ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./ 378 /IAPC-116

Dated: February 11, 2022

Head, Department of Water Resources Development and Management

The IAPC, in its 116th meeting held on 02.02.2022 vide Item No. 116.2.3 (2), considered and approved the proposal of Department of Water Resources Development and Management to introduce following PECs:

- 1. WRN-597: Machine Learning Models in Water Resources Planning and Management
- 2. WRN-598: Smart Irrigation Systems

The approved syllabus of the above courses is attached as Appendix-A.

Assistant Registrar (Curriculum)

Copy to (through e mail):-

- 1. All faculty
- 2. Head of all Departments/ Centres/ School
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel i/ AIS (Acad. portal)/ Academic webpage of iitr.ac.in

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Water Resources Development and Management

1. Subject Code: WRN-597 Course Title: Machine Learning Models in Water Resources

Planning and Management

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Nil

9. Objective: To develop and apply machine learning (ML) approaches to improve overall understanding and enhance their application in water resources planning and management.

10. Details of the Course

S.No.	To. Contents	
		hours
1.	Introduction to water resource system data and models: Concepts of Systems,	4
	models, Classification of simulation models, water resources simulation models,	
	Principles of simulation, Nature and role of simulation, Collection, storage,	
	distribution and processing of large volume of geo-spatial data, statistical analyses	
2.	Overview of ML approaches: Neural networks, Support Vector Machines, Genetic	4
	Programming	
3.	Optimization techniques in water resources models—linear programming, dynamic	8
	programming, Evolutionary algorithms (EA): Basic units of EA, EA operations,	
	Variants of different evolutionary algorithm	
	EA in Watershed modelling: Watershed characteristics; Physics aware artificial	
	intelligence hydrologic model, hybrid models- conceptualization, selection of inputs-	
	mutual information, calibration of parameters, cross validation, and model testing	
4.	Data driven modelling in water resource systems:	12
	• Urban runoff models: Introduction to urban hydrology; Rainfall disaggregation,	
	Bias correction of climate data, optimizing urban drainage design variables,	
	prediction/forecasting of runoff	
	• Reservoir simulation models: Reservoir operation policy; Developing models	
	for determination of reservoir storage capacity, reservoir operation – deriving	
	operational rule curves	
	• Groundwater modelling: Introduction to Groundwater hydrology, statistical	
	analyses of groundwater data, prediction and forecasting of groundwater levels	
5.	Time series analysis using ML: Data pre-processing tools – wavelets; Time series	4
	modelling of water resource system concerning to prediction/forecasting of floods and	
	droughts	
	droughts	

6.	6. Sensitivity and Uncertainty analysis : One-at-a-time, derivative and variance based,		
SOBOL, Monte Carlo simulation, Perturbation method, Bootstrap methods, First			
Order Uncertainty Analysis (FOUA)			
7.	Term projects with real case examples: Applications of ML in surface and	4	
	groundwater simulation models		
Total			

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Sandeep Samantaray, Abinash Sahoo, Dillip K. Ghose, "Watershed	2021
	Management and Applications of AI" CRC Press, Taylor and Francis	
2.	Averill Law, "Simulation modelling and analysis", McGraw Hill	2017
	Education; 4 th Edition	
3.	Tayfur, G," Soft Computing in Water Resources Engineering", WIT	2012
	Press, United Kingdom	
4.	Loucks, D.P. and Eelco van Beek, "Water Resources Systems	2005
	Planning and Management - an introduction to methods, models and	
	applications, Studies and Reports in Hydrology" UNESCO Pub.	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Water Resources Development and Management

1. Subject Code: WRN-598 Course Title: Smart Irrigation Systems

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Nil

9. Objective: Provide an overview of the concepts, technologies, and implementation strategies of smart irrigation systems.

10. Details of the Course

S.No.	Contents	Contact
		hours
1.	Introduction to Smart Irrigation Systems: Overview of irrigation and soil-water-	6
	plant relationships; Irrigation water requirements and system capacity; Precision	
	irrigation concepts and application; Benefits of precision irrigation; Scope and	
	challenges of the smart irrigation system; Spatial and geographical concepts of	
	precision irrigation.	
2.	Tools of Precision Irrigation: Geographical Position System (GPS); Geographic	8
	Information System (GIS); Variable-Rate Irrigation (VRI) Technology; Remote	
	Sensing (aerial and satellite imagery, above ground non-contact sensors);	
	Unmanned Aerial Systems; Soil, crop, and weather sensors.	
3.	Variable-Rate Irrigation (VRI) Technology: Considerations in adopting VRI	6
	technology; Types of VRI technology; Components of VRI technology; VRI zone	
	and speed; Agronomic benefits and limitations.	
4.	Elements of Precision Irrigation: Data collection; Data processing; Data Analysis	6
	and applications, Solar-based smart irrigation.	
5.	Applications of IoT and Big Data in Precision Irrigation: Introduction and	8
	basics of IoT and big data; Big data source layers; Challenges in	
	application/adoption of IoT/big data in precision irrigation; Big data management	
	on the farm; Applications of IoT/big data to enhance irrigation water management	
	decisions; Case studies.	
6.	Decision support tools in Precision Irrigation: Introduction and basics of	8
	cropping system modeling; Input data requirement and model set up; Agromet	
	Advisory Service in smart irrigation; Development of decision support tools for	
	irrigation water management; Irrigation management with climate-smart irrigation	
	system.	
	Total	42

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	FAO. Climate-smart agriculture case studies 2021 – Projects from	2021
	around the world. Food and Agriculture organization, Rome.	
2.	Pattnaik, P.K., Kumar, R., Pal, S. "Internet of Things and Analytics for	2020
	Agriculture" Volume 2. Springer.	
3.	Pilawjian, G.A., Balech, P.T., Saad, G.E, "Automated Irrigation System"	2018
	LAP Lambert Academic Publishing, Republic of Moldova, p 80	
4.	Zhang, Q. "Precision Agriculture Technology for Crop Farming" CRC	2016
	Press Taylor & Francis, Boca Raton, FL	
5.	Ćulibrk D. (Ed.) "Sensing Technologies for Precision Irrigation".	2014
	Springer-Verlag New York.	
6.	Heege, H. J. (Ed.). "Precision in Crop Farming: Site-Specific Concepts	2013
	and Sensing Methods: Applications and Results". Springer Science &	
	Business Media.	
7.	FAO 2013, Climate Smart Agriculture Sourcebook, Food, and	2013
	Agriculture Organization of the United Nations, ISBN	