ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./2373/IAPC-114

Dated: December 22, 2021

Head, Department of Electronics and Communication Engineering

The IAPC in its 114th meeting held on 01.12.2021 vide Item No. 114.2.2 considered and approved the proposal of Department of Electronics and Communication Engineering to introduce the following PECs with minor modifications:

- 1. ECN-347: Introduction to Microwave Semiconductor Device Modelling Techniques
- 2. ECN-634: Low Voltage CMOS Circuit Operation
- 3. ECN-635: Magnetic Random Access Memory

The modified syllabus of above courses is attached as Appendix-A.

Assistant Registrar (Curriculum)

8

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. Head of all Departments / Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel i/ Acad portal/ Academic webpage of iitr.ac.in

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1.	Subject Code: ECN-347Course Title:		Introduction to Microwave Semiconductor Device Modelling Techniques			
2.	Contact Hours:	L: 3	T: 1		P: 0	
3.	Examination Duration	n (Hrs.): Th	eory: 3	Practical: 0)	
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Semes	ter: Both		7. Subject Area	: PEC

- 8. **Pre-requisite:** Knowledge of operating principles of Electronic Devices.
- **9. Objective:** To introduce methods for modelling of semiconductor devices for RF/Microwave applications.

10. Details of the Course

S.No.	Contents		
		hours	
1.	Introduction: General RF circuit terminology and operations, Noise, diode and	7	
	transistor based RF circuits- Switches, attenuators, amplifiers, frequency		
	ultipliers and phase shifter circuits, Device parasitic, thermal behavior and device		
	nonlinearities.		
2.	Device parameter extraction technique: Extrinsic and intrinsic parameter	6	
	extraction- Open, short, thru, open-short-thru, Multiport de-embedding, examples		
	of de-embedding, Load pull techniques.		
3.	Modelling of Diodes: Conventional PN junction diode modelling, PIN diode	6	
	modelling- lumped element modelling, equivalent circuit models, integral based		
	model, reverse bias modelling, forward and reverse bias distortions, time domain		
	models, modelling of varactor and schottkey diodes, modelling of Tunnel diode,		
	modelling of Gunn diode		
4.	Modelling of MESFET/MOSFET and HEMT Devices: Bulk	8	
	MESFET/MOSFET technology, MESFET/MOSFET capacitance characteristics,		
	HEMT technology, MESFET/MOSFET and HEMT device characteristics, HBT		
	device characteristics, SPICE modelling, Angelov and ASM HEMT models, HBT		
	noise model, MESFET/MOSFET and HEMT noise model		
5.	Switched RF Circuits: Basic Transmit/receive (T/R) switches, Specific T/R	8	
	switches-two device SPDT switch, 4 device SPDT switches, tunes $\lambda/4$ transmission		
	line SPDT T/R switches, switched passive elements for tuning and matching, RF		
	attenuators, RF limiters and phase shifters		
6.	Transistor based RF Circuits: Small and large signal transistor based circuits,	7	
	design of single stage amplifier using HBT/MESFET/HEMT/MOSFET, Frequency		
	multipliers		
	Total	42	

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	R. H. Caverly, "Microwave and RF Semiconductor Control Device	2016
	Modelling", Artech House	
2.	S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices", John	2007
	Wiley & Sons	
3.	K. Chang, I. Bahl and V. Nair, "RF and Microwave Circuit and	2002
	Component Design for Wireless Systems", John Wiley & Sons	
4.	G. D Vendelin, A. M. Pavio and U. L. Rohde, "Microwave Circuit	2005
	Design using Linear and Nonlinear Techniques", John Wiley & Sons	
5.	E. Camargo, "Design of FET Frequency Multipliers and Harmonic	1998
	Oscillators", Artech House	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-634 Course Title: Low Voltage CMOS Circuit Operation
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. **Pre-requisite:** Knowledge of digital and analog VLSI circuit design/analysis, MOS device physics.
- **9. Objective:** To understand essential aspects of low voltage operation of MOSFETs and CMOS circuits comprehensively and to learn to design such circuits.

10. Details of the Course

S.No.	Contents		
		hours	
1.	Metrics for evaluating application performance, evaluating, and summarizing performance, energy management approaches (e.g., DVFS).	1	
2.	MOSFET operation in weak inversion: Inversion/depletion charge, I-V characteristics, C-V characteristics and device capacitances, short channel effects. 1/f/white/flicker noise.	10	
3.	Near-threshold digital CMOS circuits: Transistor sizing in combinational and sequential circuits, warning flip-flops, CMOS memory design and noise margins, dynamic circuits, resilient circuits, PVT variations	8	
4.	Low voltage analog circuits: Building blocks of OPAMP, OPAMP design, voltage/current references, switched capacitor circuits. Coping with PVT variations. Noise in circuits.	8	
5.	Low voltage mixed-signal circuits: Building blocks for PLLs, PLLs, building blocks for ADCs, ADCs, filters.	9	
6.	FinFETs: I-V/C-V in weak inversion, device capacitances, noise, digital, analog circuits.	6	
Total			

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Sub-Threshold Design for Ultra Low-Power Systems, A. Wang, B. H.	2006
	Calhoun, and A. P. Chandrakashan, Springer	
2.	Low voltage CMOS VLSI Circuits, by J. B. Kuo and J.H Lou, Wiley	1999
3.	Charge-based MOS transistor Modelling The EKV Model for Low-	2006
	Power and RF IC Design By C.C. Enz and E.A. Vittoz, Wiley	
4.	Design of Low-Voltage CMOS switched-Opamp switched-capacitor	2003
	Systems by V.S.L. Cheung and H.C. Luong, Kluwer Academic	
	Publishers	
5.	Low Voltage CMOS Operational Amplifiers (Theory, Design, and	1995
	Implementation) by S. Sakurai and M. Ismail, Springer	
6.	Digital Integrated Circuits, A Design Prospective by J.M. Rabaey,	2002
	Prentice Hall	
7.	Circuit Techniques for Low-voltage and high-speed A/D converters	2002
	by M.E. Waltari and K.A.I. Halonen, Kluwer Academic Publishers	
8.	CMOS Mixed Signal Circuit Design by R.J. Baker, Wiley	2003
9.	Analog Integrated Circuit Design by Tony Chan Carusone, David A.	2011
	Johns and Kenneth W. Martin, Wiley	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- Course Title: Magnetic Random Access Memory 1. **Subject Code:** ECN-635
- 2. Contact Hours: **L:** 3 **T:** 1 **P:** 0 **Theory:** 3 3. Examination Duration (Hrs.): Practical: 0 4. Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0 7. Subject Area: PEC
- 5. Credits: 4 6. Semester: Spring
- 8. **Pre-requisite:** Vector algebra, Basic electromagnetics
- Objective: To introduce the concepts required to understand the emerging magnetic memory and 9. logic devices.

10. Details of the Course

S.No.	Contents	
		hours
1.	Introduction: Memory organization, requirements for next-generation of memory,	2
	magnetic random access memory - history and timeline	2
2.	Fundamentals of magnetism: Origin of magnetism, types of magnetic materials,	6
	temperature dependence, magnetic hysteresis, magnetostatics, magnetic anisotropy	0
3.	Micromagnetic modeling: Continuum approach to describe magnetization, energy	
	minimization and equilibrium configurations, magnetization dynamics - Landau-	10
	Lifshitz-Gilbert (LLG) equation of motion, Stoner-Wohlfarth model, finite	10
	temperature effects, Fokker-Planck equation, domain walls	
4.	Spin-transfer-torque magnetic random access memory (STT-MRAM): Read and	
	write mechanism, magnetic tunnel junction, magnetoresistance, spin-transfer-	
	torque induced switching, threshold current and switching probabilities, thermal	10
	stability and retention times, reliability issues, comparison with other types of	
	memories	
5.	Experimental techniques: Growth of magnetic multilayers - epitaxy, sputtering,	0
	fabrication process, characterization techniques	0
6.	Related concepts and emerging applications: Current-driven domain wall motion,	
	spin-orbit-torque, topological insulators, voltage-controlled-magnetic anisotropy,	6
	Dzyaloshinskii-Moriya interaction, antiferromagnetic memory, applications -	U
	cache memory, embedded-memory, neuromorphic hardware etc.	
	Total	42

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	A. Aharoni, "Introduction to the Theory of Ferromagnetism", Oxford	2000
	Science Publications	
2.	J.M.D. Coey, "Magnetism and Magnetic Materials", Cambridge	2010
	University Press	
3.	B. Dieny, R.B. Goldfarb, K-J Lee, "Introduction to Magnetic Random	2017
	Access Memory", IEEE Press, Wiley	2017
4.	Evgeny Y. Tsymbal, Igor Zutic, "Handbook of Spin Transport and	2011
	Magnetism", Taylor and Francis	2011
5.	Denny D. Tang, Yuan-Jen Lee, "Magnetic Memory Fundamentals and	2010
	Technology", Cambridge University Press	2010
6.	Ralph Skomski, "Simple Models of Magnetism", Oxford University	2008
	Press	
7.	B. D. Cullity, C. D. Graham, "Introduction to Magnetic Materials",	2010
	Wiley-IEEE Press	