ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./ 3102 /IAPC-76

Dated: February 03, 2020

Head, Department of Physics

(through e-mail)

The IAPC in its 76th meeting held on 07.11.2019 vide **Item No. 76.2.3** considered and approved the proposed revised syllabus of PHN-704 Advance Characterization Techniques (PCC) of Department of Physics to run in the Spring Semester 2020 onwards for M.Tech. (SSEM) program.

The approved syllabus is attached as Appendix-A.

Assistant Registrar (Curriculum)

Copy to (through e mail):-

- 1. All faculty
- 2. All Heads of Departments/ Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs(Curriculum)
- 5. Channel I/ Academic webpage of iitr.ac.in

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPTT. /CENTRE: **DEPARTMENT OF PHYSICS**

1. Subject Code: PHN-704 Course Title: Advanced Characterization Techniques

2. Contact Hours: **L: 3 T: 0 P: 3**

3. Examination Duration (Hrs.): **Theory 3 Practical 0**

4. Relative Weightage: CWS: 10-25 PRS: 25 MTE: 15-25 ETE: 30-40 PRE: 0

5. Credits: 4 6. Semester: Spring 7. Subject Area: PCC

8. Pre-requisite: Nil

9. Objective: To introduce various methods of characterization of materials for their structural,

electrical, magnetic and optical properties.

10. Details of Course:

S.	Contents	Contact
No.	Contents	Hours
1.	Crystal Structure Determination: Brief description of crystal lattices; X-	12
	ray diffractometer; Determination of crystal structure using X-ray	
	diffraction	
2.	Electron Microscopes: Brief description of different microscopes like	11
	TEM, SEM, AFM; Modes of operation of microscopes, sample preparation,	
	Interpretation of electron diffraction and determination of crystal structure;	
	morphology of the crystals.	
3.	Thermal Analysis: Thermogravimetric analysis, Differential thermal	5
	analysis and Differential scanning calorimetry and methodology;	
	Determination of phase transitions using these methods.	
4.	Electrical and Magnetic Property: Measurement of electrical	8
	conductivity in different materials- insulators, metals and semiconductors	
	using four probe and Hall effect method. Vibrating Sample Magnetometer	
	(VSM), Superconducting Quantum interference Devices (SQUID)	
5.	Optical Characterization: Optical characterization of materials using	3
	photoluminescence and UV-visible spectroscopy.	
6.	Chemical Analysis: Brief description to X-ray fluorescence, atomic	3
	absorption and electronic spin resonance spectroscopy.	
	Total	42

11. Suggested Books.

S. No.	Name of Authors/Book/Publisher	Year of Publication/Reprint
1.	Culity, B. D., "Elements of X-ray Diffraction", Addison-Wesley.	2001
2.	Grundy, P. J. and Jones, G. A., "Electron Microscopy in the	1976
	Study of Materials", Edward Arnold.	
3.	Egerton, R. F., "Physical Principles of Electron Microscopy",	2008
	Springer.	
4.	Willard, H. H., Merritt, L. L. and Dean, J. A., "Instrumental	1991
	Methods of Analysis", CBS publications.	
5.	Fultz, B. and Howe, J. M., "Transmission Electron Microscopy	2007
	and Diffractometry of Materials", Springer.	
6.	Melissinos, A.C. and Napolitano, J., "Experiments in Modern	2003
	Physics", Academic Press.	
7.	Sze, S.M., "Semiconductor Devices Physics and Technology",	2002
	John Wiley and Sons.	
8.	Nakra, B.C. and Chaudhary, K.K., "Instrumentation	2002
	Measurements and Analysis", Tata McGraw Hill.	
9.	Sayer, M. and Mansingh, A., "Measurement, Instrumentation	2000
	and Experiment Design in Physics and Engineering", Prentice	
	Hall.	
10.	Runyan, W.R., "Semiconductor Measurements and	2002
	Instrumentation", McGraw Hill	

Experiments

S. No.	Contents	Contact
	Contents	Hours
1.	Analysis of X-Ray Diffraction pattern and evaluation of lattice	42
	parameters, unit cells, density, strain/strain of powder samples based on	
	cubic structured materials.	
2.	Studies on surface morphology of graphite sheet using STM and	
	investigating the I-V characteristics.	
3.	Determination of phase transition using thermal analyzers	
	(TGA/DTA/DSC).	
4.	AC susceptibility measurements of bulk samples.	
5.	Ultraviolet- visible spectroscopy of metal/metal oxides and composite	
	materials	
6.	Structural phase transition study using LCR bridge	
7.	To determine transition temperature of given superconducting material	
	and study Meissner effect.	
	Total	42