ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./ 192 /IAPC-95

Dated: December 21, 2020

Head, Department of Electronics & Communication Engg.

The IAPC in its 95th meeting held on 09.12.2020 and 11.12.2020 vide Item No. 95.2.7 considered and approved the following PECs of Department of Electronics & Communication Engg. with minor modifications:

- 1. ECN-524: Power Electronic Devices, Circuits and systems
- 2. ECN-525: Hardware architecture for deep-learning
- 3. ECN-526: Statistical Machine Learning

The modified syllabi are attached as Appendix-A.

Reeti

Assistant Registrar (Curriculum)

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. All Heads of Departments/ Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel I/ Academic webpage of iitr.ac.in

Appendix-A

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-524 Course Title: Power Electronic Devices, Circuits and systems
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Spring7. Subject Area: PEC
- 8. Pre-requisite: A knowledge of fundamentals of semiconductor device physics
- **9. Objective:** To introduce concepts of power electronic semiconductor devices, power conversion circuits and systems.

10. Details of the Course

S.No.	o. Contents	
		hours
1.	Introduction: Evolution of Power Semiconductor Devices; Continuous and	3
	Switch Mode Operations; Control Switches; Power Losses; Resistive	
	Inductive and Capacitive Load.	
2.	Carrier Transport and Breakdown: Review of Semiconductor Transport	7
	Mechanisms: Drift, Diffusion and Recombination Mechanisms in Power	
	Electronics; Avalanche Breakdown: Impact Ionization Integral and	
	Multiplication Coefficients; Edge-Termination Techniques.	
3.	Power Semiconductor Devices : P-N Junction Diode; Fast Recovery Diode;	10
	Schottky Diodes; Silicon Controlled Rectifier (SCR); Triode; Bipolar	
	Junction Transistors (BJTs); MOSFETs; Insulated Gate Bipolar Transistors	
	(IGBTs); Baliga Figure of Merit (BFOM); Freewheeling and Flyback Diodes.	
4.	Passive Components: Theory of Inductors and Capacitors, Active and	4
	Passive Filters, Design of Inductors in Power Electronics.	
5.	Power circuits: Single-phase and Three-phase Rectifiers, AC-AC	10
	Converters, Isolated and Non-isolated DC-DC converters, Inverters, Half-	
	Bridge Converter, Other Power Circuits From Recent Literature, Simulation	
	of Selected Circuits in MATLAB or SPICE.	
6.	Control Circuitry for Power Electronics: Gate Drive Circuits, Snubber	8
	Circuit, Pulse-Width Modulation, Basics of PID Controller, Sensing	
	Circuitry, Integrated Power Electronic Systems, Hybrid Integration.	
	Total	42

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	B. Jayant Baliga, "Fundamentals of Power Semiconductor	2019
	Devices (second edition)," Springer.	
2.	J. Lutz, H. Schlangenotto, U. Scheuermann and R. D. Doncker	2018
	"Semiconductor Power Devices Physics, Characteristics,	
	Reliability (second edition)," Springer.	

3.	Daniel W. Hart, "Power Electronics," McGraw Hill	2011
	Companies Inc.	
4.	Issa Batarseh and Ahmad Harb, "Power Electronics Circuit	2018
	Analysis and Design," Springer	
5.	Frede Blaabjerg, "Control of Power Electronic Converters and	2018
	Systems," Academic Press, Elsevier Inc.	
6.	Stefanos Manias, "Power Electronics and Motor Drive	2016
	Systems," Academic Press, Elsevier Inc.	
7.	Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng, "PID	2014
	and Predictive Control of Electrical Drives and Power	
	Converters using Matlab/Simulink," John Wiley & Sons	
	Singapore Pte. Ltd	
8.	Hebertt Sira-Ramirez and Ramón Silva-Ortigoza, "Control	2006
	Design Techniques in Power Electronics Devices," Springer	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-525 Course Title: Hardware Architecture for Deep-Learning
- Contact Hours: L: 3 T: 1 P: 0
 Examination Duration (Hrs.): Theory: 3 Practical: 0
 Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0
- 5. Credits: 46. Semester: Spring7. Subject Area: PEC
- 8. Pre-requisite: None
- **9. Objective:** To learn the design of hardware architectures and accelerators for deep-learning/artificial-intelligence. This course is at the intersection of deep-learning and computer-architecture/embedded-system/VLSI.

10. Details of the Course

S.No.	Contents		
		hours	
1.	Background topics: Approximate computing and storage, Roofline Model,		
	Cache tiling (blocking), GPU architecture, CUDA programming,		
	understanding GPU memory hierarchy, FPGA architecture, Matrix		
	multiplication using systolic array		
2.	Convolutional strategies: Direct, FFT-based, Winograd-based and Matrix-	3	
	multiplication based.		
3.	Deep Learning on various hardware platforms: Deep learning on FPGAs	15	
	and case study of Microsoft's Brainwave, Deep learning on Embedded		
	System (especially NVIDIA's Jetson Platform), Deep learning on Edge		
	Devices (smartphones), Deep learning on an ASIC (especially Google's		
	Tensor Processing Unit.), Deep-learning on CPUs and manycore processor		
	(e.g., Xeon Phi), Memristor-based processing-in-memory accelerators for		
	deep-learning.		
4.	Model-size aware Pruning of DNNs, Hardware architecture-aware pruning	6	
	of DNNs, Understanding soft-errors. Understanding reliability of deep		
	learning algorithms and accelerators		
5.	Comparison of memory technologies (SRAM, DRAM, eDRAM, STT-RAM,	4	
	PCM, Flash) and their suitability for designing memory-elements in DNN		
	accelerator, Neural branch predictors and their applications		
6.	Hardware/system-challenges in autonomous driving, Distributed training of	6	
	DNNs and addressing memory challenges in DNN training		
	Total	42	

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Computer Architecture: A quantitative approach (Sixth	2017
	Edition), Hennessy, J. L., & Patterson, D. A., Elsevier	
	https://www.google.co.in/books/edition/Computer_Architectu	
	re/cM8mDwAAQBAJ	
	-	

2.	Deep Learning for Computer Architects Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David Brooks Synthesis Lectures on Computer Architecture, August 2017, Vol. 12, No. 4, Pages 1-123 (https://doi.org/10.2200/S00783ED1V01Y201706CAC041)	2017
3.	General-Purpose Graphics Processor Architectures Tor M. Aamodt, Wilson Wai Lun Fung, and Timothy G. Rogers, Synthesis Lectures on Computer Architecture, May 2018, Vol. 13, No. 2, Pages 1-140 (https://doi.org/10.2200/S00848ED1V01Y201804CAC044)	2018
4.	Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.	2016
5.	Selected research papers	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1.	Subject Code: ECN-526Cours		Course Title:	e Title: Statistical Machine Learning for Variation-		
	А		Awa	vare Electronic Device and Circuit Simulation		
2.	Contact Hours:	L: 3	T: 1	P: 0	1	
3.	Examination Duration	n (Hrs.):	Theory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 20-3	5 PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Sen	nester: Spring	7. Subj	ect Area: PEC	

- 8. Pre-requisite: Knowledge of basic concepts in probability and statistics
- **9. Objective:** To familiarize students with the fundamental concepts, techniques and algorithms needed to perform stochastic simulation and uncertainty quantification of electronic devices, circuits and systems.

10. Details of the Course

S.No.	Contents	
		hours
1.	Introduction: Introduction to stochastic modeling of general systems, key	2
	differences between stochastic simulation and classical deterministic	
	simulation. The need for uncertainty quantification in general device, circuit,	
	and system simulation.	
2.	Introduction to Random Variables: Discrete and continuous random	3
	variables: distribution and density functions, conditional distributions and	
	expectations, functions of random variables, statistical moments, sequence of	
	random variables, central limit theorem, Gaussian and non-Gaussian	
	correlation among random variables	
3.	Random Sampling Techniques: Utilization of random sampling techniques	5
	for statistical analysis such as Monte Carlo, quasi-Monte Carlo, Latin	
	nypercube sampling, analysis of computational complexity and convergence	
4	rate of different random sampling techniques	
4.	Statistical Machine Learning - Generalized Polynomial Chaos (PC)	0
	I neory : Basic foundation of polynomial chaos, generalization of polynomial	
	chaos for different known distributions, Wiener-Askey scheme of	
	polynomials, generation of orthonormal basis functions using three-term	
	recurrence series and Gram-Schmidt algorithm, training of polynomial chaos	
	metamodels using quadrature techniques and least-squares linear regression.	
	Deployment of PC theory for calculating statistical moments and density	
	functions in linear and nonlinear VLSI as well as RF/microwave devices,	
~	circuits, and systems via test cases and illustrative examples.	
5.	Correlations in PC Theory: Considering uncorrelated, Gaussian correlated,	5
	and non-Gaussian (mixed Gaussian model) correlated parametric variations.	10
6.	Advanced PC theory: Complexity analysis of PC theory and techniques:	13
	limitations of curse of dimensionality in PC theory, emphasis on sensitivity	
	analysis-based dimension reduction, active subspaces, sliced inverse	

	regression, compressed sensing, partial least-squares algorithm, and multi-fidelity methods.	
7.	Inverse Problems: Bayes rule, Bayesian formulation of inverse problems, prior and posterior distributions, calculation of maximum likelihood function using PC theory. Applications into inverse uncertainty quantification in linear/nonlinear devices, circuits and systems	8
Total		

11. Suggested Books:

S No	Name of Authors/Rook/Publisher	Vear of
D •110•	Name of Authors/Dook/Tublisher	Dublication / Donwint
		Fublication / Kepfint
1.	D. Xiu, "Numerical Methods for Stochastic Computations: A	2010
	Spectral Method Approach," New Jersey: Princeton	
	University Press	
2.	D. Dubois and H. Prade, "Possibility Theory: An Approach to	1988
	Computerized Processing of Uncertainty," vol. 2, New York,	
	NY: Plenum Press	
3.	K. C. Gupta and Q. J. Zhang, "Neural Networks for RF and	2000
	Microwave Design," Arctech House	
4.	A. Papoulis and S. Pillai, "Probability, Random Variables and	2017
	Stochastic 2017 Processes", 4th Edn., Mc Graw Hill.	
5.	R. Shen, S. XD. Tan, and H. Yu, Statistical Performance	2012
	Analysis and Modeling of Nanometer VLSI. New York, NY:	
	Springer	