ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./1248/IAPC-109

Dated: August 26, 2021

Head, Department of Metallurgical and Materials Engineering

The IAPC in its 109th meeting held on 21.08.2021 vide Item No. 109.2.9 considered and approved the following proposals of Department of Metallurgical and Materials Engineering: (Appendix-A)

- 1. New PECs for B.Tech. (MT):
 - (i) MTN-316: Materials Informatics
 - (ii) MTN-317: Introduction to Nanomaterials
 - (iii) MTN-318: Additive Manufacturing
 - (iv) MTN-319: Metal Recovery and Recycling

2. Revision in the course title and syllabus of the following courses:

Existing Courses	Approved Revised Courses
MTN-502: Modelling, Simulation and	MTN-506: Materials Modelling and
Computer Applications	Simulation
MTN-530: Nanomaterials and	MTN-560: Nanotechnology: Materials
Applications	& Devices
MTN-555: Advanced and Stainless	MTN-562: Advanced Steel
Steels	Technology

3. Revision of the syllabus of the following courses:

- (i) MTN-315: Metallurgy of Joining
- (ii) MTN-531: X-ray Diffraction Techniques
- (iii) MTN-533: Electron Microscopy
- (iv) MTN-542: Biomaterials
- (v) MTN-554: Crystallographic Texture

Assistant Registrar (Curriculum)

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. Head of all Departments / Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel i/ Acad portal/ Academic webpage of iitr.ac.in

Appendix-A

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- **1.** Subject Code: MTN-316Course Title: Materials Informatics
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** The course will introduce concepts of Big Data handling and analysis for Materials Science applications.

S.No.	Contents	Contact
		hours
1.	Introduction to Materials Informatics: History of materials development and	8
	need for concept materials design, Multiscale materials modelling, need for data	
	driven modelling, accelerated materials discovery and development, Quantitative	
	structure-processing-property-performance relationships, knowledge discovery	
	workflow for materials informatics, materials data science - structured and	
	unstructured data, data mining, crystallography database, Materials Genome,	
	different sets of descriptors, nuts and bolts of materials informatics.	
2.	Optimization & Calibration: gradient based optimization, non-gradient based	9
	optimization, multi-objective genetic algorithms (MOGA), Optimization of a	
	multivariate model, applications to materials synthesis, processing, and transport	
	phenomena	
3.	Predictive Modelling: supervised learning, regression methods, classification	9
	methods, surrogate based optimization, prediction of material properties such as	
	fatigue life, creep life	
4.	Descriptive Modelling: Unsupervised learning, clustering analysis, clustering	6
	algorithms. Case studies: Estimation of microstrain, residual stress from	
	diffraction, classification of materials based on physical properties	
5.	Limitations and Remedies: Problem of small datasets in materials science, Data	6
	dimensionality reduction – principal component analysis, applications to 4D	
	diffraction, spectroscopic data sets, high-throughput computational modelling of	
	materials	
6.	Materials Selection for Engineering Design: Systematic selection methods,	4
	trade-off analysis, vectors for materials development	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Informatics for Materials Science and Engineering, Edited by	2013
	Krishna Rajan, 1 st edition, Butterworth-Heinemann, ISBN: 978-0-	
	123-94399-6	
2.	Materials Informatics: Methods, Tools, and Applications, Edited	2019
	by Olexandr Isayev, Alexander Tropsha and Stefano Curtarolo, 1 st	
	edition, Willey, ISBN: 978-3-527-34121-4	
3.	S.R. Kalidindi, Hierarchical Materials Informatics, 1 st edition,	2015
	Butterworth-Heinemann, ISBN: 978-0-124-10394-8	
4.	Nanoinformatics, Edited by Isao Tonaka, 1 st edition, Springer	2018
	Nature, ISBN: 978-9-811-07616-9 (Open access eBook)	
5.	Information Science for Materials Discovery and Design, Edited	2016
	by Turab Lookman, Francis Alexander and Krishna Rajan, 1 st	
	edition, Springer, ISBN: 978-3-319-23870-8	

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-317 Course Title: Introduction to Nanomaterials
- **2. Contact Hours:** L: 3 T: 0 P: 2
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 10-25 **PRS:** 25 **MTE:** 15-25 **ETE:** 30-40 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To introduce the fundamentals of nanomaterials, their synthesis, properties and various applications.
- **10. Details of the Course**

S.No.	Contents	Contact
		hours
1.	Introduction: Nanotechnology and Nanomaterials, possible fields of	3
	applications, Challenges and opportunities	
2.	Surface Science of Nanomaterials: Atomic bonding, band structure, band	10
	structure in nanomaterials, Crystal structure, Surfaces of closed packed structures,	
	Surface energy – Crystallographically preferred surfaces, Surface reconfiguration	
3.	Synthesis/Fabrication of Nanostructures: Zero-Dimensional Nanostructure,	13
	One-Dimensional Nanostructure, Two-Dimensional Nanostructure, Principles of	
	Lithography, Bulk Nanostructured Materials	
4.	Properties of Nanomaterials: Electrical Properties, Mechanical Properties,	8
	Optical Properties, Magnetic Properties, Thermal Properties, Physical Properties	
5.	Unique Nanostructures: Quantum dots, fullerene, core-shell nanoparticles,	8
	carbon nanotubes, boron nitride nanotubes, graphene and related materials,	
	Chalcogenides	
	Total	42

11. List of experiments:

- 1. Synthesis of carbon dots and observation of fluorescence
- 2. Synthesis of carbon nanotubes by CVD, observation of their morphology/structure by SEM, TEM and Raman spectroscopy
- 3. Synthesis of metallic nano-powder by ball milling, observation of their morphology/structure by XRD, SEM, TEM and comparison with starting structure
- 4. Spark plasma sintering of nano- and bulk- powder, comparison of their mechanical properties by nano-indentation
- 5. Synthesis of polymeric fibres by electro-spinning and their characterization

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Poole C.P., Owens F.J., Introduction to Nanotechnology, Wiley	2012
	India	
2.	Guo Z., Tan L., Fundamentals and Applications of Nanomaterials,	2009
	Artech House	
3.	Cao G., Nanostructures and Nanomaterials, Imperial College Press	2006
4.	Vollath D., Nanomaterials – An introduction to synthesis,	2008
	properties and applications, Wiley-VCH	
5.	Pradeep T., Nano: The Essentials – Understanding Nanoscience	2016
	and Nanotechnology, McGraw-Hill	
6.	Zehetbauer M.J. and Zhu Y.T., Bulk Nanostructured Materials,	2008
	Wiley	

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-318 Course Title: Additive Manufacturing
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To familiarize the students with the possibilities and materials aspects of additive manufacturing techniques.

S.No.	Contents	Contact
		hours
1.	Introduction: Transition from rapid prototyping to additive manufacturing,	6
	Advantages and limitations of additive manufacturing, role of CAD and CAM,	
	various AM processes and relevant science, designing of components for AM	
2.	Metals and alloys: Powder-bed fusion and direct energy deposition processes,	10
	powder vs wire deposition processes, laser vs electron beam, selection of AM	
	process, requirement of metal and pre-alloyed powders, role of process	
	parameters including rapid solidification on microstructure, phase transformation,	
	residual stress and other defects, distortion control, post processing: heat	
	treatments, shot peening, hot isostatic pressing	
3.	Polymers and Ceramics: Photopolymerization, Stereolithography, selective	6
	laser sintering and laser chemical vapor deposition, manufacturing of various	
	composites with micro and nano additives, bio-polymers and bio-ceramics	
4.	Process monitoring, modeling and control: In-situ measurement of	7
	temperature, mass flow, and component shape, role of heat and mass transfer on	
	composition, microstructure and residual stress and related mathematical models,	
	thermal management: use of pre-heated base plates, cooling system, control of	
	process parameters, Challenges in reuse of powders.	
5.	Applications of AM: Aerospace: Superalloys, titanium alloys, aluminum alloys,	8
	shape memory alloys, coatings, AM on demand; Nuclear: stainless steel, Ni based	
	alloys, oxide dispersion strengthened steels; Bio-medical: prosthetics, bio-	
	implants, tissue engineering; Other applications: art, fashion and jewellery	
6.	Case studies: Control of residual stress in ceramics, material requirement in	5
	personalized surgery, pattern making and rapid prototyping for automobile	
	industry, 3D printing of electronics, challenges in commercialization and mass	
	production.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Gibson, I., Rosen, D.W., Stucker, B., Additive Manufacturing	2014
	Technologies, Springer	
2.	J.D. Majumdar and I. Manna, Laser-assisted fabrication of	2012
	materials, Springer Series in Material Science	
3.	Zhang, J. Jung, YG., Additive Manufacturing: Materials,	2018
	Processes and applications, Elsevier	
4.	Brandt, M., Laser Additive Manufacturing; Materials, Design,	2020
	Technologies and applications, Elsevier	

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-319 Course Title: Metal Recovery and Recycling
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To understand fundamental principles and practices involved in metal recovery and recycling processes.

S.No.	Contents	Contact
		hours
1.	Fundamentals on primary and secondary production of raw materials (steel,	6
	aluminum, phosphorous, copper, precious metals, rare metals) Use and demand	
	of metals and minerals in industry and society, collection systems and concepts,	
	efficiency, sorting technologies, mechanical pretreatment, other treatment options	
2.	Hydrometallurgy and its applications in metals production (base metals and Rare	7
	earths): an overview. Metal resources for hydrometallurgical extraction and	
	recycling Leaching (atmospheric-, pressure-, bio-, organic lixiviants). Separation	
	and solution purification: precipitation method; solvent extraction and ion	
	exchange.	
3.	Metals recovery: cementation and hydrogen reduction; recovery and refining:	6
	electrowinning and electro-refining. Thermodynamical Assessment, Eh-pH	
	diagram	
4.	Sampling and materials characterization, Chemical analysis of Critical Materials	6
	in post-consumer products, Analytical tools in Resource Management (Material	
	Flow Analysis, Recycling Performance Indicators, Criticality Assessment,	
	statistical analysis of uncertainties). Waste to Energy concept consisting of	
	Thermal Process (incinerator, combustion); energy, emissions	
5.	Critical factors for sustainable waste valorization. Linear and circular economy,	5
	lifecycle analysis market value calculations from end of life products and value	
	additions.	
6.	Case studies of batteries, printed circuit boards, display screens (CRT LED CFL),	6
	solar panels and industrial waste (Red mud; iron and steel slag, aluminum dross).	
	Laboratory demonstration.	
7.	Sustainability environmental challenges and remediations, national international	6
	scenario, societal impact energy consumption an environmental footprint.	
	Industrial processes, flowsheet development	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	M. Kaya, Electronic Waste and Printed Circuit Board Recycling	2016
	Technologies, ISBN 978-3-030-26592-2, Springer International	
2.	G. Chauhan, P.J. Kaur, K.K. Pant, K.D.P. Nigam, Sustainable	2020
	Metal Extraction from Waste Streams, Wiley publishers, ISBN:	
	978-3-527-34755-1,	
3.	Recycling of Metals and Engineered Materials, Editor(s): D.L.	2000
	Stewart Jr. J.C. Daley R.L. Stephens, ISBN:9781118820469	

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-506 Course Title: Materials Modeling and Simulation
- Contact Hours: L: 3 T: 0 P: 2
 Examination Duration (Hrs.): Theory: 3 Practical: 0
 Relative Weightage: CWS: 10-25 PRS: 25 MTE: 15-25 ETE: 30-40 PRE: 0
- 5. Credits: 46. Semester: Spring7. Subject Area: PCC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce various approaches used for modeling and simulation of materials.

S.No.	Contents	
		hours
1.	Introduction: Need for modelling and simulation. Concepts of length and time	2
	scales in different materials phenomena, and choosing the appropriate modelling	
	schemes to tackle them.	
2.	Brief review of classical and statistical mechanics: Concepts of Lagrangian,	5
	Hamiltonian, and equations of motion from classical mechanics. Statistical	
	mechanical concepts of Microstates, Phase space, Ensembles and the Ergodic	
	hypothesis.	
3.	Interatomic potentials and Boundary Conditions: Concept of cohesive energy	7
	and its formulation using semi-empirical potentials, Pair potentials like Lennard-	
	Jones, Morse and Born-Mayer, Limitations of Pair Potentials, Embedded atom	
	model potentials (EAM) for metals and alloys. Stillinger-Weber (SW) potential	
	for covalent solids, Modeling Coulomb interactions in ionic materials and	
	challenges, Transferability of semi-empirical potentials, Boundary conditions:	
	periodic and free, cut-off distances for potentials.	
4.	Molecular statics (MS) and dynamics (MD): Fundamentals of MS, Energy	10
	minimization algorithms like Steepest Descent and Conjugate Gradient,	
	Applications of MS in calculating defect energies, Fundamental concepts of MD,	
	Numerical algorithms for time integration of equations of motion, Properties of	
	MD simulations, Analyzing MD simulations using spatial and time correlation	
	functions, MD in different ensembles, Applications of MD, Limitations of MD.	0
5.	Monte-Carlo simulations (MC): Metropolis algorithm and its application to	8
	study the Ising model, Monte-Carlo in the mesoscopic scale: Q-state Potts Model,	
	MC across different ensembles, Concept of time in MC, Analyzing MC	
	simulations, Applications and Limitations of MC.	
6.	Phase-field modeling: The diffuse interface and its advantages, Concepts of	10
	conserved and non-conserved order parameters to describe microstructure, Allen-	
	Cahn and Cahn-Hilliard equations for microstructure evolution, Concepts of	
	interfacial energy and width, Numerical algorithms and analysis of simulation	
	results, Ways to construct free energy functions.	
	Total	42

11. List of Practicals:

- 1. Defect energy calculation using Molecular Statics
- 2. Molecular Dynamics simulation of melting
- 3. Simulations of deformation using Molecular Dynamics
- 4. Metropolis Monte-Carlo study of the Ising model
- 5. Employing Q-state Potts model to simulate grain growth
- 6. Phase-field simulation of spinodal decomposition

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Lesar R., An introduction to computational material science -	2013
	Fundamentals to Applications, Cambridge University Press	
2.	Landau D. P., and Binder K., A Guide to Monte-Carlo Simulation	2014
	in Statistical Physics, Cambridge University Press	
3.	Frenkel D., and Smit B., Understanding Molecular Simulation,	2001
	Academic Press	
4.	Provatas N., and Elder K., Phase-field methods in Material Science	2011
	and Engineering, Wiley-VCH	

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-560 Course Title: Nanotechnology: Materials & Devices
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Autumn7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce the fundamentals of nanomaterials, their properties and various applications.

10. Details of the Course

S.No.	Contents	
		hours
1.	Introduction to nanostructure synthesis: Importance of surface and its	6
	attributes in nanostructures, principles of different physical and chemical methods	
	for nanostructure synthesis	
2.	Fabrication of nanostructures and devices: Principles of lithography, Moore's	12
	law, photolithography, U-V lithography, X-ray lithography, e-beam lithography,	
	ion-beam lithography, soft-lithography, nano-imprint lithography,	
	miniaturization and its application	
3.	Thin film deposition: Evaporation – thermodynamics and kinetics, deposition –	6
	nucleation and structure development, physical vapor deposition, chemical vapor	
	deposition, epitaxial growth	
4.	Characterization of nanomaterials: Structural characterization- XRD, SAXS,	12
	SEM, TEM, SPM/AFM, chemical characterization - optical spectroscopy,	
	electron spectroscopy, ionic spectrometry physical properties - melting point,	
	lattice constant, optical properties, mechanical properties - nanoindentation,	
	nanotribology	
5.	Nanocomposites and nano-reinforced composites: difference between	3
	nanocomposites and nano-phase reinforced composites, unique nanocomposites	
	structures, advantages of nano-phase reinforcement in composites and examples	
6.	Society and nano: Implications on society, issues, policies, public perception and	3
	involvement	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Poole C.P., Owens F.J., Introduction To Nanotechnology, Wiley	2012
	India	
2.	Guo Z., Tan L., Fundamentals and Applications of Nanomaterials,	2009
	Artech House	
3.	Madou MJ., Fundamentals of Microfabrication - The Science of	2002
	Miniaturization, CRC Press	

4.	Smith DL., Thin Film Deposition - Principles and Practice,	1995
	McGrawHill	
5.	Pradeep T, Nano: The Essentials – Understanding Nanoscience and	2016
	Nanotechnology, McGrawHill	
6.	Wang Z.L., Characterization of Nanophase Materials, Wiley.	2000

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-562 Course Title: Advanced Steel Technology
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To understand the fundamentals and applications of different steels in different engineering sectors of importance of today's society.

10. Details of the Course

S.No.	. Contents	
		hours
1.	Indian heritage: Steel making in early days, Iron pillars of India, Wootz steel,	6
	canons of India	
2.	Fundamentals of steel: Fe-C phase diagram, different microstructures of steel,	8
	TTT/CCT diagram, basic heat treatment processes, role of alloying elements	
3.	Microalloyed / Pipe line steel: Thermo-mechanical processing, origin of micro-	7
	alloyed steel, controlling the grain size, tailoring the precipitation, extent of	
	strengthening	
4.	Automotive steels: Global trends, different types of automotive steels (HS-IF,	7
	BH, DP, TRIP, TWIP, bainitic, martensitic, precipitation hardened), design of	
	steel	
5.	Power plant steels: Metallurgy of high temperature steel, steels for super-critical	6
	thermal and boiler plants, creep behaviour and its characterisation	
6.	Stainless steels: Types of stainless steel, alloying elements and their effect,	4
	relevance of Nickel equivalent and Chromium equivalent, inadequacy of Fe-C	
	diagram, corrosion resistance of stainless steel.	
7.	Ship building steels: Quench and tempering process, global trends, surface	4
	treatments, applications of Q&T steels in defense and non-defense sector	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Rana, R. "High performance ferrous alloys", 1 st edition, Springer,	2021
2.	Bhadeshia, H.K.D.H. and Honeycombe, R. "Steels: Microstructure	2017
	and Properties", 4 th edition, Butterworth-Heinemann	
3.	Rana, R. and Singh, S.B. "Automotive Steels: Design, Metallurgy,	2016
	Processing and Application", Woodhead Publishing	
4.	Cola, R. and G.E. Totten, S.B. "Encyclopedia of Iron, Steel and	2016
	Their Alloys", CRC Press.	
5.	Bhadeshia, H.K.D.H. "Theory of transformations in steel", 1st	2021
	edition, CRC Press	

6.	Krauss, G. "Steels: Processing, Structure, and Performance"	2005
7.	Leslie, W.C., "Physical Metallurgy of Steels" McGraw Hill	1991

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- **1.** Subject Code: MTN-315Course Title: Metallurgy of Joining
- **2. Contact Hours: L**: 3 **T**: 1 **P**: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. **Pre-requisite:** An understanding of phase transformation and heat treatment.
- **9. Objective:** To gain basic understanding of common welding processes and to understand the metallurgical changes that occur during and post welding.

10. Details of the Course

S.No.	Contents	
		hours
1.	Introduction: Classification of welding processes, heat and fluid flow in welding.	6
2.	Solidification after welding: Weld solidification, modes of grain formation	8
	(epitaxial / non-epitaxial), thermal cycle during welding, weld pool shape and	
	size, weld microstructure, phase transformation.	
3.	Heat affected zone: Development of HAZ, recrystallisation and grain growth,	8
	effect of welding parameters on the size of HAZ, phase transformation in HAZ,	
	mechanical properties in HAZ.	
4.	Residual stress and cracking: Origin of residual stress, distortion and cracking,	8
	means to reduce distortion, different types of cracking and their remedies,	
	hydrogen embrittlement, liquid metal embrittlement.	
5.	Heat treatment related to welding: Importance of heat treatment, pre and post-	3
	weld heat treatment.	
6.	Weldability of steel: Weldability, Schaeffler-DeLong diagram, Graville	6
	diagram, considerations for stainless steel weldability of stainless steels, effect	
	of welding on corrosion resistance, welding dissimilar steels, welding of advanced	
	high strength steels.	
7.	Quality control in welding: Non-destructive testing, weld integrity, neutron and	3
	synchrotron radiation – stress measurement, phase transformation during and post	
	welding.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	S. Kou, "Welding Metallurgy", 2 nd edition, Wiley& Sons.	2002
2.	K. Easterling, "Introduction to the Physical Metallurgy of	1992
	Welding", 2 nd edition, Butterworth-Heinemann.	
3.	J. C. Lippold, "Welding Metallurgy and Weldability", 1st ed.,	2015
	Wiley& Sons.	
4.	J. C. Lippold and D. J. Kotecki, "Welding Metallurgy and	2005
	Weldability of Stainless Steels", 1st edition, Wiley& Sons.	

5.	Welding, Brazing and Soldering, ASM Metals Handbook, Vol. 6,	1993
	ASM International	
6.	R.W. Messler, Principles of welding, Wiley-VCH; 1st edition	2004
	(1999)	

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-531 Course Title: X-ray Diffraction Techniques
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Autumn7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To impart knowledge on the applications of X-ray diffraction for structural and chemical characterization.

S.No.	Contents	
		hours
1.	Properties of X-rays, absorption, filters, production and detection	4
2.	Crystal systems, Bravais lattices, Motif/Basis, Point groups and space groups,	6
	crystal structures, stereographic projections	
3.	Laue diffraction conditions, Bragg's Law, Scattering of X-rays by electrons,	8
	Elastic-coherent scattering and incoherent inelastic-scattering, Relative intensities	
	of powder diffraction peaks; atomic scattering factor, structure factor, anomalous	
	X-ray scattering, multiplicity factor, Lorentz-Polarization factor, absorption	
	factor, temperature factor.	
4.	Laue, Rotating crystal and powder diffraction methods, Debye-Scherrer Camera,	6
	Diffractometer, Parallel beam and focused beam geometries, Florescence and its	
	effect on quality of diffraction pattern, measurement of peak position and	
	intensity. Integral breadth and Full Width at Half Maximum, 0D, 1D and 2D X-	
	ray detectors, Method of finding instrumental offset.	
5.	Indexing patterns of cubic and non-cubic crystals, Indexing peaks of different	8
	phases of multiphase materials, Determination of phase fractions, crystallite-size	
	and strain broadening, Scherrer equation, Williamson-Hall and Modified	
	Williamson-Hall methods, Determination of stacking fault probability, Rietveld	
	refinement, texture of wire and sheet, effect of distortion, unit cell determination.	
6.	Diffraction effects from composition gradients in solutions and non-	6
	stoichiometric compounds, Diffraction from periodic compositionally modulated	
	specimens, method of determining composition modulation wavelength,	
	Diffraction from nano-multilayers, Small Angle X-ray scattering, Grazing	
	incidence X-ray diffraction for thin films, application of X-ray scattering	
	techniques for amorphous materials	
7.	Applied stress and residual stress, diffractometer method, parabolic method of	2
	peak position determination, strain-free lattice spacing determination, X-ray	
	elastic constants, Voigt, Reuss and Neerfeld-Hill methods of determination of	
	elastic constants, constant-penetration depth stress determination.	
8.	Synchrotron X-Ray Diffraction: Synchrotron X-ray sources, in-situ time resolved	2
	measurements; tensile testing, welding, solving 2D X-ray diffraction patterns for	
	texture and residual stress determination	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Cullity, B.D. and Stock, S.R., "Elements of X-ray Diffraction", 3rd	2001
	Ed., Prentice Hall.	
2.	Suryanarayana, C. and Norton, M.G., "X-ray Diffraction: A	1998
	Practical Approach", Springer.	
3.	Murphy, B. and Seeck, O.H., "X-ray Diffraction: Modern	2011
	Experimental Techniques", Pan Stanford Publishing.	
4.	Warren, B.E., "X-ray Diffraction", Dover Publications.	1990
5.	Guinier, A., "X-ray Diffraction: In Crystals, Imperfect Crystals and	1994
	Amorphous Bodies", Dover Publications.	
6.	Habbar, K.R., "Basics of X-ray Diffraction and its Applications", I	2007
	K International Publishing.	

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

1.	Subject Code: MTN-5	33	Course	Title: Electron N	Aicroscopy	
2.	Contact Hours:	L: 3	T: 1	P:	0	
3.	Examination Duration	n (Hrs.): T	'heory: 3	Practical:)	
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Seme	ster: Autumn	7.	Subject Area: 1	PEC

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the fundamentals of scanning and transmission electron microscopes.

S.No.	. Contents	
		hours
1.	Introduction: TEM construction, Emission: Schotky vs cold FEG, low kV	6
	imaging; Illumination: Parallel beam, focusing beam, translating and tilting beam;	
	Alignment & stigmation, magnification and diffraction calibration; Detectors:	
	CCD vs direct electron detectors & fast detectors; role of environment on	
	imaging.	
2.	Imaging in TEM: Diffraction contrast: Bright field, dark field, weak-beam dark	10
	field imaging, mass-thickness contrast, two-beam condition, role of deviation	
	parameter, thickness & bending effects; Phase contrast: origin of lattice fringe,	
	Scherzer defocus, contrast transfer function, pattern recognition, Moire patterns,	
	contrast from defects, interfaces, surfaces; Scanning TEM: Bright field, annular	
	dark field, high angle annular dark field imaging, lattice fringes and Z-contrast	
	imaging; Defect characterization: imaging strain fields, dislocation- dipole, nodes	
	& loops, vacancy loops, stacking faults, precipitates; aberration corrected TEM &	
	STEM: role of probe corrector, image corrector, monochromator	
3.	Diffraction in TEM: Reciprocal space, characteristic length, amplitude and	10
	intensity of diffracted beams, superlattice and forbidden reflections, thin foil	
	effect, diffraction from line, planar defects, Kikuchi diffraction: origin and	
	construction of Kikuchi maps, crystal orientation; CBED: TEM vs STEM,	
	estimation of specimen thickness and strain, ZOLZ & HOLZ patterns; Precession	
	electron diffraction: orientation determination.	
4.	SEM: Working of SEM: Resolution mode, high current mode, depth of focus	8
	mode, low voltage surface imaging, variable pressure; Sample-specimen	
	interaction: calculation of interaction volume- role of beam energy, atomic	
	number & tilt, Imaging signals: Distribution of energy, sampling depth and range,	
	BSE: Electron channeling contrast imaging – orientation contrast and defect	
	contrast; SE: Imaging and spectrum; In-lens imaging: combined topographic and	
	compositional contrast, role of stage and detector bias, energy filter.	
5.	Analytical electron microscopy: Inelastic scattering: EDS – detection of low	8
	energy vs high energy X-rays, implications on energy and spatial resolution,	
	Qualitative analysis – general requirement, peak identification and deconvolution	
	of overlapping peaks, Quantitative analysis – matrix corrections, ZAF factors,	
	spectrum imaging; WDS – Diffracting crystals, CCD detectors; EELS: Energy	

loss spectrum, Omega and GIF filters, monochromators, atomic column EELS, Energy Filtered TEM.	
Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Goodhew, P.J., Humphreys, J. and Beanland, R., "Electron	2000
	Microscopy and Analysis", 3 rd Ed., Taylor and Francis.	
2.	Thomas, G., "Transmission Electron Microscopy of Materials",	1990
	Techbooks.	
3.	Reimer, L., "Scanning Electron Microscope: Physics of Image	1998
	Formation and Microanalysis", 2 nd Ed., Springer.	
4.	Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin P.,	2003
	Lifshin E., Sawyer L. and Michael, J.R., "Scanning Electron	
	Microscopy and X-ray Microanalysis", 3rd Ed., Springer.	
5.	Carter, C.B. and Williams, D.B., "Transmission Electron	2009
	Microscopy: A Textbook for Materials Science", 2 nd Ed., Springer	
6.	Egerton, R., "Physical Principles of Electron Microscopy: An	2010
	Introduction to TEM, SEM and AEM", Springer.	
7.	Fultz B., Howe, J. "Transmission Electron Microscopy and	2013
	Diffraction of Materials" IV Ed. Springer	

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-542 Course Title: Biomaterials
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To impart knowledge on structure-property relationship in biomaterials and their applications as implants and scaffolds.

S.No.	Contents	
		hours
1.	Introduction: Historical background, impact of biomaterials, biocompatibility,	2
	classes of biomaterials, evolution of biomaterials and generation of implants,	
	topics integral to biomaterials, ethics and regulations	
2.	Properties and Surfaces of Biomaterials: strength of biomaterials, mechanical	5
	properties of different biological tissues and factors influencing them, simulation	
	of mechanical behavior of implants, surfaces of biomaterials and interaction with	
	host tissue, characterization of biomaterial surfaces - different available	
	techniques	
3.	Cell Biomaterial Interaction: Type and structure of cells, cell differentiation,	8
	development of tissue, apoptosis, chemical communication, Immunity	
4.	Metallic Biomaterials: Mechanical properties and biocompatibility of metals,	4
	Application – pros and cons of implants made of Stainless steels, Co-Cr alloys,	
	Ti-based alloys, Nitinol etc.	
5.	Ceramic Biomaterials: Properties and biocompatibility of ceramics, tissue	4
	response, types and applications of bioinert, resorbable and bioactive ceramics,	
	degradable implants	
6.	Polymeric Biomaterials: Basic structure and properties of polymers, various	6
	polymers in biomedical application – their properties, pros and cons and fields of	
	application, mechanism of degradation of polymers and the influencing factors,	
	degradable polymers and hydrogels for temporary implants and scaffolds, smart	
	polymers, medical textiles.	
7.	Biological Evaluation of Biomaterials: in-vitro assays and in-vivo evaluations	3
8.	Biomaterials for Dental Application: structure of human tooth and requirement	3
	of implants, types of dental implants, biomaterials in user for dental implants, root	
	canal (endodontic) treatment, materials for dentures	
9.	Biomaterials for Orthopedic implants and Scaffolds: Materials Selection and	3
	types of commercially used implants, coatings on implants and bone cements,	
	stress shielding, new materials for orthopedic application, drug releasing	
	orthopedic implants, cartilage regenerating scaffolds	
10.	Tissue Engineering scaffolds and soft tissue regeneration: Tissue engineering	4
	scaffolds, requirements of an ideal regenerative scaffold, neural system and nerve	
	repair strategies, scaffolds (conduits) for nerve regeneration, architecture-	

chemistry and biology of skin tissue, scaffolds for different types of wound healing	
Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Rattner B.D., Hoffman A.S, Schoen F.J., Lemons J.E.,	2013
	Biomaterials Science: An Introduction to Materials in Medicine,	
	Third Edition, Academic Press	
2.	Basu B., Biomaterials Science and Tissue Engineering, Principles	2017
	and Methods, Cambridge IISc Series	
3.	Park J.B. and Bronzino J.D., Biomaterials: Principals and	2003
	Applications, CRC Press	
4.	Park J.B. and Lakes R.S., Biomaterials: An Introduction, 3 rd edition,	2007
	Springer press	
5.	Bhat, S.V., Biomaterials, 2 nd edition, Narosa Publishing	2006

NAME OF DEPARTMENT/CENTRE: Department of Metallurgical and Materials Engineering

- 1. Subject Code: MTN-554 Course Title: Crystallographic Texture
- **2. Contact Hours: L**: 3 **T**: 1 **P**: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Autumn7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To impart knowledge on crystallographic texture and the evolution of texture during materials processing and their applications.

10. Details of the Course

S.No.	Contents	Contact
		hours
1.	Introduction: Crystallographic texture- preferred orientation of crystals in a	3
	polycrystalline material, effect on different properties of material	
2.	Representation of texture: Introduction to stereographic projection, pole figure,	10
	inverse pole figure, representation of orientation in Miller indices, matrix, axis-	
	angle relation, Euler angles, Rodrigues-Frank space and conversion between	
	them, orientation distribution function (ODF), grain boundary characteristics –	
	coincidence site lattice boundaries.	
3.	Measurement and analysis of texture: X-ray, synchrotron and neutron	6
	diffraction techniques, electron backscattered diffraction (EBSD), precession	
	electron diffraction (PED), High throughput texture using ultrasonic and polarized	
	microscopy	
4.	Origin and evolution of texture: Phase transformation: solidification and solid	10
	to solid transformation, orientation relationships; Deformation: role of single and	
	poly-slip, twinning, deformation bands, shear bands, role of SFE, Schmid and	
	Taylor factors; Annealing: effects of recovery and recrystallization on the	
	formation of cube texture, Goss texture, abnormal grain growth; coating	
	processes, thin film deposition.	
5.	Effect of texture: On mechanical properties - Formability, elastic and plastic	6
	anisotropy, yield locus and strain hardening, electrical and magnetic properties	
6.	Case studies: Sheet metal forming of Al, automotive steels, electrical steels,	7
	pilgering of zirconium, superplastic forming, role of grain boundaries on crack	
	propagation and corrosion, simulation of stress-strain curves.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Suwas, S., Ray, R.K., Crystallographic texture of materials, Springer-Verlag	2014
2.	Randle V., Engler O., Texture Analysis: Macrotexture, Microtexture	2000
	and Orientation Mapping, Gordon & Breach	

3.	Bunge HJ., Texture Analysis in Materials Science, London-	1982
	Butterworths	
4.	Kocks U.F., Tomé C., Wenk HR., Texture and Anisotropy,	1998
	Cambridge University Press	