadband wireless networks and navigational services.	2
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Pahalvan, K. and Krishnamurthy, P., "Principles of Wireless	2002
	Networks: A Unified Approach", Pearson Education.	
2.	Stallings, W., "Wireless Communications and Networking",	2002
	Pearson Education.	
3.	Rappaport, T.S., "Wireless Communications: Principles and	2002
	Practice", 2 nd Ed., Pearson Education.	
4.	Prasad, R. and Munoz, L., "WLANs and WPANs: Towards 4G	2003
	Wireless", Artech House.	
5.	Haykin, S. and Moher, M., "Modern Wireless Communication",	2005
	Pearson Education.	
6.	Pandya, R., "Mobile and Personal Communication Systems and	2000
	Services", Prentice-Hall of India.	

NAME OF DEPTT./CENTRE:	Department of Elect Engineering	ronics & Commur	nication
1. Subject Code: ECN-614	Course Title: Adapti Tech	ve Signal Proces niques	ssing
2. Contact Hours: L: 3	T: 0	P: 3	
3. Examination Duration (Hrs.):	Theory 0	Practical	0
4. Relative Weight : CWS 15	PRS 25 MTE	20 ETE 40	PRE 0
5. Credits: 3 6. Sem	ester: Spring	7. Subject Area: P	ΡE

- 8. Pre-requisite: NIL
- 9. Objective: To acquaint the students with the concepts, algorithms and applications of adaptive signal processing in wireless communication systems.
- 10. Details of Course:

Sl.	Contents	Contact
No.		Hours
1.	Linear optimum filtering and adaptive filtering, linear filter structures,	3
	adaptive equalization, noise cancellation and beam forming.	
2.	Optimum linear combiner and Wiener-Hopf equations, orthogonality	5
	principle, minimum mean square error and error performance surface;	
	Steepest – descent algorithm and its stability.	
3.	LMS algorithm and its applications, learning characteristics and convergence	10
	behaviour, misadjustment; Normalized LMS and affine projection adaptive	
	filters; Frequency domain block LMS algorithm.	
4.	Least squares estimation problem and normal equations, projection operator,	10
	exponentially weighted RLS algorithm, convergence properties of RLS	
	algorithm; Kalman filter as the basis for RLS filter; Square-root adaptive	
	filtering and QR- RLS algorithm; Systolic-array implementation of QR -	
	RLS algorithm.	
5.	Forward and backward linear prediction; Levinson-Durbin algorithm; Lattice	10
	predictors, gradient-adaptive lattice filtering, least-squares lattice predictor,	
	QR-decomposition based least-squares lattice filters.	
6.	Adaptive coding of speech; Adaptive equalization of wireless channels;	4
	Antenna array processing.	
	Total	42

Sl.	Name of Books/Authors	Year of
No.		Publication
1.	Haykin, S., "Adaptive Filter Theory", Pearson Education.	2002
2.	Widrow, B. and Stearns, S.D., "Adaptive Signal Processing", Pearson	1985
	Education.	
3.	Manolakis, D.G., Ingle, V.K. and Kogon, M.S., "Statistical and Adaptive	2005
	Signal Processing", Artech House.	
4.	Sayed Ali, H., "Fundamentals of Adaptive Filtering", John Wiley & Sons.	2003
5.	Diniz, P.S.R., "Adaptive Filtering: Algorithms and Practical	1997
	Implementation", Kluwer.	
6.	Sayeed, Ali, H., "Adaptive Filters", Wiley-IEEE Press.	2008
7.	Scharf, L.L., "Statistical Signal Processing: Detection, Estimation, and	1991
	Time Series Analysis", Addison-Wesley.	

NAME OF DEPT./CENTRE:	Electronics and	Communication E	ngineering
1. Subject Code: ECN – 631	Course Title: RF Re	eceiver Design	
2. Contact Hours:	L: 3 T: 0	P: 0	
3. Examination Duration (Hrs.):	Theory 0 3	Practical ⁰ 0	
4. Relative Weight: CWS 25	PRS 00 MTE 00	25 ETE 50 PRE	00
5. Credits: 0 3 6. Sem	Autumn	√ Spring Both	
7. Pre-requisite: NIL			

8. Subject Area: PCC

- 9. Objective: To present to the students a cohesive overview of the fundamental concepts required for the design and analysis of RF stages of a modern wireless system.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction to Wireless Systems: Classification of wireless	4
	systems; Design and performance issues: Choice of operating	
	frequency, multiple access and duplexing, circuit switching versus	
	packet switching, propagation, radiated power and safety; Cellular	
	telephone systems and standards.	
2.	Noise and Distortion in Microwave Systems: Basic threshold	6
	detection, noise temperature and noise figure, noise figure of a lossy	
	transmission line; Noise figure of cascade systems: Noise figure of	
	passive networks, two-port networks, mismatched transmission lines	
	and Wilkinson power dividers; Dynamic range and inter-modulation	
	distortion.	
3.	Microwave Amplifier Design: Comparison of active devices such as	12
	BJT, MOSFET, MESFET, HEMT, and HBT; Circuit models for FETs	
	and BJTs; Two-port power gains; Stability of transistor amplifier	
	circuits; Amplifier design using S-parameters: Design for maximum	
	gain, maximum stable gain, design for specified gain, low-noise	
	amplifier design, design of class-A power amplifiers.	
4.	Mixers: Mixer characteristics: Image frequency, conversion loss,	8

	noise figure; Devices for mixers: p-n junctions, Schottky barrier diode, FETs; Diode mixers: Small-signal characteristics of diode, single-ended mixer, large-signal model, switching model; FET Mixers: Single-ended mixer, other FET mixers; Balanced mixers;	
	Image reject mixers.	
5.	Switches: Devices for microwave switches: PIN diode, BJT, FET;	4
	Device models; Types of switches; Switch configurations; Basic	
	theory of switches; Multi-port, broad-band and isolation switches.	
6.	Oscillators and Frequency Synthesizers: General analysis of RF oscillators, transistor oscillators, voltage-controlled oscillators, dielectric resonator oscillators, frequency synthesis methods, analysis of first and second order phase-locked loop, oscillator noise and its effect on receiver performance.	8
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Pozar, D.M. "Microwave and RF Design of Wireless Systems", John	2001
	Wiley & Sons.	
2.	Gonzalez, G., "Microwave Transistor Amplifiers: Analysis and	1997
	Design", 2 nd Ed., Prentice-Hall.	
3.	Bahl, I. and Bhartia, P., "Microwave Solid State Circuit Design", 2 nd	2003
	Ed., John Wiley & Sons.	
4.	Chang, K., Bahl, I. and Nair, V., "RF and Microwave Circuit and	2002
	Component Design for Wireless Systems", Wiley Interscience.	
5.	Rohde, U.L. and Newkirk, D.P., "RF/Microwave Circuit Design for	2000
	Wireless Applications", John Wiley & Sons.	
6.	Larson, L.E., "RF and Microwave Circuit Design for Wireless	1996
	Applications", Artech House.	
7.	Egan, W. F., "Practical RF Circuit Design", John Wiley & Sons.	1998