NAME OF DEPT/CENTRE:	Computer Science and Engineering				}
1. Subject Code: CSN-501	Course Title:	Advanced	Algorithms		
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	03	Practical 0 0)	
4. Relative Weight: CWS 25	PRS 00	MTE 25	ETE 50	PRE	00
5. Credits: 4 6. Sem	ester Autumn	L			
7. Pre-requisite: NIL 8. St	ubject Area: F	229			

- 9. Objective: To introduce some advanced concepts in algorithms.
- 10. Details of the Course:

Sl.	Contents	Contact			
No.		Hours			
1.	Revisit the notions of greedy strategy, dynamic programming, graph	10			
	algorithms, complexity classes P, NP, NP-hard, NP-complete.				
2.	Approximation Algorithms: performance ratio, vertex cover problem,				
	travelling salesman problem, set covering problem, subset sum problem.				
3.	Randomized Algorithms: Tools and techniques. Applications.				
4.	Multithreaded Algorithms: Dynamic multithreaded programming,	10			
	multithreaded matrix multiplication, multithreaded merge sort.				
	Total	42			

SI.	Name of Books/Authors			
No.		Publication		
1.	Cormen T, Leiserson C, Rivest R, and Stein C: Introduction to	2009		
	Algorithms, MIT Press.			
2.	Motwani and Raghavan: Randomized Algorithms. Cambridge	2004		
	University Press.			

NAME OF DEPT/CENTRE:	Computer Science and Engineering				
1. Subject Code : CSN-502	Course Title: Advanced Operating Systems				
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	03	Practical ⁰	0	
4. Relative Weight: CWS	25 PRS 00	MTE 25	ETE 50	PRE	00
5. Credits: 4 6. S	emester Autumn	L			
7. Pre-requisite: CS 232	8. Subject Area	: PCC			

9. Objective: To introduce the basic features in distributed operating systems.

10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Theoretical foundations: introduction, limitations of a distributed system, Lamport's logical clocks, vector clocks, causal ordering of messages.	6
2.	Global state reordering algorithm, Cuts of a distributed computation, termination detection.	6
3.	Distributed mutual exclusion: Lamport's algorithm, Ricart-Agrawala Algorithm, Maekawa algorithm, Suzuki-Kasami algorithm, Raymond's tree based algorithm.	10
4.	Distributed deadlock detection: centralized algorithms, distributed algorithms.	10
5.	Failure recovery and fault tolerance: classification of failures, Checkpoints, Synchronous checkpointing and recovery, Asynchronous checkpointing and recovery, Commit protocols, Voting protocols, Dynamic voting protocols.	10
	Total	42

SI.	Name of Books/Authors		
No.		Publication	
1.	Singhal, M and Shivaratri, N. Advanced Concepts in Operating	2001	
	Systems. Tata McGraw Hill.		
2.	Kskhemkalyani, A and Singhal, M. Distributed computing: Principles,	2011	
	Algorithms, and systems. Cambridge University Press.		

NAME OF DEPT./CENTRE:	Computer	Scie	nce and E	ngineer	ing
1. Subject Code: CSN-503	Course Title:	Advar	nced Comp	uter Netw	orks
2. Contact Hours:	L: 3	T: 1	P: (0	
3. Examination Duration (Hrs.):	Theory	03	Practic	al 0 0)
4. Relative Weight: CWS 25	PRS 00	MTE	25 ETE	50 PF	RE 00
5. Credits: 0 4 6. Sem	tester √ Autur	nn	Spring	Both	
7. Pre-requisite: EC - 203					

8. Subject Area: PCC

- 9. Objective: To familiarize students with the architecture of a processor and machine level programming.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Basic networking concepts revisited: introduction to networks, layering and	5
	link layer, network layer, routing, end-to-end layer, congestion control,	
2.	Modeling and measurement: network traffic modeling, network	6
	measurement, simulation issues, network coding techniques	
3.	Routing and router design, scheduling and QoS, integrated and	5
	differentiated services, RSVP	
4.	Wireless networks and mobility supports, MAC protocol, routing, AODV,	4
	group communication, multicast	
5.	Flow and congestion control, TCP variants, TCP modeling, active queue	6
	management	
6.	Overlay networks: RON, P2P, CDN, Web caching, cross-layer	10
	optimizations, Emerging network types: data center, DTN, 4G mobile	
	networks (LTE, Wi-Max), Online social networks (OSN), wireless sensor	
	networks (WSN) - cross-layer sensor data dissemination	
7.	Emerging applications – VoIP, SIP, video over P2P	6
	Total	42

SI.	Name of Books/Authors
No.	
1.	J.F. Kurose and K.W. Ross, Computer networking: A top-down approach, 6th edition,
	Adison Wesley.
2.	L.L. Peterson and BS. Davie, Computer Networks ISE: A System Approach, 5th edition,
	Morgan Kaufman.
3.	B.A. Forouzan, Data communication & networking, 5th Edition, Tata Mc-Graw Hills.

NAME OF DEPT/CENTRE:	Computer	Science	e and Engin	eering	9
1. Subject Code: CSN-504	Course Title:	Programr	ning Lab I		
2. Contact Hours:	L: 0	T: 0	P: 3		
3. Examination Duration (Hrs.):	Theory	0 0	Practical 0	0	
4. Relative Weight: CWS 00	PRS 100	MTE 00	ETE 00	PRE	00
5. Credits: 0 2 6. Sem	nester Autumn	I			
7. Pre-requisite: NIL 8. Su	ubject Area: F	occ			
9. Objective: To provide programm	ing experience				
10. Details of the Course:					

Programming exercises in Object-oriented programming, Data structures, and Algorithms.

NAME OF DEPT/CENTRE:	Computer Science and Engineering				
1. Subject Code: CSN-505	Course Title: F	Project La	ab II		
2. Contact Hours:	L: 0	Т: 0	P: 3		
3. Examination Duration (Hrs.):	Theory	00	Practical 0	0	
4. Relative Weight: CWS 00) PRS 100	MTE 0	0 ETE 00	PRE (00
5. Credits: 0 2 6. Ser	nester Autumi	1			
7. Pre-requisite: NIL 8. S	Subject Area:	PCC			
9. Objective: To provide hand-on engineering	experience on d	ifferent to	pics in computer	science a	nd

10. Details of the Course:

Programming exercises and experiments in Computer Networks and Security, Operating Systems, and Database management systems.

- 1. Experiments on LAN Trainer Kit:
- (i) Performance study of data link layer protocols
- (ii) Implementation and testing Network Layer routing protocols
- (iii) Understanding the steps involved in RC4 algorithm encryption
- 2. Programming exercises using sockets
- 3. Design and implementation of a Data Sniffer

Sl.	I. Name of Books / Authors	
No.		Publication
1.	LAN Trainer user Manual	
2.	Stevens, W. R., "Unix Network Programming: Vol. II", 2nd Ed., Pearson	2002
	Education	

NAME OF DEPT./CENTRE:	Electronic	s and	Compute	er Enç	ginee	ring
1. Subject Code: CSN-506	Course Title:	Advan	ced Compu	iter Ar	chited	ture
2. Contact Hours:	L : 3	T : 1	P:(0		
3. Examination Duration (Hrs.):	Theory	03	Practic	al ⁰	0	
4. Relative Weight: CWS 25	PRS 00	MTE	25 ETE	50	PRE	00
5. Credits: 0 4 6. Sem	ester: Autur	mn	√ Spring	Botl	h	
7. Pre-requisite: EC - 252						

8. Subject Area: MSC

- 9. Objective: To expose students to advanced techniques of computer design such as pipelining, vector processing and multiprocessing.
- 10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Fundamentals of computer design, Amdahl's law, measuring and reporting performance.	2
2.	Principles of linear pipelining; Instruction level parallelism and instruction pipelines, speedup, data dependency hazards, remedial measures, branch handling; Arithmetic pipelines; Pipeline control methods; Job sequencing, collision prevention and pipeline chaining; Case study of pipelined systems.	8
3.	Loop unrolling, software pipelining and trace scheduling techniques for exposing instruction level parallelism.	4
4.	Dynamic scheduling algorithms, exploiting ILP using static scheduling and dynamic scheduling, hardware based speculation, multiple issues, and speculation.	8
5.	Data level parallelism, Vector processing characteristics and requirements, pipelined vector processing, vectorization methods, examples of vector processing.	4
6.	Graphics processing units (GPUs), Instruction set architecture, Programming on GPU, Comparison with vector processors	4

7.	Array processing, SIMD array processors, communication between PEs, SIMD interconnection networks, algorithms for array processing	2
8.	Data and control parallelism, PRAM model of parallel computation, parallel algorithms. Embedding of task graphs in processor graphs, dilation and loading, load balancing, Overview of parallel programming with MPI and Open MP.	4
9.	Multiprocessors and multi-computers; Processor organizations: mesh, binary tree, hypercube; Shared memory and message passing systems; Mapping and Scheduling:	6
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Hennessy, J. L. and Patterson, D. A., "Computer Architecture", 4 th	2007
	Ed., Morgan Kaufmann.	
2.	Sima, D., Fountain, T. and Kacsuk, P., "Advanced Computer	2007
	Architecture: A Design Space Approach", Pearson Education.	
3.	Michael, J.Q., "Parallel Computing: Theory and Practice", Tata	2002
	McGraw-Hill.	
4.	Hwang, K., "Advanced Computer Architecture", Tata McGraw-Hill.	2003

NAME OF DEPT./CENTRE: Computer Science and Engineering					
1. Subject Code: CSN-510Course Title: Network Programming					
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	03	Practica	al O O	
4. Relative Weight: CWS 25	PRS 00	МТЕ	25 ETE	50 PRE	፤ 00
5. Credits: 0 4 6. Sem	ester: Autun	nn s	√ Spring	Both	
7. Pre-requisite: CS- 341					

- 8. Subject Area: PEC
- 9. Objective: To familiarize students with advanced concepts of network programming in UNIX environment.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	OSI model, client server model, TCP/IP protocols, introduction to Unix;	6
	Process, groups, job control and non-job control shells, reliable and unreliable signals.	
2.	Inter process communication in Unix, pipes, message queues, shared	6
	memory, mmap function and its use, RPC, authentication, timeout and retransmission, call semantics, XDR.	
3.	Daemon processes and inetd daemon.	2
4.	Introduction to Berkeley sockets, socket addressing, TCP and UDP	8
	socket functions, sockets and Unix signals, socket implementation,	
	client and server examples for TCP and UDP and their behavior under	
	abnormal conditions.	
5.	Socket options, IPv4, IPv6, TCP, I/O multiplexing, Unix I/O models, select and poll functions	4
6.	Unix domain protocols	2
7.	Routing sockets, raw sockets, example programs, ping, traceroute,	6
	methods for writing client and server in Unix, iterative server, concurrent server, preforking, prethreading.	
8.	Data link access, libpcap, BPF, DLPI, Linux SOCK PACKET,	4
	programming using libpcap	
9.	Socket Programming in JAVA	4
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Stevens, W.R., Fenner, B. and Rudoff A.M., "Unix Network	2004
	Programming: Vol. I", 3rd Ed., Pearson Education	
2.	Stevens, W.R., "Unix Network Programming: Vol. II", 2 nd Ed.,	2002
	Pearson Education	
3.	Stevens, W.R., "Advanced Programming in Unix Environment",	2002
	Pearson Education	
4.	Bovet, D.A. and Cesati, M., "Understanding the Linux Kernel",	2004
	2 nd Ed., O'Reilly.	

NAME OF DEPT/CENTRE: Computer Science and Engineering

1. Subject Code: CSN-	511		Course Title: Advanced Database Management Systems					ent		
2. Contact Hours:				L: 3		T: 1		P:	0	
3. Examination Duration (Hrs.):		Theory		3	Practical ⁰		1			
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0
5. Credits: 4	6	. Sem	ester:	Spring	g					
7. Subject Area: PEC										

8. Pre-requisite: CS351

9. Objective: To educate students about advanced concepts pertaining to databases, database management systems and their applications

10. Details of the Course:

Sl.	Contents	Contact
NO.		Hours
1.	applications of DBMS. concepts; Relational database systems,	3
2.	Transactions & Serializability: Concurrent executions, Serializability View and conflict serializability, Recoverability,	6
3.	Concurrency Control: Lock based protocols, timestamp based protocols, validation based protocols, deadlock handling, insert and delete operations	6
4.	Recovery System: Failure classification, recovery and atomicity, log based recovery, shadow paging, buffer management, remote backup systems	6
5.	Distributed Databases: Homogeneous and heterogeneous databases, distributed transactions, commit protocols, concurrency control in distributed databases	6
6.	Advanced Data Types: Time in databases, spatial and geographic databases, multimedia databases	5
7.	Advanced applications : Knowledge discovery and data mining, data mining functionalities, classification of data mining systems, data warehousing concepts, slicing, dicing, schemas, data warehouse architecture, introduction to Data Mining Query Language (DMQL)	6
8.	Study of typical DBMS packages.	4
	Total	42

SI.	Name of Authors / Books / Publishers	Year of
No.		Publication
1.	Silberchatz, A., Korth, H. F. and Sudarshan, S., "Database	2010
	System Concepts", 6 th Ed., Tata-McGraw Hill.	
2.	Han, J. and Kamber, M., "Data Mining: Concepts and	2006
	Techniques", 2 nd Ed., Morgan Kaufmann.	
3.	Ray Chhanda, "Distributed Database Systems", Pearson.	2009
4.	Date, C. J, "An Introduction to Database Systems", 8 th Ed.,	2008
	Pearson.	

NAME OF DEPT/CENTRE: Computer Science and Engineering							
1. Subject Code:	CSN-512 (Course Title: Fo	ormal Met	hods and Softv	vare Verification		
2. Contact Hours:		L: 3	T: 1	P: 0			
3. Examination Du	ration (Hrs.):	Theory	03	Practical 0	0		
4. Relative Weight	: CWS 2	5 PRS 00	MTE 2	5 ETE 50	PRE 00		
5. Credits: 0	4 6. Se	mester Autum	n				
7. Pre-requisite: N	NIL 8. 3	Subject Area:	PEC				

- 9. Objective: To introduce the basic model checking techniques and tools for software verification.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Temporal logics: syntax and semantics of temporal logics PLTL, CTL,	6
	and CTL*	
2.	Model checking: Model checking CTL, PLTL, state explosion problem	6
3.	Symbolic model checking: binary decision diagrams (BDDs),	6
	representing automata by BDDs, BDD based model checking.	
4.	Reachability properties : Safety properties, Liveness properties, deadlock	6
	freeness	
5.	Fairness properties: PLTL, CTL	6
6.	SMV: symbolic model checker	6
7.	SPIN: model checker based on communicating automata	6
	Total	42

SI.	Name of Books/Authors	Year of
No.		Publication
1.	Berard, B. Bidoit, M. Finkel, A. Laroussine, F. Petit, A. Petrucci, L.	2001
	Schnoebelen, Ph. And McKenzie, P. Systems and Software verification.	
	Springer.	
2.	Huth, M. and Ryan, M., "Logic in Computer Science: Modeling and	2005
	Reasoning About Systems", Cambridge University Press.	

INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE NAME OF THE DEPARTMENT:Computer Science and Engineering

- 1. Subject Code: CSN-513 Course Title: Information and Network Security
- P: 0 2. Contact Hours: L: 3 T:1 3. Examination Duration (Hrs.): Theory Practical 0 3 _ 4. Relative Weight: CWS 25 PRS 0 **MTE 25 ETE 50** PRE 0 5. Credits: 0 4 6. Semester: $\sqrt{}$ Spring Autumn Both
- 7. Pre-requisite: CS106
- 8. Subject Area: PEC
- 9. **Objective of the course:** This course provides an introduction of symmetric key and public key encryption techniques, hash functions, message authentication codes, digital signatures. Application of these cryptographic techniques in different fields email, web and IP security is discussed. The goal of this course is to provide the students adequate foundation to apply cryptographic technique to emerging area of information and network security.
- 10. Details of the Course:

S.	Particulars	Contact
No.		Hours
1	Classical Encryption: symmetric cipher models, Vigenere cipher, stream	02
	ciphers, LFSR based ciphers.	
2	Block Ciphers: Substitution and permutation networks (SPN), Feistel structure,	06
	description of Data Encryption Standard (DES). Review of finite fields. Advanced	
	Encryption Standart (AES). Linear and differential attacks on block ciphers.	
3	Public Key Encrytion: Principles of public key cryptosystems, RSA, El Gamal	08
	cryptosystems. Testing primality: quadratic reciprocity, Chinese Remainder	
	Theorem (CRT), Miller – Rabin algorithm, Solovay Strassen algorithm.	
4	Hash Functions: Random oracle model, security of hash functions, Merkel	06
	Damgard iterative construction. Message Authentication and has functions. MD5	
	message digest algorithm. Secure Hash Algorithm.	
5	Digital Signatures: Properties of digital signatures. Generic signatures. RSA	04
	signature, El Gamal signature.	
5	Authentication Application: Kerberos. X.509 Authentication service.	04
6	Electronic Mail Security: Pretty Good Privacy (PGP). S/MIME.	04
7	IP Security: IP security overview, architechture, key management.	04
8	WEB SECURITY: Secure Sockets Layer (SSL) and Transport Layer Security	04
	(TLS). Secure Electronic Transaction.	
	Total	42

S.No.	Author(s)/Name of Books/Publishers	Year of Publication
1	Stallings W., Cryptography and Network Security, 4/E, Pearson	2006
	Education India.	
2	Stinson D., Cryptography Theory and Practice, 3/E, (Special Indian	2006
	Edition, first reprint 2011) Chapman & Hall/CRC	
3	Pieprzyk J., Hardjono T. and Seberry J. Fundamentals of Computer	2003
	Security, Springer (International Edition) (First Indian reprint 2008)	
4	Koblitz N. A Course in Number Theory and Cryptography, 2/E, Springer	1994
5	Menezes, A. Handbook of Applied Cryptography, CRC Press, (available	2001
	free of cost at: http://cacr.uwaterloo.ca/hac/)	

NAME OF DEPT/CENTRE:	Computer Science and Engineering					
1. Subject Code : CSN-514	Course Title:	Advanced	Automata Theor	ſy		
2. Contact Hours:	L: 3	T: 1	P: 0			
3. Examination Duration (Hrs.):	Theory	03	Practical ⁰	0		
4. Relative Weight: CWS 25	PRS 00	MTE 25	ETE 50	PRE 00		
5. Credits: 0 4 6. Sem	nester Spring					
7. Pre-requisite: CS353 8.	Subject Area:	PEC				

- 9. Objective: To provide a deeper understanding of automata theory.
- 10. Details of the Course:

SI.	Contents				
No.		Hours			
1.	Automata and Logical specification: MSO logic over words, The	7			
	equivalence theorem, consequences and applications in model checking,				
	FO and MSO definability.				
2.	Congruences and minimization: homomorphisms, quotients, and	7			
	abstraction; minimization and equivalence of DFAs; equivalence and				
	reduction of NFAs.				
3.	Tree automata: trees and tree languages;deterministic tree	8			
	automata, nondeterministic tree automata, emptiness, congruences and				
	minimization; logic oriented formalisms over trees; applications.				
4.	Pushdown and counter systems	8			
5.	Communicating systems	6			
6.	Petri nets	6			
	Total	42			

Sl.	Name of Books/Authors	Year of
No.		Publication
1.	Thomas, W. "Applied Automata Theory". Springer	2005
2.	Pin, J. "Mathematical foundations of automata theory." Springer	2012

NAME OF DEPT/CENTRE: Electronics and Computer Engineering

1. Subject Code: CSN-515	Course	e Title:	Data Mi	ning	and W	areh	ousing	
2. Contact Hours:		L: 3		T: 1		P:	0	
3. Examination Duration (Hrs.):	:	Theory	3		Practi	cal	0	
4. Relative Weight: CWS	25 PR	S 0	MTE	25	ETE	50	PRE	00
5. Credits: 4		`			6. Se	emeste	er: Spri r	ıg

7. Pre-requisite: CS102 8. Subject Area: PEC

9. Objective: To educate students to the various concepts, algorithms and techniques in data mining and warehousing and their applications.

10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Introduction to data mining: Motivation and significance of	3
	data mining, data mining functionalities, interestingness	
	measures, classification of data mining system, major issues in	
	data mining.	
2.	Data pre-processing: Need, data summarization, data cleaning,	6
	data integration and transformation, data reduction techniques –	
	Singular Value Decomposition (SVD), Discrete Fourier	
	Transform (DFT), Discrete Wavelet Transform (DWT), data	
	discretization and concept hierarchy generalization.	
3.	Data warehouse and OLAP technology: Data warehouse	4
	definition, multidimensional data model(s), data warehouse	
	architecture, OLAP server types, data warehouse	
	implementation, on-line analytical processing and mining,	
4.	Data cube computation and data generalization: Efficient	4
	methods for data cube computation, discovery driven	
	exploration of data cubes, complex aggregation, attribute	
	oriented induction for data generalization.	
5.	Mining frequent patterns, associations and correlations:	6
	Basic concepts, efficient and scalable frequent itemset mining	
	algorithms, mining various kinds of association rules –	
	multilevel and multidimensional, association rule mining versus	
(correlation analysis, constraint based association mining.	
6.	Classification and prediction: Definition, decision tree	6
	induction, Bayesian classification, rule based classification,	
	classification by backpropagation and support vector machines,	
	associative classification, lazy learners, prediction, accuracy and	
1	error measures.	

7.	Cluster	analysis:	Definition,	clustering	algorithms	_	6

	partitioning, hierarchical, density based, grid based and model based; Clustering high dimensional data, constraint based cluster analysis, outlier analysis – density based and distance based.	
8.	Data mining on complex data and applications: Algorithms for mining of spatial data, multimedia data, text data; Data mining applications, social impacts of data mining, trends in data mining.	7
	Total	42

Sl.	Name of Authors / Books / Publishers	Year of
No.		Publication
1.	Han, J. and Kamber, M., "Data Mining - Concepts and	2011
	Techniques", 3rd Ed., Morgan Kaufmann Series.	
2.	Ali, A. B. M. S. and Wasimi, S. A., "Data Mining - Methods	2009
	and Techniques", Cengage Publishers.	
3.	Tan, P.N., Steinbach, M. and Kumar, V., "Introduction to Data	2008
	Mining", Addison Wesley – Pearson.	
4.	Pujari, A. K., "Data Mining Techniques", 4th Ed., Sangam	2008
	Books.	

NAME OF DEPT./CENTRE: Computer Science & Engineering							
1. Subject Code:CSN-516Course Title: Modeling and Simulation							
2. Contact Hours:	L: 3	T: 1	P: 0				
3. Examination Duration (Hrs.):	Theory	03	Practical	0 0			
4. Relative Weight: CWS 2	5 PRS 00	MTE 2	5 ETE 50) PRE 00			
5. Credits: 0 4 6. Ser	mester: Autu	mn Sj	√ oring E	Both			

7. Pre-requisite: Knowledge of Probability theory

8. Subject Area: **PEC**

9. Objective: To acquaint the student to modeling and simulation techniques for discrete, dynamic and stochastic systems.

10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Introduction: Systems, models, deterministic and stochastic systems,	4
	static and dynamic systems, discrete event simulation, continuous	
	simulation, Monte Carlo simulation.	
2.	Discrete Event Simulation: Time-advance mechanisms, event	4
	modeling of discrete dynamic systems, event graphs, process oriented	
	and event oriented approaches, single-server single queue model.	
3.	GPSS: Program model, entities and transactions, blocks in GPSS, user	8
	defined functions, SNA, logic switches, save locations, user chains,	
	tabulation of result, programming examples.	
4.	Random Number Generation: Congruence generators, long period	5
	generators, statistical quality measures of generators, uniformity and	
	independence testing, chi-square and other hypotheses testing, runs	
	testing.	
5.	Random Variate Generation: random variable, probability density and	6
	distribution functions, Location, scale and shape parameters, discrete and	
	continuous probability distributions; Inverse transform method,	
	composition and acceptance-rejection methods, efficiency and quality	
	measures of generators; Input Modelling, selection of distribution for a	
	random source, fitting distributions to data, constructing empirical	
	distributions from data.	

6.	Random Processes and Queuing Models: random process,	10
	discrete/continuous time processes, Markovian property, Markov chain,	
	state transition diagrams, birth-death process, Little's theorem, steady	
	state analysis of M/M/1 model; multi-server models, M/G/1 and other	
	queuing models, Burke's theorem, network of queues, Jackson theorem.	
7.	Network Simulation: SimEvent tool box in MATLAB, general features	5
	of network simulation packages, case study of	
	OMNET++/ns2/ns3/NetSim.	
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Karian, Z.A. and Dudewicz, E.J., "Modern Statistical Systems and	1999
	GPSS Simulation", 2 nd Ed., CRC Press.	
2.	Banks, J., Carson, L.S., Nelson, B.L. and Nicol, D.M., "Discrete Event	2007
	System Simulation", 4th Ed., Pearson Education.	
3.	Law, A.M. and Kelton, W.D., "Simulation, Modeling and Analysis",	2003
	3 rd Ed., Tata McGraw-Hill.	
4.	Alberto Leon-Garcia, "Probability and Random Processes for	2011
	Electrical Engineers", 2 nd Ed., Pearson Education	

NAME OF DEPT./CENTRE:	Compute	r Scier	ice and E	ngine	ering	J
1. Subject Code: CSN-517	Course Titl Engin	e: Advai eering	nced topics	s in Sof	itware	;
2. Contact Hours:	L: 3	T: 1	P: ()		
3. Examination Duration (Hrs.):	Theory	03	Practic	al O	0	
4. Relative Weightage: CWS 25	PRS 00	МТЕ	25 ETE	50	PRE	00
5. Credits: 0 4 6. Sem	ester Autu	ımn	√ Spring	Both	I	

7. Pre-requisite: Student must have the knowledge of basics concepts of software engineering.

- 8. Subject Area: PEC
- 9. Objective: To introduce the advanced concepts related to software engineering, metrics, and technical aspects of project management.
- 10. Details of Course:

Sl.	Contents	Contact
No.		Hours
1.	Product Metrics: Software Quality, Framework for product metrics, metrics for analysis model, metrics for design model, metrics for	5
	source code, metrics for testing, metrics for maintenance.	
2.	Web Engineering: Engineering Layers, Engineering Process, Formulating web based systems, Planning, Team, Project Management, Metrics for Web Engineering and WebApps, Analysis model for WebApps, Content Model, Interaction Model, Functional model, Configuration model, Navigation analysis, WebApp Design and Testing.	8
3.	Cleanroom software engineering: Clean Room approach, functional specification, Cleanroom design, Cleanroom testing.	4

4.	Component based Development: The CBSE Process, Domain	5
	engineering, Component based development, Classifying and	
	Retrieving Components, Economics of CBSE.	
5.	Formal Methods: Basics, Mathematics in Software Development,	7
	mathematical preliminaries, applying mathematical notations for	
	formal specification, Object Constraint language.	
6.	Formal Specification: Formal Specification in the Software process,	7
	Sub-system interface specification, Behavioral Specification.	
7.	Agile Development: Agile practices, extreme programming, planning,	6
	testing, refactoring, Agile design basics. Software process models and	
	metrics for evolving technologies.	
	Total	42

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Duke, R. and Rose, G., "Formal Object Oriented Specification	2000
	Using Object-Z", Cornerstones of Computing Series (editors: R.	
	Bird, C.A.R. Hoare), Macmillan Press.	
2.	Diller, A., "Z: An Introduction to Formal Methods", 2nd ed.,	1994
	Wiley.	
3.	Heineman, G.T., and Councill, W.T., "Component-Based Software	2001
	Engineering: Putting the Pieces Together", Pearson Higher	
	Education/Addison Wesley.	
4.	Prowell, S.J., Trammell, C.J., Linger, R.C., Poore, J.H., "Cleanroom	1999
	Software Engineering: Technology and Process", Addison Wesley.	
5.	Pressman R., S., "Software Engineering: A Practitioner's	2010
	Approach", 6th Ed., Tata McGraw-Hill.	
6.	Sommerville, I., "Software Engineering", 6th Ed., Pearson	2007
	Education.	
7.	Pressman, R. S. and Lowe, D., "Web Engineering: A Practitioner's	2008
	Approach", Special Indian Edition, Tata McGraw-Hill.	
8.	Martin, R.C., Agile Software Development: Principles, Patterns,	2011
	and Practics, Pearson Education Publisher.	

NAME OF DEPT/CENTRE:	Computer	Science	e and Engine	eering	
1. Subject Code: CSN-518	Course Title:	Logic and	Automated Reas	soning	
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	03	Practical 0	0	
4. Relative Weight: CWS 25	PRS 00	MTE 25	5 ETE 50	PRE 00	
5. Credits: 0 4 6. Sem	nester Spring				
7. Pre-requisite: NIL 8. Subject Area: PEC					

- 9. Objective: To provide the foundations of some basic logical languages and their mechanization.
- 10. Details of the Course:

SI.	Contents	Contact
No.		Hours
1.	Propositional Logic: syntax, semantics, soundness and completeness	8
	theorems.	
2.	Boolean satisfiability problem (SAT): normal forms, Horn clauses,	6
	resolution principle, DPLL algorithm, recent SAT solvers.	
3.	First-order Logic: syntax, semantics, soundness and completeness	8
	theorems.	
4.	Higher-order Logic (HOL): syntax, semantics, and types.	8
5.	Automated theorem proving: First-order theorem proving, unification,	6
	term rewriting.	
6.	Theorem provers for HOL: Isabelle/Coq	6
	Total	42

SI.	Name of Books/Authors	Year of
No.		Publication
1.	Huth, M. and Ryan, M., "Logic in Computer Science: Modeling and	2005
	Reasoning About Systems", Cambridge University Press.	
2.	Nipkow, T. Paulson, L. Wenzel, M. "Isabelle/HOL a proof assistant for	2002
	higher-order logic."	

NAME OF DEPT./CENTRE:	Computer Science and Engineering				
1. Subject Code: CSN-519	Course Title: Social Network Analysis				
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	03	Practical 0	0	
4. Relative Weight: CWS 25	PRS 00	MTE 25	ETE 50	PRE	00
5. Credits: 4 6. Sem	nester Spring				
7. Pre-requisite: Nil					

- 8. Subject Area: **PEC**
- 9. Objective: To introduce the basic notions used for social network analysis.
- 10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Social Network Analysis: Preliminaries and definitions, Erdos Number	4
	Project, Centrality measures, Balance and Homophily.	
2.	Random graph models: Random graphs and alternative models, Models of	4
	network growth, Navigation in social Networks	
3.	Network topology and diffusion, Contagion in Networks, Complex	4
	contagion, Percolation and information, Epidemics and information	
	cascades	
4.	Cohesive subgroups, Multidimensional Scaling, Structural equivalence,	6
	roles and positions, Ego networks, Weak ties, Structural holes	
5.	Small world experiments, small world models, origins of small world,	6
	Heavy tails, Small Diameter, Clustering of connectivity	
6.	The Erdos Renyi Model, Clustering Models, Preferential Attachment	6
7.	Navigation in Networks Revisited, Important vertices and page rank	6
	algorithm, towards rational dynamics in networks, basics of game theory	
8.	Coloring and consensus, biased voting, network formation games, network	6
	structure and equilibrium, behavioral experiments, Spatial and agent-based	
	models	
	Total	42

SI.	Name of Books/Authors
No.	

1.	S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications (Cambridge, Cambridge University Press, 1994).
2.	D. Easley and J. Kleinberg, Networks, Crowds and Markets: Reasoning about a highly connected world

NAME OF DEPT./CENTRE:	Compute	r Sciei	nce and E	ngineerin	g
1. Subject Code: CSN-520	Course T	Title: C	loud Comp	uting	
2. Contact Hours:	L: 3	T: 1	P: (D	
3. Examination Duration (Hrs.):	Theory	0 3	Practic	al 0 0	
4. Relative Weightage: CWS 25	PRS 00	MTE	25 ETE	50 PRE	00
5. Credits: 0 4 6. Sem	ester Autu	mn	√ Spring	Both	
7. Pre-requisite: CS - 341					

- 8. Subject Area: PEC
- 9. Objective: This course will cover the study of various algorithms involved in better implementing the cloud-based systems starting through fundamentals of deployment.
- 10. Details of the Course:

SI.	Contents	Contact		
No.		Hours		
1.	Introduction: Distributed Computing and Enabling Technologies,	3		
	Cloud Fundamentals: Cloud Definition, Evolution, Architecture,			
	Applications, deployment models, and service models.			
2.	Virtualization: Issues with virtualization, virtualization technologies	5		
	and architectures, Internals of virtual machine monitors/hypervisors,			
	virtualization of data centers, and Issues with Multi-tenancy.			
3.	Implementation: Study of Cloud computing Systems like Amazon	7		
	EC2 and S3, Google App Engine, and Microsoft Azure, Build			
	Private/Hybrid Cloud using open source tools, Deployment of Web			
	Services from Inside and Outside a Cloud Architecture. MapReduce			
	and its extensions to Cloud Computing, HDFS, and GFS.			
4.	Interoperability and Service Monitoring: Issues with interoperability,	5		
	Vendor lock-in, Interoperability approaches. SLA Management,			
	Metering Issues, and Report generation.			
5.	Resource Management and Load Balancing: Distributed	9		
	Management of Virtual Infrastructures, Server consolidation,			
	Dynamic provisioning and resource management, Resource			
	Optimization, Resource dynamic reconfiguration, Scheduling			
	Techniques for Advance Reservation, Capacity Management to meet			

	SLA Requirements, and Load Balancing, various load balancing	
	techniques.	
6.	Migration and Fault Tolerance: Broad Aspects of Migration into	3
	Cloud, Migration of virtual Machines and techniques. Fault	
	Tolerance Mechanisms.	
7.	Security: Vulnerability Issues and Security Threats, Application-level	7
	Security, Data level Security, and Virtual Machine level Security,	
	Infrastructure Security, and Multi-tenancy Issues.	
	IDS: host-based and network-based, Security-as-a-Service. Trust	
	Management, Identity Management, and Access Controls Techniques	
8.	Advances: Grid of Clouds, Green Cloud, Mobile Cloud Computing	3
	Total	42

SI.	Name of Books / Authors	Year of
No.		Publication
1.	Cloud Computing Principles and Paradigms, Rajkumar Buyya,	2011
	James Broberg, Andrzej Goscinski, Wiley Publishers	
2.	Cloud Computing Bible, Barrie Sosinsky, Wiley Publishers	2010
3.	Cloud Computing : Web-based Applications that change the way you	2008
	work and collaborate online, Michael Miller, Pearson Education	
4.	Mastering Cloud computing, Rajkumar Buyya, Christian Vacchiola,	2013
	S Thamarai Selvi, McGraw Hill	
5.	Cloud Computing and SOA Convergence in Your Enterprise: A	2010
	Step-by-Step Guide, David S. Linthicum	
6.	Cloud Security and Privacy: An Enterprise Perspective on Risks and	2010
	Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif,	
	O'Reilly	
7.	Cloud Computing : A Practical Approach, Toby Velte, Antohy T	2009
	Velte, Robert Elsenpeter, McGraw Hill	

NAME OF DEPT./CENTRE:	Computer	Scien	ce and Er	ngineering	l
1. Subject Code: CSN-521	Course Title:	Mobile a	and Pervas	ive Comput	ting
2. Contact Hours:	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	03	Practica	_l 0 0	
4. Relative Weight: CWS 25	PRS 00	MTE 2	25 ETE	50 PRE	00
5. Credits: 0 4 6. Sem	nester √ Autur	nn S	Spring	Both	
7. Pre-requisite: CS - 221					

8. Subject Area: PEC

- 9. Objective: To familiarize students with the concepts and issues of mobile and pervasive computing technologies.
- 10. Details of the Course:

Sl.	Contents					
No.		Hours				
1.	Introduction to mobile computing and pervasive/ubiquitous computing,	5				
	Pervasive computing systems - HP's Cooltown, Microsoft's EasyLiving					
2.	Enabling technologies for mobile and pervasive computing: sensor	10				
	technology and wireless sensor networks, RFID technology, smartphones					
3.	Mobile and pervasive networking: wireless TCP, Mobile IP, ad-hoc routing;	10				
	data access and management; pervasive computing middleware: AURA,					
	GAIA, ONE.WORLD, service discovery					
4.	Context-aware computing: location-aware systems-Active Badge, RADAR,					
	Cricket, GPS; location-aware services; issues and challenges in context-					
	awareness					
5.	Security and privacy in pervasive and mobile computing environment					
6.	Applications: Internet of Things, smart homes/offices, intelligent traffic					
	systems, social computing, wearable computing					
	Total					

SI.	Name of Books/Authors			
No.				
1.	Jochen Burkhardt, Pervasive Computing : Technology and Architecture of Mobile			

	Internet Applications 14th Edition, Pearson Education Singapore Pte Ltd 2002.				
2.	Stefan Poslad, Ubiquitous Computing: Smart Devices, Environments And Interactions				
	1st Edition, 2010, Wiley India Pvt Ltd				
3.	Laurence T. Yang, Handbook On Mobile And Ubiquitous Computing Status And				
	Perspective, 2012, CRC Press				

INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE NAME OF THE DEPARTMENT:Computer Science and Engineering

- 1. Subject Code: CSN-522 Course Title: Advanced Graph Theory
- 2. **Contact Hours:** L: 3; T: 1; P: 0
- 3. Examination Duration (Hrs.): Theory 03 Practical 00
- 4. Relative Weightage: CWS 25 PRS 0 MTE 25 ETE 50 PRE 0
- 5. Credits: 04 6. Semester:

Spring Autumn Both

- 7. Pre-requisite: CS-106
- 8. Subject Area: PEC
- 9. **Objective of the course:** The objective of this course is to provide the students a detailed understanding of graph theory.

 $\sqrt{}$

10. Details of the Course:

S. No.	Particulars	Contact Hours
1	Review of basics: Graphs and digraphs, incidence and adjacency matrices, isomorphism, the automorphism group; Trees: Equivalent definitions of trees and forests, Cayley's formula, the Matrix-Tree theorem, minimum spanning trees. Cut vertices, cut edges, bonds, the cycle space and the bond space, blocks, Menger's theorem; Paths and Cycles: Euler tours, Hamilton paths and cycles, theorems of Dirac, Ore, Bondy and Chvatal, girth, circumference,	04
2	Matchings: Matchings: Berge's Theorem, perfect matchings, Hall's theorem, Tutte's theorem, Konig's theorem, Petersen's theorem, algorithms for matching and weighted matching (in both bipartitie and general graphs), factors of graphs (decompositions of the complete graph), Tutte's f-factor theorem;	10
3	Extremal Problems: Extremal problems: Independent sets and covering numbers, Turan's theorem, Ramsey theorems; Colorings: Brooks theorem, the greedy algorithm, the Welsh-Powell bound, critical graphs, chromatic polynomials, girth and chromatic number, Vizing's theorem; Graphs on surfaces: Planar graphs, duality, Euler's formula, Kuratowski's theorem, toroidal graphs, 2-cell embeddings, graphs on other surfaces.	10
4	Directed Graphs : Tournaments, directed paths and cycles, connectivity and strongly connected digraphs, branching.	06
5	Networks and flows: Flow cuts, max flow min cut theorem, perfect square.	06
6	Random Graphs: The basic models - use of expectations, simple properties of almost all graphs, almost determined variables – use of variance, Hamiltonian cycles, the phase transition.	06
	Total	42

S.No.	Author(s)/Name of Books/Publishers	Year of Publication
1	Douglas B. West, Introduction to Graph Theory, Prentice Hall of India.	2002
2	Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science. Prentice-Hall.	2004
3	Frank Harary, Graph Theory, Narosa.	2000
4	R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall.	
5	Bollobas, Bela, Modern Graph Theory, Springer	
6	Diestel, R. Graph Theory, Springer	

Name of Department: Computer Science and Engineering

- 1. Subject Code: CSN-523 Course Title: Computational Geometry
- 2. Contact Hours L : 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory 03 Practical
- 4. Relative Weightage: CWS 25 PRS 0 MTE 25 ETE 50 PRE 0
- 5. Credits 0 4 6. Semester Spring
- 7. Pre Requisite: CS212
- 8. Subject Area: PEC
- 9. Objective Of Course: To introduce geometric algorithms and to give an

exposure to algorithms and data structures for geometric problems.

10. Details Of Course:

S.	Topics	No. of
No.		Lectures
1	Polygon Triangulation: Triangulation Theory, Area of Polygon,	6
	Segment intersection, Segment-triangle intersection.	
	Polygon Partitioning: Monotone Partitioning, Trapezoidalization,	
	Partition into Monotone Mountains, Linear-Time Triangulation, Convex	
	Partitioning.	
2	Convex Hulls in Two Dimensions: Definitions of Convexity and Convex	5
	Hulls, Naive Algorithms for Extreme Points, Gift Wrapping, QuickHull,	
	Graham's Algorithm, Lower Bound, Incremental Algorithm, Divide and	
	Conquer	
3	Convex Hulls in Three Dimensions: Polyhedra and data structures,	6
	Gift wrapping, Preparata-Hong algorithm, Incremental algorithm,	
	Randomized incremental algorithm	
4	Voronoi Diagrams: Definitions and Basic Properties, Delaunay	6
	Triangulations, Algorithms, Applications in Detail, Medial Axis,	
	Connection to Convex Hulls, Connection to Arrangements	
5	Arrangements: Combinatorics of Arrangements, Incremental Algorithm,	6
	Three and Higher Dimensions, Duality, Higher-Order VoronoiDiagrams,	

	Applications	
6	Search and Intersection: Segment-Segment Intersection, Segment-	8
	Triangle Intersection, Point in Polygon, Point in Polyhedron, Intersection	
	of Convex Polygons, Intersection of Segments, Intersection of Non-	
	convex Polygons, Extreme Point of Convex Polygon, Extremal Polytope	
	Queries, Planar Point Location	
	Motion Planning: Shortest Paths, Moving a Disk, Translating a Convex	
7	Polygon, Moving a Ladder, Robot Arm Motion, Separability	5
	Total	42

11. Books recommended

S.	Name of Authors/Books/ Publishers	Year of
No		Publication
1	M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf,	2000
	Computational Geometry: Algorithms and Applications (2nd	
	Edition), , Springer-Verlag.	
2	J. O'Rourke, Computational Geometry in C, 2nd ed., Cambridge	1998
	Univ. Press, 1998.	
3	B. Casselman, Mathematical Illustrations: A Manual of Geometry	2005
	and PostScript, Springer-Verlag,.	
	(http://www.math.ubc.ca/~cass/graphics/manual)	
4	K. Mulmuley, Computational Geometry: An Introduction Through	1994
	Randomized Algorithms, Prentice Hall.	