ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./391/IAPC-105 Dated: June 14, 2021

Head, CAIDS

The IAPC in its 105th meeting held on 09.06.2021 vide Item No. 105.2.4 considered and approved the following proposals:

- 1. Syllabi of Programme Elective Courses (PECs)
 - (a) AID-559: Stochastic Processes and their Applications (Appendix-A) (for M.Tech. in Artificial Intelligence)
 - (b) AID-575: Blockchain Technology (Appendix-B) (for M.Tech. in Data Science)
- 2. To introduce new PEC i.e., AID-583: Data-Driven Analytics for Smart Transportation Systems for M.Tech. in AI & DS. (Appendix-C)

Assistant Registrar (Curriculum)

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. Head of all Departments/ Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel I/ Acad portal/ Academic webpage of iitr.ac.in

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Centre for Artificial Intelligence and Data Science

1. Subject Code: AID-559 Course Title: Stochastic Processes and their Applications

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Nil

9. Objective: To introduce concepts stochastic processes and their applications.

10. Details of the Course

S.No.	Contents	
		hours
1.	Review of Probability: Probability measure, Borel-Cantelli lemma, multivariate	7
	random variable, Doob-Dynkin lemma, expectation, joint distribution and joint	
	density functions, conditional expectation and its properties, conditional distribution and conditional density functions, independence of random variables,	
	Markov inequality, Chebyshev inequality, convergence of random variables, law	
	of large numbers, related applications and simulations.	
2.	Discrete time Markov chain: Definition and construction, transition probability	11
	matrix, higher order transition probabilities, Chapman-Kolmogorov equation,	
	dissection principle, classification of states, periodicity, solidarity properties,	
	canonical decomposition, absorption probabilities, invariant measure and	
	stationary distribution, limit distributions, renewal process, branching process,	
2	related applications and simulations.	11
3.	Continuous time Markov chain: Definition and construction, examples (pure birth process, birth-death process, uniformizable chain, etc.), stability and	11
	explosions, Markov property, dissection, backward and forward equations,	
	generator, Chapman-Kolmogorov equation, stationary and limiting distributions,	
	invariant measure, Laplace transform method, generating function technique, Point	
	process, Poisson process, compound Poisson process, renewal process, Branching	
	process, related applications and simulations.	
4	Brownian Motion: Definition and construction (via random walk and Brownian	6
	bridge approximations), sample path properties, Brownian motion with drift,	
	Ornstein-Uhlenbeck process, related applications and simulations.	
5	Martingales: Filtration, stopping time, discrete time martingales with examples,	7
	optional stopping theorem, Doob's up-crossing inequality, Doob's convergence	
	theorem, Doob's decomposition theorem, continuous time martingales with	
	examples, related applications and simulations.	
	Total	42

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Zdzislaw Brzezniak and Tomasz Zastawniak, Basic stochastic	2005/7th
	processes, Springer-Verlag London	
2.	Sindney Resnick, Adventures in stochastic processes, Birkhäuser	2005/4th
	Boston	
3.	Paul Glasserman, Monte Carlo Methods in Financial Engineering,	2003/1st
	Springer	
4.	Peter W. Glynn and Søren Asmussen, Stochastic Simulation:	2007/1st
	Algorithms and Analysis, Springer	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Centre for Artificial Intelligence and Data Science

1. Subject Code: AID-575 Course Title: Blockchain Technology

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Nil

9. Objective: To provide knowledge about cryptographic and cybersecurity concepts of blockchain technology with some applications.

10. Details of the Course

S.No.	Contents	Contact
1.	Basics of Blockchain: Distributed Database, Two General Problem, Byzantine	hours 5
1.	General problem and Fault Tolerance, Hadoop Distributed File System, Distributed	3
	Hash Table, ASIC resistance, Turing Complete	
2.	Crypto Primitives: Hash functions, security aspects of hash function, Collison	8
	resistant hash, digital signatures, public key cryptography, verifiable random	
	functions, NIST standards	
3.	Blockchain Theory: Advantage over conventional distributed database,	8
	Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia	
	Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of	
	Blockchain application, Soft & Hard Fork, Private and Public blockchain.	
3.	Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake,	6
	Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate	
4.	Cryptocurrency and regulations: Distributed Ledger, Bitcoin protocols - Mining	10
	strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST,	
	Vulnerability, Attacks, Sidechain, Namecoin, IBM hyper ledger, Stakeholders,	
	Roots of Bitcoin, Legal Aspects - Cryptocurrency Exchange, Black Market and	
	Global Economy	
5.	Blockchain Applications: Good blockchain examples and how to identify	5
	potential use-cases, Design Thinking, Internet of Things, Medical Record	
	Management System, Domain Name Service	
	Total	42

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller	2016
	and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A	
	Comprehensive Introduction, Princeton University Press	
2.	Bettina Warburg, Bill Wanger, Tom Serres, "Basics of Blockchain"	2019
	Independently published	
3.	Andreas M. Antonopoulos, "Mastering Bitcoin: unlocking digital	2014
	cryptocurrencies", O'Reilly Media Inc.,	
4.	Wattenhofer, Roger, "Blockchain Science", Inverted Forest	2019
	Publishing, 3 rd Edition	

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Centre for Artificial Intelligence and Data Science

1. Subject Code: AID-583 Course Title: Data-driven Analytics for Smart Transportation Systems

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weightage: CWS: 20-35 PRS: 0 MTE: 20-30 ETE: 40-50 PRE: 0

5. Credits: 4 6. Semester: Both 7. Subject Area: PEC

8. Pre-requisite: Nil

9. **Objective:** To familiarize with the applications of data science in traffic and transportation engineering and to demonstrate the applications of the data science in smart transportation planning

10. Details of the Course:

S.No.	Contents	Contact hours
1.	Data Science in Transportation	4
	Overview and Practical Applications; Transportation Data Sources; Data	
	Collection; Data Preparation and Visualization.	
2.	Sensing and Data Mining for Smart Transportation Systems	
	Intelligent Transportation Systems, Incident Management Program, Efficient	
	Emergency Vehicle Movement (Pre-Emption), Crash Detection, Reporting, and	
	Clearance; Traffic Surveillance, Identification of Hotspots, Violation Detection;	
	Road Network Asset Management, Inventory of Potholes, other Deficiencies;	
	Adaptive Traffic Signal.	
3.	Data Analytics in Urban Transportation Planning	10
	Basics of Urban Transportation Planning, Data Collection and Advanced Data	
	Sources, Household Surveys, Demand Modeling using WiFi/ Bluetooth/ Call Data	
	Record, Data Extraction and Analysis using APIs, Trip Distribution Modelling	
	Approaches, Route Choice Models, Choice Set Generation Methods, Genetic	
	Algorithms, Transportation Planning Example using Data-Driven Modeling and	
4	Simulation.	
4.	Urban Mass Transit System	6
	Basics of Urban Mass Transit System, Static and Dynamic GTFS, Real-Time	
	Transit, Travel Time Variability, Transit Reliability, Transit Planning using Smart-	
	Card Data, Real-Time Accessibility Analysis.	
5.	Applications in Environmental Impact of Transport System	6
	IOT based Air pollution, Real-Time Air Pollution Monitoring and Data Analysis,	
	Placement of Mobile Sensors, Pollution Prediction using ML, Noise Data, Analysis	
	of Key Parameters, Development of Policy Framework.	
6.	Crash Data Analytics	8
	Crash Data, Data Preparation, Model Estimation, Real-Time Data-Driven	
	Analysis; Emergency Vehicle Data, Crash Prone Stretches, Ambulance	
	Deployment; Near-misses/Traffic Conflict Data, Surrogate Approach, Proactive	
	Assessment and Safety Interventions.	40
	Total	42

11. Suggested books

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Fumitaka Kurauchi, Jan-Dirk Schmöcker "Public transport planning	2021
	with smart card data" CRC Press	
2.	Juan de Dios Ortúzar, Luis G. Willumsen "Modelling Transport",	2011
	Wiley	
3.	Vukan R. Vuchic "Urban Transit: Operations, Planning, and	2005
	Economics" Wiley	
4.	Constantinos Antoniou, Loukas Dimitriou, Francisco Pereira	2018
	"Mobility Patterns, Big Data and Transport Analytics" Elsevier	
5.	Sara Moridpour, Alireza Toran Pour, Tayebeh Saghapour "Big Data	2019
	Analytics in Traffic and Transportation Engineering: Emerging	
	Research and Opportunities" IGI Global	
6.	Khaled R. Ahmed, Aboul-Ella Hassanien "Deep Learning and Big	2021
	Data for Intelligent Transportation" Springer	
7.	Davy Janssens, Ansar-Ul-Haque Yasar and Luk Knapen "Data	2013
	Science and Simulation in Transportation Research" IGI Global	