ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./394/IAPC-105

Dated: June 14, 2021

Head, Department of Electronics & Communication Engg.

The IAPC in its 105th meeting held on 09.06.2021 vide Item No. 105.2.7(2) considered and approved the proposal of Department of Electronics & Communication Engg. to offer under mentioned existing PEC in both semesters.

1. ECN-525: Hardware Architecture for Deep-Learning (Appendix-A)

Reet

Assistant Registrar (Curriculum)

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. Head of all Departments/ Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel I/ Acad portal/ Academic webpage of iitr.ac.in

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-525 Course Title: Hardware Architecture for Deep-Learning
- Contact Hours: L: 3 T: 1 P: 0
 Examination Duration (Hrs.): Theory: 3 Practical: 0
 Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: None
- **9. Objective:** To learn the design of hardware architectures and accelerators for deep-learning/artificial-intelligence. This course is at the intersection of deep-learning and computer-architecture/embedded-system/VLSI.

10. Details of the Course

S.No.	Contents			
		hours		
1.	Background topics: Approximate computing and storage, Roofline Model,	8		
	Cache tiling (blocking), GPU architecture, CUDA programming,			
	understanding GPU memory hierarchy, FPGA architecture, Matrix			
	multiplication using systolic array			
2.	Convolutional strategies: Direct, FFT-based, Winograd-based and Matrix-	3		
	multiplication based.			
3.	Deep Learning on various hardware platforms: Deep learning on FPGAs	15		
	and case study of Microsoft's Brainwave, Deep learning on Embedded			
	System (especially NVIDIA's Jetson Platform), Deep learning on Edge			
	Devices (smartphones), Deep learning on an ASIC (especially Google's			
	Tensor Processing Unit.), Deep-learning on CPUs and manycore processor			
	(e.g., Xeon Phi), Memristor-based processing-in-memory accelerators for			
	deep-learning.			
4.	Model-size aware Pruning of DNNs, Hardware architecture-aware pruning	6		
	of DNNs, Understanding soft-errors. Understanding reliability of deep			
	learning algorithms and accelerators			
5.	Comparison of memory technologies (SRAM, DRAM, eDRAM, STT-RAM,	4		
	PCM, Flash) and their suitability for designing memory-elements in DNN			
	accelerator, Neural branch predictors and their applications			
6.	Hardware/system-challenges in autonomous driving, Distributed training of	6		
	DNNs and addressing memory challenges in DNN training			
Total				

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Computer Architecture: A quantitative approach (Sixth	2017
	Edition), Hennessy, J. L., & Patterson, D. A., Elsevier	
	https://www.google.co.in/books/edition/Computer Architectu	
	re/cM8mDwAAQBAJ	

2.	Deep Learning for Computer Architects Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David Brooks Synthesis Lectures on Computer Architecture, August 2017, Vol. 12, No. 4, Pages 1-123 (https://doi.org/10.2200/S00783ED1V01Y201706CAC041)	2017
3.	General-Purpose Graphics Processor Architectures Tor M. Aamodt, Wilson Wai Lun Fung, and Timothy G. Rogers, Synthesis Lectures on Computer Architecture, May 2018, Vol. 13, No. 2, Pages 1-140 (https://doi.org/10.2200/S00848ED1V01Y201804CAC044)	2018
4.	Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.	2016
5.	Selected research papers	