ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./123/IAPC-95

Dated: December 16, 2020

Head, Department of Mathematics

The IAPC in its 95th meeting held on 09.12.2020 and 11.12.2020 vide Item No. 95.3.2 considered and approved the recommendation of DFC of Department of Mathematics to introduce PEC i.e., MAN-658: Operator Theory for the students of M.Sc. and Ph.D.

The approved syllabus is attached as Appendix-A.

Assistant Registrar (Curriculum)

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. All Heads of Departments/ Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel I/ Academic webpage of iitr.ac.in

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Mathematics

1.	Subject Code: MAN-658		Course Title: Operator Theory		У	
2.	Contact Hours:	L: 3	T: 0	P: 0		
3.	Examination Duration	n (Hrs.): The	eory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 3	6. Semester: Both 7. Subject Area: PEC				

- 8. Pre-requisite: Basic knowledge of functional analysis
- **9. Objective:** To provide the knowledge of various operators on Hilbert spaces, their structure and also to study some Hilbert spaces of analytic functions.

10. Details of the Course

S.No.	Contents			
		hours		
1.	Review of Banach spaces, geometry of Hilbert spaces, Riesz	3		
	Representation Theorem.			
2.	Operators on Hilbert spaces, self adjoint, normal and unitary operators,			
	isometries, partial isometries, multiplication operators, positive operators,			
	finite rank operators, compact operators and their properties.			
3.	Eigen spectrum, approximate eigen spectrum, spectrum and resolvent set,			
	numerical range, numerical radius, spectral radius, spectral mapping			
	theorem.			
4.	Polar decomposition theorem, spectral theorem and singular value			
	representation of a compact self-adjoint operator, minimax principle,			
	trace class operators, Hilbert-Schmidt operators.			
5.	Spectral measure, spectral integrals, spectral subspaces, spectral theorem	9		
	for bounded self-adjoint and normal operators.			
6.	Reproducing Kernel Hilbert Spaces, Hardy space, Dirichlet space,	9		
	Bergman space, Shift invariant subspaces, Beurling's theorem.			
Total				

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	John B. Conway, "A Course in Functional Analysis, 2nd	1990
	edition", Springer-Verlag, New York	
2.	Ronald G. Douglas, "Banach Algebra Techniques in	1998
	Operator Theory, 2nd edition", Springer- Verlag, New York	
3.	V. S. Sunder, "Operators on Hilbert Space", Hindustan	2015
	Book Agency, New Delhi	

4.	V. I. Paulsen, M. Raghupathi, "An Introduction to the	2016
	Theory of Reproducing Kernel Hilbert Spaces", Cambridge	
	University Press, Cambridge	
5.	Paul R. Halmos, "Introduction to Hilbert space and the	1998
	Theory of Spectral Multiplicity. Reprint of the 2nd (1957)	
	edition", AMS Chelsea Publishing, Providence, RI	
6.	K. R. Parthasarathy, "An Introduction to Quantum	1992
	Stochastic Calculus. Monographs in Mathematics, 85",	
	Birkhäuser Verlag, Basel	