ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./1052

Dated: August 04, 2021

Head, Department of Electronics & Communication Engg.

On the recommendation of IAPC members, the Chairman, IAPC considered and approved the following PECs of Department of Electronics & Communication Engg. and PCCs for M.Tech. (Communication Systems) along with its revised course structure:

1. PECs for B.Tech. III Yr (Appendix-A)

- a) ECN-357: Electronic Sub-Systems
- b) ECN-358: Machine Learning in Semiconductor Manufacturing
- c) ECN-359: Compound Semiconductor Devices and Circuits
- d) ECN-360: Introduction to Information and Communication Theory

2. PECs for M.Tech. (RF & Microwave) (Appendix-B)

- a) ECN-621: Introduction to Microwave Measurements
- b) ECN-622: Nonionizing Radiations and Health Risks

3. PECs for M.Tech. (Communication Systems) (Appendix-C)

- a) ECN-618: Wireless technologies: 5G and Beyond
- b) ECN-619: Introduction to Compressed Sensing
- c) ECN-620: Advanced Wireless Communication

4. PEC for M.Tech. (Microelectronics & VLSI) (Appendix-D)

a) ECN-561: Compact Modeling of Semiconductor Devices

5. PCCs for M.Tech. (Communication Systems) along with its revised course structure (Appendix-E)

- a) ECN-517: Digital communication and signal processing techniques
- b) ECN-519: Wireless Communication Systems

Assistant Registrar (Curriculum)

Copy to (through e mail):-

- 1. All faculty
- 2. Head of all Departments/ Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel i/ acad portal/ Academic webpage of iitr.ac.in

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-357 Course Title: Electronic Sub-Systems

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Knowledge of Network theory, signals and systems and digital logic.

9. Objective: To understand the operation, design and analysis of important electronic sub-systems.

S.No.	Contents	Contact
		hours
1.	Synthesis of Passive Networks: RC, RL, RLC networks. Preliminaries of	7
	Passive Network Synthesis: Foster Form, Cauer Form, Brune, Bot-Duffin,	
	Darlington. Biquadratic Synthesis of One-Port RLC Networks, Synthesis of	
	n-Port Resistive Networks: Basic notations and Realizations.	
2.	Active filters: Review of Operational Amplifier (Op-Amp), transfer	10
	functions, first/second order active filters, types of active filters: low-pass	
	active filter, high-pass active filter, band-pass active filter, band-reject	
	(Notch) active filter, all-pass active filter, biquad filter, sensitivity, filter	
	approximation introduction to switched capacitor filters.	
3.	Digital Sub-Systems : Review of adders, subtraction, overflow, ripple carry	8
	adders, high-speed adders; Sequential Multiplication: Add-and-shift	
	approach, booth's algorithm; parallel multiplication: Wallace trees;	
	sequential division, shift registers, decoder/multiplexers, Memories:	
	Organization, types of memories, operation of memory.	
4.	Noise in Electronic Sub-Systems: Power spectral density, Circuit noise:	9
	Input referred noise, noise equivalent bandwidth, thermal noise, noise figure,	
	noise temperature, shot noise, flicker noise, other noise sources, correlation,	
	noise and feedback, jitter and transients.	
5.	Mixed-Signal Systems	8
	ADC/DAC: Nyquist-rate converters, oversampling converters, ideal A/D	
	converter, Quantization noise, Resolution, offset and gain error, Integral non-	
	linearity (INL) error, Differential non-linearity (DNL) error, ideal D/A	
	converter, Nyquist-rate D/A converters, Nyquist-rate A/D converters,	
	oversampling converter. PLL: Block-diagram of PLL, order of PLL system,	
	PLL Frequency Synthesizers, higher-order PLLs, Computer-Aided-Design	
	of PLLs.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Network Analysis and Synthesis, by Franklin F. Kuo, Wiley.	2006
2.	Principles of Active Network Synthesis and Design, by Gobin	2003
	Daryanani, Wiely.	
3.	CMOS: Circuit Design, Layout and Simulation, R. Jacob	2017
	Baker, Wiley.	
4.	Arithmetic and Logic in Computer Systems, by Mi Lu, Wiley.	2004
5.	Digital Electronics: Sequential and Arithmetic Logic Circuits,	2016
	by Tertulien Ndjountche, Wiley.	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-358 Course Title: Machine Learning in Semiconductor Manufacturing

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: None

9. Objective: To understand machine learning and its application in semiconductor manufacturing by enhancing statistical process control (SPC).

10. Details of the Course

S.No.	Contents	Contact
		hours
1.	Semiconductor Manufacturing: Manufacturing and quality control,	4
	semiconductor manufacturing unit processes and process organization.	
2.	Process Monitoring: Process flow, wafer state measurements, equipment	2
	state measurements	
3.	Statistical Process Control (SPC): Probability distributions, sampling,	6
	estimation, hypothesis testing, Control charts: single and multivariate.	
4.	Machine Learning: Introduction to the machine learning paradigm, difference from SPC.	4
5.	Regression: Linear regression, regularization, K-nearest neighbors (KNN), resampling techniques, subset selection. Non-linear regression: Polynomial, generalized additive models (GAMs)	8
6.	Classification: Logistic regression, application in defect detection in semiconductors.	4
7.	Unsupervised Learning: Clustering, PCA, anomaly detection in semiconductor manufacturing using unsupervised learning	4
8.	Support Vector Machines: Maximal margin classifier, support vector	4
	classifier. Application to improving yield in semiconductor manufacturing.	
9.	Early Detection and Remediation: Fault detection using SPC vs machine	4
	learning. Beyond detection: Early remediation with machine learning.	
10.	Extension to other industries: Electronics Component manufacturing, etc.	2
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Gary S. May, Costas J. Spanos, Fundamentals of	2006
	Semiconductor Manufacturing and Process Control, Wiley	
2.	Douglas Montgomery, George Runger, Applied Statistics	2018
	and Probability for Engineers, 7th edition, Wiley	
3.	Gareth James, Daniela Witten, Trevor Hastie, Robert	2013
	Tibshirani, An Introduction to Statistical Learning,	
	Springer	
4.	Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep	2016
	learning, MIT Press	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-359 Course Title: Compound Semiconductor Devices and Circuits

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: None

9. Objective: This course will provide a thorough understanding of compound semiconductor based power electronic devices; RF electronic devices; light emitters; solar cells and photo-detectors.

S.No.	Contents	Contact
1.	Introduction : Brief history of compound semiconductor devices; direct and	hours 3
1.	indirect bandgap semiconductors; compound semiconductor crystal	3
	structures and their importance in device-design.	
2.	Power Electronic Devices: Requirements for a power electronic device;	7
2.	Baliga Figure of Merit; Power Schottky diodes; power Bipolar Junction	,
	Transistors (BJTs); High Electron Mobility Transistors (HEMTs); power	
	MOSFETs; Insulated Gate Bipolar Transistors (IGBTs); concepts of	
	avalanche breakdown and edge-termination techniques.	
3.	Basic Power Electronic Circuits: Requirements of power electronic	6
	circuits; theory of inductors and capacitors in power electronics; Buck, Boost	
	and Buck-Boost DC-DC converters; DC-AC Inverter design; concepts of	
	freewheeling and flyback diodes; smart-grid integration.	
4.	RF electronic Devices: Requirements of an RF electronic Device; Johnson	8
	and Keys figures of Merit; RF Schottky diodes, HEMTs, Hetero-junction	
	Bipolar Transistors (HBTs); emerging RF energy harvester devices.	
	Introduction to RF electronic circuits; design considerations for RF power	
	amplifiers.	
5.	Light Emitting Devices: concepts of radiative and non-radiative	8
	recombination processes; theory of quantum wells; Light Emitting Diodes	
	(LEDs)- IR, visible and UV range; principles of laser diode- population	
	inversion, mirror design, Bragg reflectors, gain medium; optical and	
	electrical injection; surface and edge emitting lasers; VCSELs. Concepts of	
6.	LED and laser driver circuits; optical switches. Solar cells and photo-detectors : principles of Si and non-Si solar cells; Solar	
0.	power grid and integration circuits; concepts of photo-detectors in IR, visble	7
	and UV region; photodiodes- P-N junction photodiode, P-i-N photodiode,	1
	Avalanche Photodiode, Schottky Photodiode, MSM photodiode; concepts of	
	emerging self-powered photodiodes; optical sensors; concepts of image	
	detection using photo-detector array.	
7.	Emerging electronic systems and applications: concepts and requirements	3
- -	of LIDAR, surveillance drones, self-driving cars, satellite communication,	-
	vertical in-house horticulture, light-fidelity (Li-Fi) routers, UV water	
	filtration systems, medical imaging and surgical systems. Other emerging	
	applications.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Ben G. Streetman and Sanjay K. Banerjee, "Solid State	2015
	Electronic Devices," Pearson Education India Pvt. Ltd.	
2.	S. M. Sze and Kwok K. Ng, "Physics of Semiconductor	2008
	Devices," Wiley	
3.	B. Jayant Baliga, "Fundamentals of Power Semiconductor	2019
	Devices (second edition)," Springer.	
4.	Issa Batarseh and Ahmad Harb, "Power Electronics Circuit	2018
	Analysis and Design," Springer	
5.	Pallab Bhattacharya, "Semiconductor Optoelectronic Devices	2017
	(Second Edition)," Pearson	
6.	Ajoy Ghatak and K.Thyagarajan, "Lasers- Fundamentals and	2019
	Applications," Laxmi Publications	
7.	Chetan S. Solanki, "Solar Photovoltaics - Fundamentals,	2015
	Technologies and Applications," Prentice Hall India Learning	
	Private Limited	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-360 Course Title: Introduction to Information and Communication Theory

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Knowledge of digital communication

9. Objective: To familiarize students with the concept of information and communication theory to understand the ultimate limits of data transmission and data compression.

10. Details of the Course

S.No.	Contents	
		hours
1.	Preliminaries: Introduction to probability and random variables; elements of	3
	a digital communication system, source encoder and decoder, channel	
	encoder and decoder.	
2.	Introduction to Information Theory: Uncertainty and information;	6
	measure of information, entropy, joint, conditional, and relative entropies,	
	mutual information; chain rule for entropy, relative entropy, and mutual	
	information; discrete memoryless channels (DMC), capacity of DMCs.	
3.	Gaussian Channel: Capacity for AWGN channel, bandwidth efficiency,	10
	Shannon's limit; channel capacity theorem; parallel Gaussian channels;	
	capacity region of a broadcast Gaussian channel, capacity of orthogonal and	
	non-orthogonal multiple access schemes (TDMA, FDMA, CDMA, and	
	NOMA).	
4.	Wireless Channel: Channel modeling, fading, coherence time, coherence	10
	bandwidth; capacity of SISO and MIMO wireless channels, spatial	
	multiplexing gain, diversity techniques, diversity-multiplexing tradeoff;	
	outage probability.	
5.	Source Coding: Source coding theorem, classes of source codes based on	9
	decoding complexity and length, Huffman code, Shannon-Fano code;	
	Channel Coding: Channel coding theorem, error detection and correction	
	capabilities, repetition code, linear block codes.	
6.	Applications of information theory in communication and signal processing	4
	applications-physical layer security, wiretap channel, secrecy capacity,	
	secrecy outage probability, etc.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication / Reprint
1.	Ranjan Bose, "Information Theory, Coding and	2016
	Cryptography", Third Edition, McGraw Hill Education	
2.	Upamanyu Madhow, "Fundamentals of Digital	2008
	Communication", Cambridge University Press	

3.	John G. Proakis and Masoud Salehi, "Digital	2008
	Communications", Fifth Edition, McGraw-Hill Education	
4.	Simon Haykin, "Digital Communication Systems", John	2014
	Wiley & Sons, Inc	
5.	Tse and Viswanath, "Fundamentals of Wireless	2005
	Communication", Cambridge University Press	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-621 **Course Title**: Introduction to Microwave Measurements

2. Contact Hours: L: 3 T: 0 P: 2

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 10-25 **PRS:** 25 **MTE:** 15-25 **ETE:** 30-40 **PRE:** 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Knowledge of electromagnetic theory.

9. Objective: The objective of this course is the in-depth understanding of various microwave instruments such as network analyzer, spectrum analyzer, synthesized source, noise figure meter etc.

10. Details of the Course

S.No.	Contents	Contact		
		hours		
1.	Preliminaries: Concept of Transmission Lines and S-parameters	8		
2.	Traditional Measurement Techniques: The Power Meter, Transmission	6		
	Measurement, Reflection Measurement			
3.	Vector Network Analyzer: Basic Vector Measurements, Architecture of the	6		
	Vector Network Analyzer, Network Analyzer Calibration, Frequency Offset and			
	Mixer Measurement, Time Gating, Material Property Measurement Using the			
	VNA			
4.	Spectrum Analyzer: Common Measurements Using the Spectrum Analyzer,	7		
	Types of Signal Analyzers, Basic Idea behind Spectrum Analyzers, Building			
	Blocks of a Spectrum Analyzer, Features of the Spectrum Analyzer, Dynamic			
	Range and Sensitivity, Component Characterization			
5.	Noise Measurements: Noise Measurement Basics, Special Consideration for	7		
	Mixers, Phase Noise, Phase Noise Measurement Techniques			
6.	Microwave Signal Generation: Oscillator Circuits: The Crystal Oscillator,	8		
	Tunable Oscillator, Direct Digital Synthesis, PLL-Based Synthesizers, Fractional-			
	N Synthesis.			
	Total	42		

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Thomas H. Lee, Planar Microwave Engineering: A Practical Guide to	2004
	Theory, Measurement, and Circuits [1 ed.], Cambridge University	
	Press	
2.	R. Collier and D. Skinner, Microwave Measurements [3 ed.], IET	2007
	Press, [IET Electrical Measurement 12]	
3.	G. H. Bryant, Principles of microwave measurements P. Peregrinus	1993
	Ltd. [IEE electrical measurement series 5]	
4.	A. Basu, An Introduction to Microwave Measurements, CRC Press.	2015

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-622 Course Title: Nonionizing Radiations and Health Risks

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Engineering Electromagnetics

9. Objective: To introduce mechanism and effect of interaction of electromagnetic energy with biological systems

S.No.	Contents	Contact hours
1.	Introduction: Fundamentals of electromagnetics- Electromagnetics, RF/Microwave energy, Penetration in Biological tissues and skin effect, Dielectric measurements and exposure; Environmental electromagnetic field and Bio-systems	8
2.	Electromagnetic Interaction Mechanism in Biological Materials: Bioelectricity, Tissue characterization, Thermodynamics and energy	6
3.	Biological Effects: Absorption – Fundamentals, Dosimetry and SAR, Thermal considerations; Nervous Systems- Effect on brain and spinal cord, blood brain barrier, nervous system modelling and simulations; Cells and membranes; Molecular level; Low level exposure and ELF components; Ear, Eye and heart; Influence on drugs; Nonthermal, Microthermal and Isothermal effects; Epidemiology studies; Interferences; radiation hazards and exposure standards	8
4.	Thermal Therapy: Heating principle, hyperthermia, method of thermometry-invasive and non-invasive	6
5.	Protection of Biological and medical Environments: Concept of e. m. wave absorbers- classification, fundamental principles and theory, applications, e.m. wave absorbers using equivalent transformation method of material constant, method to improve e. m. field distribution in small room	6
6.	Electromagnetic Delivery Systems for Therapeutic applications: transmission lines and waveguides for medical applications; antennas; RF/Microwave ablation, Perfusion chamber, Endometrial ablation, E. M. based method for measuring blood perfusion in hear muscle, Lumen measurements of arteries using RF equipments, RF tissue Welding	8
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	C. Furse, C. and C. Durney, "Basic introduction to	2019
	Bioelectromagnetics", 2 nd Edition, CRC Press	
2.	K. Karipidis and A. W. Wood, "Non-ionizing Radiation Protection",	2017
	John Wiley & Sons	
3.	M. Gandolfo, "Biological Effects and Dosimetry of Nonionizing	2013
	Radiation: Radio Frequency and Microwave Energies", Springer	
4.	A. V. Vorst, A Rosen and Y Kotsuka, "RF/Microwave Interaction	2006
	with Biological Tissues", John Wiley & Sons	
5.	M Kato, "Electromagnetics in Biology", Springer	2006
6.	J Malmivuo and R Plonsey, "Bioelectromagnetism - Principles and	1995
	Applications of Bioelectric and Biomagnetic Fields", New York,	
	Oxford University Press	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-618 Course Title: Wireless technologies: 5G and Beyond

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Basic knowledge of wireless communication systems.

9. Objective: The main objective of this course is to provide exposure to advanced research topics in the field of Beyond 5G/6G wireless systems.

10. Details of the Course

S.No.	No. Contents						
		hours					
1.	5G NR Overview: Introduction and Motivation, Adaptive modulation and	6					
	coding, Time-domain and frequency-domain frame structure, 5G NR						
	Numerology, Hybrid Automatic repeat request protocol						
2.	5G transmit and receive chain for data and control information: CRC,	8					
	Transport block segmentation/concatenation, Rate matching/rate recovery,						
	Interleaving/deinterleaving						
3.	Cell-free/distributed wireless system: Introduction and Motivation, System	12					
	model for uplink/downlink, Channel modelling, Channel estimation,						
	Beamforming techniques, Centralized/Decentralized uplink and downlink						
	operation, Capacity bounds and spectral efficiency						
4.	mmWave MIMO Wireless Systems: Introduction and motivation, millimeter	6					
	wave propagation and channel models, Analog, Digital and Hybrid Processing,						
	Sparse channel estimation						
5.	Full-duplex future wireless system: Introduction and motivation, Self-	5					
	interference cancellation, active/passive cancellation, FD massive MIMO system						
6.	Multi-hop massive MIMO communication: Introduction and motivation,	5					
	Transmission model for amplify-and-forward and decode-and-forward protocols,						
	Multi-pair multi-hop communication, Capacity and asymptotic analysis						
	Total	42					

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Erik Dahlman, Stefan Parkvall, Johan Skold, ``5G NR: The Next	2018
	Generation Wireless Access Technology", Academic Press	
2.	Sassan Ahmadi, ``5G NR: Architecture, Technology, Implementation,	2019
	and Operation of 3GPP New Radio Standards", Academic Press	
3.	Özlem Tugfe Demir, Emil Björnson and Luca Sanguinetti,	2021
	"Foundations of User-Centric Cell-Free Massive MIMO",	
	Foundations and Trends® in Signal Processing, Now publishers	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-619 Course Title: Introduction to Compressed Sensing

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Knowledge of linear algebra and probability theory.

9. Objective: To introduce the basic concepts and mathematics behind sparse signal recovery and compressed sensing.

10. Details of the Course

S.No.	Contents	Contact									
		hours									
1.	Mathematical Preliminaries: Vector/matrix norms, Orthobasis expansion,	8									
	Gaussian/Sub-Gaussian random variables and properties, basic concentration										
	nequalities, basics of convex optimization and constrained optimization										
2.	Principles of sparse recovery: Unique and stable sparse solutions of underdetermined linear systems, Unique sparse representation and uncertainty principle, Sensing matrix design, Null-space property (NSP), Mutual coherence based uniqueness and stable recovery guarantees, Restricted Isometry Property (RIP), Relationship between RIP and NSP, Johnson-Lindenstrauss lemma, Sparse recovery with random matrices	16									
3.	The compressed sensing problem & connections to sparse recovery: Sparse representation of signals, compressible signals, union of subspaces										
4.	Sparse recovery methods: Convex optimization algorithms – Basis Pursuit and LASSO, Greedy algorithms- Orthogonal Matching Pursuit (OMP), Thresholding-based sparse recovery methods	10									
5.	Applications: Sub-Nyquist sampling, signal compression, signal-denoising, sparse linear regression, sparsity in wireless communication.	5									
	Total	42									

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Michael Elad, "Sparse and Redundant Representations - From	2010
	Theory To Applications in Signal & Image Processing", 2010,	
	Springer Publications.	
2.	Simon Foucart and Holger Rauhut, "A Mathematical Introduction to	2013
	Compressive Sensing", 2013, Birkhäuser.	
3.	Yonina Eldar and Gitta Kutyniok, "Compressed Sensing: Theory and	2012
	Applications", Cambridge University Press.	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-620 Course Title: Advanced Wireless Communication

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Basic knowledge of wireless communication.

9. Objective: To acquaint the students with the advanced but essential concepts, techniques and algorithms needed for understanding and designing modern wireless communication systems.

S.No.	S.No. Contents			
		hours		
1.	Introduction: Introduction to multiple-input multiple-output (MIMO) systems	4		
	and its relevance, diversity-multiplexing trade-offs, single-user and multi-user			
	MIMO systems			
2.	Massive MIMO systems: Motivation and system model, time and frequency	6		
	division duplexing, uplink and downlink transmissions, benefits and challenges,			
	relevance for the existing wireless standards, spectral and energy efficiency			
3.	Channel Models: MIMO and massive MIMO channel modeling, spatial channel	6		
4	models, 3GPP channel models, mmWave channel models	10		
4.	Receiver designing:	10		
	• Channel estimation: sounding signals and estimation techniques, the issues of			
	pilot contamination, pilot assignment techniques, estimating direction of			
	arrivals and departures			
	• Signal detection: linear detectors like MF, ZF, and MMSE, non-linear detectors such			
	as ML, Sphere decoding, SIC, Neighborhood Search, and matching Pursuit algorithms,			
5.	Soft decoding Beamforming: Beamforming fundamentals, Analog, Digital and Hybrid	4		
5.	beamforming architectures, Beamforming techniques and algorithms such as	+		
	phase minimization etc, quantization effects.			
6.	Beam management: Beam sweeping, reference signals for beam management,	4		
0.	Synchronization signals, beam measurement, determination and reporting			
7.	Potential advancements: Index modulation for massive MIMO systems,	4		
, .	Extremely large aperture arrays, Heterogenous massive MIMO, Holographic/RIS	·		
	massive MIMO,			
8.	Deep/Machine Learning for Wireless Communication: Overview of DL/ML	4		
	Modelling, Data set generation and acquisition, training the model. Example			
	problems like modulation design, channel estimation, signal detection etc.,			
	intelligent massive MIMO.			
	Total	42		

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	T. Marzetta, E. Larsson, H. Yang, and H Ngo, "Fundamentals of	2016
	Massive MIMO. Cambridge", Cambridge University Press, 2016.	
2.	A. Chockalingam and B. Rajan, "Large MIMO Systems", Cambridge	2014
	University Press, 2014.	
3.	E. Björnson, J. Hoydis and L. Sanguinetti, "Massive MIMO	2017
	Networks: Spectral, Energy, and Hardware Efficiency", Foundations	
	and Trends in Signal Processing: Vol. 11, No. 3-4, pp 154-655,	
	(2017).	
4.	D. Tse and P. Viswanath, "Fundamentals of Wireless	2005
	Communication", Cambridge University Press, 2 nd edition, 2005.	
5.	A. Goldsmith, "Wireless Communications", Cambridge University	2005
	Press, 2005.	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-561 Course Title: Compact Modeling of Semiconductor Devices

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 46. Semester: Spring7. Subject Area: PEC

8. Pre-requisite: Fundamentals of semiconductor device physics

9. Objective: To introduce students to the field of compact modeling and familiarize them with the tools and methods used in industry-standard compact model development

S.No.	Contents				
		hours			
1.	Introduction: Introduction to modeling, key differences between different				
	types of models, specific requirements for compact models, use and	2			
	importance of compact models, familiarization with existing industry-				
	standard compact models and their history				
2.	Modeling fundamentals: Mathematics required for compact modeling,				
	maximum and minimum functions, various types of smoothing functions,				
	continuity and differentiability, convergence criteria, numerical blow-ups,	5			
	clamping functions, stitching functions, function choice, electrical equivalent				
	circuits, handling differential equations, transient simulations, modeling				
	methodology: semi-empirical, empirical, physical and look-up-table models				
3.	Simulation and Coding: SPICE simulation basics, simulators, coding	3			
	syntax and practices, Verilog-Adetails, Verilog-A syntax, Verilog-A coding				
	practices				
4.	Two and three terminal devices: MOSCAP and resistor compact models,	4			
	relaxation time, terminal courrent and charges, frequency dependence	•			
5.	MOSFETs: Compact modeling of MOSFET electrostatics and transport,				
	concept of core model, building a core model, add-on effects, short-channel	6			
	effects, MOSFET charges, terminal currents and charges, parasitics,				
	frequency dependence, MOSFET model types: surface potential based				
	models, charge based models				
6.	Advanced modeling concepts: binning, binning equations, instance				
	parameters vs model parameters, macro definitions, backward-compatibility	8			
	and incompatibility, speed/performance, accuracy, noise modeling, self-				
	heating model, non-quasi-static model, quantum effects, band-structure				
7	effects, parasitics, ballistic transport, quasi-ballistic transport				
7.	Case study and advanced device effects: Study of industry-standard				
	compact models: BSIMBULK, BSIM-CMG, BSIM-IMG, ASM-HEMT.	8			
	Introduction to current devices (FinFETs, GAAFETs, FD-SOI, HEMTs)				
	through case study. Discussion on problems encountered in modeling these				
0	devices along with solutions adopted at present, scope for improvement				
8.	Magnetic devices: Compact modeling of STT-MRAM, concepts, key	3			
	criteria for MTJ compact model, tunnel resistance model, switching model,				
	performance criteria, key problems, scope for improvement				

9.	Ferroelectric devices: Compact modeling of ferroelectric materials and devices, NCFETs, L-K equation, domain picture, multi-domain modeling,	3
	switching model, MFMIS models vs MFIS models, current scenario, scope	3
	for improvement	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Y. Tsividis and C. Mc Andrew, "Operation and Modeling of	2010
	the MOS Transistor", Oxford Univ. Press	
2.	C. Hu, "Modern Semiconductor Devices for Integrated	2009
	Circuits", Pearson	
3.	Y. S. Chauhan et.al., "FinFET Modeling for IC Simulation	2015
	and Design: Using the BSIM-CMG standard", Academic	
	Press	
4.	C. Hu, "Industry Standard FDSOI Compact Model BSIM-	2019
	IMG for IC Design", Wood head publishing	
5.	G. Gildenblat, "Compact Modeling: Principles, Techniques	2010
	and Applications", Springer	
6.	W. Liu and C. Hu, "Bsim4 and Mosfet Modeling For Ic	2011
	Simulation", World Scientific Publishing Co.	
7.	W. Liu," MOSFET Models for SPICE Simulation: Including	2001
	BSIM3v3 and BSIM4", Wiley-IEEE Press	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Program Code: 531 M.Tech. (Communication Systems)

Department: EC Department of Electronics and Communication Engineering

Year: I

Teaching Scheme					Contact Hours/Week			Exam Duration		Relative Weight (%)				
S. No.	Subject Code	Course Title	Subject Area	Credits	L	Т	P	Theory	Practical	CWS	PRS	MTE	ETE	PRE
	<u> </u>		Seme	ster- I (Autum	n)				L		<u> </u>		
1.	ECN-510	Digital Communication Laboratory	PCC	2	0	0	3	0	3	-	50	-	-	50
2.	ECN-511	Linear Algebra and Random Processes	PCC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
3.	ECN-517	Digital communication and signal processing techniques	PCC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
4.	ECN-519	Wireless Communication Systems	PCC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
5.	ECN-515	Information and Coding Theory	PCC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
		Total		18										
	1		Semo	ester-II	(Spring	g)		I	l					
1.	ECN-600	Project	PCC	2	0	0	3	0	0	-	100	-	-	-
2.	ECN-700	Seminar	SEM	2	-	-	-	-	-	-	-	-	100	-
3.		ELECTIVE-I	PEC	3/4										
4.		ELECTIVE-II	PEC	3/4										
5.		ELECTIVE-III	PEC	4										
6.		ELECTIVE-IV	PEC	4										
		Total		18/20										

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Program Code: 531 M.Tech. (Communication Systems)

Department: EC Department of Electronics and Communication Engineering

Year: II

	Teaching Scheme				Contact Hours/Week			Ex Dura	am ation	Relative Weight (%)				
S. No.	Subject Code	Course Title	Subject Area	Credits	L	Т	P	Theory	Practical	CWS	PRS	MTE	ETE	PRE
			Seme	ster- I	(Autum	n)			l .				l	
1.	ECN-701A	Dissertation Stage-I (to be continued next semester)	DIS	12	-	_	-	-	-	-	-	-	100	-
		Total		12										
Note	e: Students ca	an take 1 or 2 audit courses as advised		•			ired.						,	
			Seme	ester-II	(Spring	g)								
1.	ECN-701B	Dissertation Stage-II (continued from III semester)	DIS	18	-	_	_	-	-	-	-	-	100	-
		Total		18										

Summary					
Semester	1	2	3	4	
Semester-wise Total Credits	18	18-20	12	18	
Total Credits	66-68				

Program Elective Courses M.Tech. (Communication Systems)

Teaching Scheme					ontac rs/We		Exam Duration Rela			ative Weight (%)				
S. No.	Subject Code	Course Title	Subject Area	Credits	L	Т	P	Theory	Practical	CWS	PRS	MTE	ETE	PRE
1.	ECN-514	Detection and Estimation Theory	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
2.	ECN-612	Wireless Networks	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
3.	ECN-613	Telecommunication Networks	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
4.	ECN-614	Adaptive Signal Processing Techniques	PEC	4	3	0	2	3	0	10-15	10-20	20-30	40-50	
5.	ECN-615	Advanced Coding Theory	PEC	4	3	0	2	3	0	10-15	10-20	20-30	40-50	
6.	ECN-616	Speech and Audio Processing	PEC	4	3	0	2	3	0	10-15	10-20	20-30	40-50	
7.	ECN-617	Image Processing and Computer Vision	PEC	4	3	0	2	3	0	10-15	10-20	20-30	40-50	
8.	ECN-618	Wireless Technologies: 5G and Beyond	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
9.	ECN-619	Introduction to Compressed Sensing	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
10.	ECN-620	Advanced Wireless Communication	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
11.	ECN-531	Microwave Engineering *	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
12.	ECN-539	Fiber Optic Systems*	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
13.	ECN-550	Radar Signal Processing *	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
14.	ECN-555	Microwave Imaging *	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
15.	ECN-573	Digital VLSI Circuit Design*	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
16.	ECN-594	VLSI Digital Signal Processing*	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-
17.	ECN-631	RF Receiver Design *	PEC	4	3	1	0	3	0	20-35	-	20-30	40-50	-

^{*}Courses offered from other specialization groups of the ECE department

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-517 Course Title: Digital communication and signal processing techniques

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Autumn 7. Subject Area: PCC

8. Pre-requisite: Signal and systems or equivalent.

9. Objective: To establish the theoretical groundwork for advanced applications of digital communication and digital signal processing techniques.

S.No.	S.No. Contents			
		hours		
1.	Discrete time fourier transform, Discrete Fourier Transform, Discrete Cosine	9		
	Transform, Fast Fourier Transform, Application of different transforms for a			
	linear time-invariant system, system stability, conversion between different			
	transforms			
2.	Digital filter structures: Finite Impulse Response filters (structure, design and	7		
	implementation), Infinite impulse response filters (structure, design and			
	implementation), Frequency limit conversion in digital and analog filters			
3.	Sampling and resampling in time and frequency domains, interpolation (up-	5		
	sampling), down-sampling, arbitrary sample-rate conversion, Multistage			
	implementation of sampling rate conversion; Sampling rate conversion of band-			
	pass signals, Application of multirate signal processing.			
4.	Sampling, Characterization of Band-Pass signals, lowpass equivalent of bandpass	4		
	signals, Signal-space concepts, orthogonal expansion of signals			
5.	Linear modulation, orthogonal and biorthogonal modulation, differential	7		
	modulation, nonlinear modulation; phase modulation, quadrature amplitude			
	modulation, continuous-phase modulation.			
6.	Band-limited channels; Inter-Symbol Interference (ISI); characterization of band-	10		
	limited channels, signal design for band-limited channels. Channel equalization:			
	optimum maximum-likelihood estimation, maximum-likelihood sequence			
	estimation; linear equalization, MSE equalizer; decision feedback equalization,			
	coefficient optimization, predictive decision feedback equalization.	42		
Total				

S.No.	Name of Authors/Book/Publisher	Year of Publication / Reprint		
1.	R.G. Gallager, "Principles of Digital Communication", Cambridge	2008		
	2008 University Press.			
2.	S. Haykin, " Communication Systems, Wiley.	2001		
3.	V.M. Gadre and A.S. Abhvankar, "Multiresolution and Multirate	2017		
	Signal Processing - Introduction, Principles and Applications", Mc-			
	Graw Hill.			
4.	lG. Proakis, "Digital Signal Processing: Principles, Algorithms and	2007		
	2007 Applications", 4 th Edn., Pearson.			
5.	P.P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice	1992		
	Hall.			
6.	J.G. Proakis and M. Salehi, "Digital Communications", 5thEdn.,	2008		
	McGraw Hill.			

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1. Subject Code: ECN-519 Course Title: Wireless Communication Systems

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Autumn 7. Subject Area: PCC

8. Pre-requisite: Basic knowledge of signal and system and information theory.

9. Objective: To acquaint the students with the concepts and the issues involved in the design of wireless communication systems.

10. Details of the Course

S.No.	Contents			
		hours		
1.	Wired (AWGN) Channel and its BER analysis; Wireless channels: Physical	6		
	modeling, input/output model, Rayleigh channel and its BER analysis, time and			
	frequency coherence, statistical channel models			
2.	Point-to-point communication: Detection in a Rayleigh fading channel, diversity			
	techniques, channel uncertainty and estimation			
3.	Cellular systems: Multiple access and interference management, narrow-band and	4		
	wide-band systems			
4.	Capacity of wireless channels, MIMO capacity, Diversity-multiplexing tradeoff,	12		
	MIMO receiver design, Transmit power allocation, MIMO precoding, Space-time			
	block codes			
5.	Multi-carrier communication, OFDM and its application to wireless	8		
	communication: Subcarrier mapping, synchronization, PAPR reduction			
	techniques			
6.	Non-orthogonal Multiple-Access: Introduction and motivation, System model,	6		
	successive interference cancellation, outage probability analysis, Uplink and			
	downlink NOMA system, Capacity analysis			
	Total	42		

S.No.	Name of Authors/Book/Publisher	Year of		
		Publication / Reprint		
1.	D. Tse and P. Viswanath, "Fundamentals of Wireless	2005		
	Communication", 2005 Cambridge University Press.			
2.	Y. Li and G.L. Stuber, "Orthogonal Frequency Division Multiplexing	2006		
	for 2006 Wireless Communications", Springer.			
3.	Y.S. Cho, J. Kim, W.Y. Yang and C.G. Kang, "MIMO-OFDM	2010		
	Wireless 2010 Communications with MATLAB", John Wiley &			
	Sons.			

4.	"5G Mobile and Wireless Communications Technology", A. Osseiran,	2016
	IF. 2016 Monserrat and P. Marsch (eds.), Cambridge University	
	Press.	
5.	A. Goldsmith, "Wireless Communications", Cambridge University	2012
	Press.	
6.	Yuanwei Liu, Zhijin Qin, Zhiguo Ding, "Non-Orthogonal Multiple	2020
	Access for Massive Connectivity', Springer.	