ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

2037 No. Acd./2023/IAPC-78

Dated: January 21, 2020

Head, Department of Chemistry

(through e-mail)

The IAPC in its 78th meeting held on 31.12.2019 vide **Item No. 78.3.1** considered and approved the following courses:

- 1. PEC, CYN-308: Bioinorganic and Biomimetic Chemistry for Int. M.Sc. (Chemistry) III year. (Appendix-A)
- 2. OEC, ICY-305: Theoretical Aspects of Polymers (Appendix-B)

Assistant Registrar (Curriculum)

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. All Heads of Departments/ Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel I/ Academic webpage of iitr.ac.in

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPTT./CENTRE: Department of Chemistry

1.	Subject Code: CYN-	ect Code: CYN-308 Course Title: Bioinorganic and Biomimetic Chemist			mistry	
2.	Contact Hours: L	: 3	T: 0	P	0	
3.	Examination Duration	on (Hrs.):	Theory: 3	Pract	ical: 0	
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 3	6. Semeste	er: Spring	7.Subjec	t Area: PEC	
8.	Pre-requisite: Nil					
0220				1 1 1	1 1. 11 .1	

9. Objective: To impart basic concepts of bioinorganic chemistry and its applications

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction : Origin of elements in biological systems. Essentials and trace metal ions. Biological ligands – Special ligands – porphyrins, chlorins, methnocorphin and corrins. Macromolecules – peptides and proteins, nucleic acids and nucleotides. Metal-DNA and RNA interactions – potential binding sites. Functions of metal ions in genetic regulations, replication, transcription and translation.	7
	Enzymes – Nomenclature and classification, kinetics of enzyme catalyzed reactions – Michaelis-Menten equation – effect of pH, temperature on enzyme reactions, factors contributing in the catalytic efficiency of enzymes and vitamin B_{12} coenzyme– structure and reactions.	
2.	2. Importance of alkali and alkaline earth metal-ions in biological system metal ion transport, membrane structure, ionophores, distribution of all metals and active transport of Na ⁺ and K ⁺ across biomembrane, calci carriers – role of calcium in muscle contraction.	
	Overview of heme proteins : Nomenclature of porphyrin system, substituent effects on porphyrin rings. Classification of heme proteins, natural oxygen carriers.	
	Electron carriers : Cytochromes – introduction, classification. Iron-sulphur proteins – rubredoxin and ferridoxin, role of ferridoxins in mammalian respiratory system. Photosynthesis – chlorophylls, photosystem I and II.	
	Model compounds for oxygen carriers – Vaska's complex, picket-fence porphyrins, cobalt Schiff-base complexes, complexes of copper with non-heme ligands.	

	Total	42
4.	Biomimetics: Basics and importance of artificial photosynthesis; renewable energy through artificial photosynthesis - first, second and third generation solar cells; solar water splitting (photoelectrolysis) using various semiconductors; hydrogen fuel cells; industrial electrolyzers for water splitting; biomass to energy; solar CO ₂ fixation; bioinspired catalysis, artificial enzymes and nanozymes; bioinspired and bioimmetic materials; molecular recognition and sensing, transition metal complexes of dinitrogen and reduction of dinitrogen to ammonia.	16
	Beneficial and toxic effects of metal ion introduced externally : Medicinal – anti-cancer agents, inorganic radioisotopes in diagnosis and treatment. Bioorganometallic compounds as drugs and enzyme inhibitors. Metal ion poisoning: Toxicity of Hg, Cd, Pb and As; chelation therapy. Inorganic plant nutrition and indicator plants for mineral exploration.	
3.	Non-redox reactions : Biological energy storage and transfer. Phosphate transfer and its activation by metal ions – phosphoryl transfer potential, phosphorylation – mechanism of phosphate transfer, hydrolysis.	9

11. Suggested Books:

S. No.	Name of Books / Authors	Year of Publication
1.	Huheey, J.E., Keiter, E.; Keiter, R. and Medhi, O.K., "Inorganic	Reprint
	Chemistry: Principles of Structure and Reactivity", 4th Ed., Pearson	2019
	Education Asia.	
2.	Gibbs, W., "Concepts and Applied Principles of Bioinorganic Chemistry",	2015
	Vol. I, II and III Callisto Reference, UK.	
3.	Lippard, S.J. and Berg, J., "Principles of Bioinorganic Chemistry",	Reprint
	University Science Books, USA.	2005
4.	Kaim, W., Schwederski, B. and Klein, A. "Bioinorganic Chemistry-	2013
	Inorganic Elements in the Chemistry of Life: An Introduction and Guide",	
	Wiley & Sons, Germany.	
5.	I. Bertini, H. B. Gray, E. I. Stiefel, and J. S. Valentine, "Biological	2006
	Inorganic Chemistry: Structure and Reactivity" University Science Books,	
	CA, USA.	
6.	Atkins, P., Overton, T., Rourke, J., Mark, W. and Armstrong, F., "Shriver	2011
	and Atkins' Inorganic Chemistry", 5th Ed, Oxford university press.	
7.	Kadish, K. M., Smith, K. M. and Guilard, R. "Handbook of Porphyrin	2011
Í	Science", Vol. 12, World Scientific, Singapore.	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPTT/CENTRE: Chemistry Department

- 1. Subject code: ICY-305 Course Title: Theoretical Aspects of Polymers
- **2. Contact Hours:** L: 3 T: 0 P: 0
- **3. Examination Duration (Hrs): Theory:** 3 **Practical:** 0
- 4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0
- 5. Credits: 3 6. Semester: Spring /Autumn 7. Subject Area: OEC
- 8. Pre-requisite: NIL
- 9. Objective: To familiarize students with the basic theoretical concepts of polymers.

10. Details of the Course:

S.	Contents	Contact
No.		Hours
	Statistical Thermodynamics: Microstates, Ensembles-microcanonical,	6
	canonical, grand-canonical, Partition functions, distributions, Averages,	
	thermodynamic connection, probability distribution of fluctuations	
1.	Chain Statics: Characteristic dimensions of 'random coil' polymers, models for calculating the average end-to-end distance for an ensemble of statistical chains, distribution of end-to-end vectors, Worm-like chain, measurement of radius of gyration from scattering, free energy of ideal chain, scaling arguments for stretching and confinement, pair correlation for ideal chain, structure foctor	12
2.	Real chains: Excluded volume, self-avoiding walks, deforming real and ideal chains, scaling model for real chains, Flory theory, solvent quality, theta-temperature. Thermodynamics and statistical mechanics of polymer networks.	8
3.	Polymer solutions: Thermodynamics of mixing, Flory-Huggins theory, osmotic pressure, concentration regimes in polymer solutions, correlation length, correlation function, screening of excluded volume forces, size of a polymer in semi-dilute solutions, polymer-polymer blends and phase diagrams.	9
4.	Polymer melts: chains in melts, screening in dense polymer melts, correlation hole.	3
5.	Polymer dynamics: Rouse model, Zimm model, reptation	4
	Total	42

11. Suggested Books:

S.	Name of Authors/Book/ Publisher etc.	Year of
No.		Publication/
		Reprint
1	Fredrickson G., "The Equilibrium Theory of Inhomogeneous	2013
	Polymers", Oxford University Press.	
2	Kawakatsu T., "Statistical Physics of Polymers: An Introduction",	2013
	Springer	
3	Doi M., Edwards S.F., "The Theory of Polymer Dynamics", The	2013
	International Series of Monographs on Physics, vol. 73, Oxford:	
	Clarendon Press.	
4	Gedde U., "Polymer Physics", ebook, Dordrecht: Springer	2013
	Netherlands.	
5	Strobl G. R., "The Physics of Polymers: Concepts for Understanding	2011
	Their Structures and Behavior", 3rd Ed., Berlin; London : Springer.	
6	Flory P. J., "Principles of Polymer Chemistry", 1 st Ed. publ. 1953, 20	2010
	reprint, Ithaca: Cornell University Press.	
7	de Gennes P.G., "Scaling Concepts in Polymer Physics", 1st Ed.,	2005
	Ithaca, NY: Cornell University Press.	
8	Rubinstein M., Colby R. C., "Polymer Physics", 1st Ed., Oxford	2003
	University Press.	