ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./764 /IAPC-75(emergent)

Dated: October 17, 2019

CORRIGENDUM

The IAPC in its 75th meeting (emergent) held on 23.09.2019 vide Item No. 75.2 had approved the following Pre-Ph.D. courses vide letter No. Acd./632/IAPC-75(emergent) dated Oct. 03, 2019.

- 1. BTN-701: Experimental Animal Biotechnology
- 2. BTN-703: Advanced Genetic Engineering
- 3. BTN-705: Functional Genomics

4. BTN-706: Biomolecular Spectroscopy

As corrigendum to the course BTN-701, the name of the course BTN-701 shall now be read as "Methods in Animal Biotechnology" instead of "Experimental Animal Biotechnology".

Assistant Registrar (Curriculum)

Copy to (through e mail):-

- 1. All faculty
- 2. All Head of Departments/Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs(Curriculum)
- 5. Channel I/ Academic webpage of iitr.ac.in/ acad portal

ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./ 632 /IAPC-75(emergent)

Dated: October 03, 2019

Head, Department of Biotechnology

(through e-mail)

The IAPC in its 75th meeting (emergent) held on 23.09.2019 vide **Item No. 75.2** considered and accepted the proposal of Department of Biotechnology to introduce following new Pre-Ph.D. courses **(Appendix-A)**:

- 1. BTN-701: Experimental Animal Biotechnology
- 2. BTN-703: Advanced Genetic Engineering
- 3. BTN-705: Functional Genomics
- 4. BTN-706: Biomolecular Spectroscopy

Rut

Assistant Registrar (Curriculum)

Copy to (through e mail):-

- 1. All faculty
- 2. All Head of Departments/Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs(Curriculum)
- 5. Channel I/ Academic webpage of iitr.ac.in/ acad portal

Appendix-A

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPTT. /CENTRE : Department of Biotechnology					
1. Subject Code : BTN- 701	Course Title:	Course Title: Methods in Animal Biotechnology			
2. Contact Hours :	L:3	T:1	P:0		
3. Examination Duration (Hours	5): Theory : 3	Pr	actical :0		
4. Relative weightage: CWS: 20	0-35 PRS: 0	MTE: 20-30	ETE: 40-50	PRE:0	
5. Credits: 04	6. Semester: Both	7.	Subject Area: PE	С	

7. Pre-requisite: Basic knowledge in biotechnology

9. Objective: To impart knowledge to pre-PhD students on various aspects of ethical and appropriate use of laboratory and experimental animals in basic and translational research.

10. Details of Course:

S.No.	Contents	Contact Hours
1.	Introduction: laboratory animals and their handling, experimental animal	5
	facility equipment, purpose of using animals in biomedical research.	
2.	Welfare of Experimental Animals: Ethics in handling of laboratory	7
	animals and various ethics committees, 3 "R", requirements of animal	
	house facility, housing and caging systems.	
3.	Animal husbandry practices for different experimental animals: Different laboratory animals (Rats, Mice, Rabbits, Guinea Pigs, Hamster, Non human Primates), Breeding, Weaning, Housing, Feeding, health	8
4	monitoring of researchers and experimental animals, sentinels.	0
4.	Experimental Methods : Anesthesia and euthanasia, techniques for drug administration, Blood collection methods, tissue harvesting and processing, physiological salt solutions used for tissue harvesting.	8
5.	Experimental Animal Models: Infectious diseases, autoimmune models, cancer and toxicological studies, transgenic and Immunocompromised animal models.	7
6.	Clinical biochemistry and pathology in experimental animals: Histopathology, hematology, plasma proteins and blood p analysis.	7
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of Publication/
1.	Willard, M. and Tvedten, H., "Small Animal Clinical Diagnosis by Laboratory Methods". Elsevier publication, 5 th Edition.	2011
2.	Wolfensohn, S. and lioyd, M., "Handbook of Laboratory Animal Management and Welfare" by Wiley-Blackwell; 4th Edition.	2013
3.	Anderson, L., Otto, G., Pritchett-Corning, C.R., Whary, M.T., Fox, J.G., "Laboratory Animal Medicine (American College of Laboratory Animal Medicine)" Academic Press. 3 rd Edition	2015
4.	Barthhold, S.W., Griffey, S.M., Percy, D.H., "Pathology of Laboratory Rodents and Rabbits", Wiley-Blackwell; 4th Revised edition	2016
5.	Latimer, K.S. "Duncan and Prasse's Veterinary Laboratory Medicine: Clinical Pathology", Wiley-Blackwell; 5th Revised edition	2011

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE

NAME OF DEPT./CENTRE: Department of Biotechnology

1. Subject Code: BTN-703 Cour		rse Title: Ad	vanced Genetic	Engineering	
2. Contact Hours:	L: 3	Т:	1	P: 0	
3. Examination Duration	(Hrs.):	Theory: 3	Practical: 0		
4. Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5. Credits: 4	6. Semester:	Both	7. Su	bject Area : PEC	

8. Pre-requisite: Basic knowledge of Biotechnology

9. Objective: To impart advanced knowledge to Pre-PhD students about the developments in molecular biology and Genetic engineering from research point of view.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Overview: Organization of prokaryotic and eukaryotic genomes, transcription and translation, gene regulatory elements like repressors, activators, enhancers and non-coding regulatory RNA.	6
2.	Tools in genetic engineering: Enzymes (Restriction endonucleases, methylases, phosphatases, ligases, helicases; Plasmids and vectors: Cloning and expression vectors in prokaryotes and eukaryotes, high capacity vectors, artificial chromosomes, recombinant protein expression techniques in microbes, animal and plant cells.	10
3.	Transformation methods: Competence, Transformation techniques for animal cells, plant cells and prokaryotes.	4
4.	Advanced techniques in molecular biology: PCR and its applications: RT- PCR, qPCR, Taqman, Inverse PCR, Overlap extension PCR, Ligation mediated PCR, Site directed mutagenesis; Electrophoresis, Next generation sequencing and whole genome/transcriptome analysis.	10
5.	Interaction studies: Techniques to study DNA-Protein (EMSA, Footprinting, ChIP, reporter assys) and Protein-Protein interactions (SPR, Yeast 2 Hybrid, phage display, pull-down assays, FRET)	7
6.	Recent advances in genetic engineering: Riboswithces, CRISPR-Cas, Knock- in and Knock outs, Stem cells technology, GMOs- plants, animals and prokaryotes, their applications.	5
	Total	42

S. No.	Name of Books/Authors/Publisher/	Year of Publication/ Reprint
1.	Jocelyn E. Krebs, Elliott S. Goldstein, Stephen T. Kilpatrick. <i>GENES XII</i> Jones and Bartlett Publishers.	2017
2.	Sandy B. Primrose, Richard Twyman. <i>Principles of Gene Manipulation</i> <i>and Genomics</i> , 7th Edition. Wiley-Blackwell	2014
3.	Nathan S. Mosier, Michael R. Ladisch. <i>Modern Biotechnology:</i> <i>Connecting Innovations in Microbiology and Biochemistry to</i> <i>Engineering Fundamentals.</i> Wiley-Blackwell	2009
4.	Jeremy W. Dale, Malcolm von Schantz, Nicholas Plant. From Genes to Genomes: <i>Concepts and Applications of DNA Technology</i> 3rd Edition. Wiley-Blackwell	2012
5	Lundgren M., Charpentier E., Fineran P.C. CRISPR: Methods and Protocols (Methods in molecular biology). Springer protocols, Springer	2015

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

N	NAME OF DEPTT. /CENTRE : Department of Biotechnology						
1. Subject code : BTN-705			Course Title: Fu	nctional Genomic	S		
2.	Contact Hours :	L: 3		T: 1	P: 0		
3.	3. Examination Duration (Hours): Theory: 3		Practical: 0				
4	Relative Weightage:	CWS · 20-35	PRS : 0	MTE: 20-30	ETE : 40-50	PRE: 0	
4.	Relative weightage.	0110.20-33		MIL: 20 50	EIE: 40-50	I KL. V	

8. Pre-requisite: Basic knowledge of Biology

9. Objective: To impart knowledge on various research methods & approaches in functional genomics and to provide understanding to address research based biological problems through functional genomics

10. Details of Course:

S.No.	Contents	
		Hours
1.	Introduction: General introduction and history of genomic approaches, epigenetics	6
	and metagenomics, various components of functional genomics, technologies used,	
	gene-to-gene vs. high throughput global approaches, confocal imaging, and	
	applications of functional genomics in bacteria, animals and plants	
2.	Forward & Reverse Genetics in Functional Genomics: Identifying suitable	8
	mutants of interest, mutagenesis, analysis of mutants, studying temporal and spatial	
	expression pattern and protein localization of identified genes, in situ hybridization,	
	enhancer trapping, candidate vs genome-wide approaches	
3.	Genetic & Physical Interaction studies: Studying genetic interactions and cross	7
	talk in signaling pathways, combinatorial mutant analysis, Identifying &	
	characterizing regulatory complexes (DNA-protein, RNA-protein and protein-	
	protein)	
4.	Methods in gene expression analysis: cDNA library-methods and applications,	8
	DNA microarray- technologies and applications, Oligonucleotide and cDNA	
	microarrays, Gene expression analysis, Array comparative genomic hybridization,	
	Identification of regulatory target genes: direct vs. indirect targets through chromatin	
	immunoprecipitation, microarray, SNP and HRM analysis	
5.	Genome sequencing: Physical and Genetic linkage maps, development and	6
	automation of sequencing technologies, genome sequencing- development and	
	applications	
6.	RNA modifications: Splicing, RNA processing, gene product turnover, RNA	7
	interference, RNA-Sequencing, identifying gene of interest for functional studies,	
	genome editing technologies	
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of
		Publication
1.	Brown, T. A. "Genomes 4", 4th Edition, Garland Science	2017
2.	Krebs J.E., Goldstein E.S., Kilpatrick S.E., "Lewin's GENES XII" 12 TH	2017
	Edition, Jones & Bartlett Learning	
3.	Gerstein, A.S. "Molecular Biology Problem Solver: A Laboratory Guide",	2001
	Wiley-Liss, Inc.	
4.	Kaufmann, M., Klinger, C., Savelsbergh, A. "Functional Genomics:	2017
	Methods and Protocols; 3rd Edition, Humana Press (Springer)	
5.	Pevsner, J. "Bioinformatics and Functional Genomics" 3rd Edition, Wiley-	2015
	Blackwell	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-706		Course Title: Bi	iomolecular Spec	troscopy	
2.	2. Contact Hours: L: 3 T: 1 P: 0		P: 0			
3.	3. Examination Duration (Hrs.): Theory: 3		Practical: 0			
4.	Relative Weightage:	CWS : 20-35	PRS:0	MTE: 20-30	ETE : 40-50	PRE: 0
5.	5. Credits: 4 6. Semester: Autumn/Spring		7. Subject Area	: PEC		

- 8. Pre-requisites: Nil
- 9. Objective: To inculcate the knowledge of some important advanced spectroscopic techniques used in biological research for analyzing samples and interpreting data.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Light-matter interaction, fundamental nature of light, basic structure and function of living materials, components of cells and tissues that interact with light.	4
2.	Absorption spectra – spectra of biopolymers, chromophores, applications in enzyme kinetics, linear dichroism. Infrared spectra (IR) of alpha helix and beta sheets, Optical activity and Circular Dichroism.	5
3.	Fluorescence - excitation and emission, quantum yield, fluorescence quenching, resonance energy transfer, applications, Raman spectroscopy, fluorescence microscopy.	5
4.	Mass spectrometry- Electron Spray Ionisation Mass Spectrometry (ESI MS) - theory, methods of producing biomolecular ions, mass analysis, applications, MALDI-TOF, Chromatographic techniques, electrophoresis, gel filtration techniques.	4
5.	Nuclear Magnetic Resonance (NMR) – principle, chemical shift, Instrumentation and experimental aspects, spin-spin coupling, decoupling, Nuclear Overhauser effect (NOE), polarization transfer, Spin lattice (T1) and spin-spin relaxation (T2) times, pulsed and fourier transform NMR, chemical exchange.	7
6	Two dimensional NMR- principle and techniques, homo- and hetero- nuclear coupling, correlation spectroscopy (COSY, HSQC, HMBC and NOESY).Three dimensional NMR, isotope labeling, sequential assignments, torsional angle and distance constraints, structure of peptides/ nucleic acid, solid state NMR.	5
7.	X-ray crystallography- principle, x-ray sources and instrumentation, Symmetry, space groups, crystal lattices, Laue equations, Bragg's law.	7
8.	Electron density map, data collection strategies, criteria for evaluating crystallographic structures, structure determination of macromolecules. Introduction to cryo-electron microscopy.	5
	Total	42

S. No.	Authors/ Name of Books/Publisher	Year of Publication/Reprint
	Cantor, C.R. and Schimmel, P.R., "Biophysical Chemistry,	2008
1.	Part II Techniques for the Study of Biological Structure and	
1.	Function and Part III The Behavior of Biological	
	Molecules", W H Freeman	
2.	P.J.Hore, "Nuclear magnetic resonance", Oxford University	1995
۷.	Press.	
	Edward H.Egelman, "Comprehensive Biophysics- Vol 1:	2012
3.	Bophysical techniques for structural characterization of	
	macromolecules", Elsevier.	
	Igor A.Kaltashov and Stephen J. Eyles, "Mass spectrometry	2005
4.	in Biophysics- Conformation and Dynamics of	
	Biomolecules", Wiley Intersciences	
	Bernhard Rupp, "Biomolecular Crystallography: Principles,	2010
5.	Practice, and Application to Structural Biology ", 1st Edition,	
	Garland Science.	