ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./120 /IAPC-95

Dated: December 16, 2020

Head, Department of Hydro & Renewable Energy

The IAPC in its 95th meeting held on 09.12.2020 and 11.12.2020 vide Item No. 95.2.5 considered the proposal of Department of Hydro and Renewable Energy to introduce new Institute Elective Course i.e., IAH-306: Hydrogen Energy and Fuel Cells for B.Tech. students.

The IAPC approved the proposal with minor modifications. Duly modified syllabus is attached as **Appendix-A**.

Assistant Registrar (Curriculum)

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. All Heads of Departments/ Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel I/ Academic webpage of iitr.ac.in

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Hydro and Renewable Energy

- 1. Subject Code: IAH-306 Course Title: Hydrogen Energy and Fuel Cells 2. **Contact Hours: L:** 3 **T:** 0 **P:** 0 Practical: 0 3. Examination Duration (Hrs.): **Theory:** 3 **Relative Weightage:** CWS: 20-35 **PRS:** 0 **MTE:** 20-30 **PRE:** 0 4. **ETE:** 40-50 5. Credits: 3 6. Semester: Both 7. Subject Area: OEC
- 8. Pre-requisite: Nil
- **9. Objective:** To provide basic knowledge about hydrogen energy and its usage primarily in fuel cells.

10. Details of the Course

S.No.	Contents		
		hours	
1.	General introduction about energy demand, various renewable energy	3	
	sources, India energy scenario, need for alternate fuels, trends in energy use		
	patterns, energy and development linkage		
2.	Hydrogen production process, Thermal- steam reformation, thermo-	o- 4	
	chemical, water splitting, gasification, pyrolysis, nuclear thermos catalytic		
	and partial oxidation methods		
3.	Electrochemical- Electrolysis, photo-electrochemical, Biological- anaerobic		
	digestion, Dark fermentation and photo fermentation		
4.	Hydrogen storage and distribution, general storage methods, compressed	5	
	storage-composite cylinders, glass micro sphere storage- zeolites, metal		
	hydride storage, chemical hydride storage and cryogenic storage, distribution		
	techniques		
5.	Hydrogen utilization-fuel cells, Introduction, types of fuel cells, advantages		
	and drawbacks, applications, integration with other renewable energy		
	sources, Thermodynamics of fuel cells: Reversible cell potential, Effect of		
	operating conditions on reversible cell potential, Energy conversion		
	efficiency		
6.	Electrochemistry of fuel cells: Electrode potential and cell polarization,	6	
	Review of electrochemical kinetics, Activation kinetics, polarization for		
	charge transfer reaction		
7.	Fuel cell charge transport: voltage loss due to charge transport, charge	; 6	
	transfer resistance, Mass transport: diffusive transport, convective transport		
8.	Scale-up issues in fuel cells-contact resistance management, flow field	5	
	design, case study		
Total			

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	S.A. Sherif, D. Yogi Goswami, Elias K. Stefanakos, Aldo	2014
	Steinfeld, "Handbook of Hydrogen Energy", 1 st Edition, CRC	
	press	
2.	Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz,	2016
	"Fuel Cell Fundamentals", (3 rd edition), Wiley	
3.	Ashok Pandey, Jo-Shu Chang, Patrick Hallenbeck, Christian	2013
	Larroche, "Biohydrogen", 1 st Edition, Elsevier	
4.	Ram B Gupta, "Hydrogen Fuel: Production, Transport, and	2008
	Storage", 1 st Edition, CRC Press	
5.	Supramaniam Srinivasan, "Fuel Cells: From Fundamentals to	2006
	Applications", 1 st Edition, Springer	
6.	Allen J. Bard, Larry R. Faulkner, "Electrochemical Methods:	2000
	Fundamentals and Applications", 2 nd Edition, Wiley	