ACADEMIC AFFAIRS OFFICE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

No. Acd./ 132 /IAPC-101

Dated: April 19, 2021

Head, Department of Mechanical & Industrial Engineering

The IAPC in its 101st meeting held on 19/21.03.2021 vide Item No. 101.2.4 considered and approved the proposal of Department of Mechanical Engg. to introduce new Open Elective Course i.e., IMI-301: Microwave Materials Processing: Theory and Practice w.e.f. the Academic Year 2021-2022 with minor modifications.

The modified syllabus is attached as Appendix-A.

Reeti

Assistant Registrar (Curriculum)

Encl: as above

Copy to (through e mail):-

- 1. All faculty
- 2. All Heads of Departments/Centres
- 3. Dean, Academic Affairs
- 4. Associate Dean of Academic Affairs (Curriculum)
- 5. Channel I/ Academic webpage of iitr.ac.in/ acad portal

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPARTMENT/CENTRE: Department of Mechanical & Industrial Engineering

- 1. Subject Code: IMI-301 Course Title: Microwave Materials Processing: Theory and Practice
- **2. Contact Hours:** L: 3 T: 0 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 36. Semester: Both7. Subject Area: OEC
- 8. **Pre-requisite:** Students should have basic knowledge in materials and their processing
- 9. Objectives:
 - To familiarize the students with the various aspects of microwaves and their potential in material processing.
 - To enable the students to understand various applications of microwave energy in materials processing.
 - To educate the students about the phenomena of microwave energy-material interactions.

10. Details of the Course

S.No.	Contents	Contact hours
1.	Introduction: History of MW applications and processing; microwave system and its various components, fundamentals of microwave materials processing: definitions, advantages, temperature measurements, hybrid heating, susceptors, etc.; microwave safety issues. Introduction of waveguide inmicrowave.	5
2.	Microwave-Matter Interactions and Mechanisms: Various mechanisms (heating due to magnetic effect, dipolar movement, eddy-current, hysteresis loss etc.) to explain MW-matter interactions, anisothermal heating and measurement of dielectric property.	
3.	Microwave E and H Fields Separation: Difference between multi and single mode microwave systems and how to separate E and H fields; heating profile of ceramics, metals and composites in separate E and H fields, decrystallization of various special materials in H-field at 2.45 GHz.	6
4.	Applications of Microwave Energy:Ceramics: Traditional Ceramics: alumina, zirconia, hydroxyapatite, transparentceramics, electroceramics and advanced ceramicsComposites: Ceramic-metal: Sintering of WC/Co based cutting tools, processing ofceramic-metal composites, processing high temperature ceramic eutecticsCeramic-polymer and Metal-polymer: Microwave processing of thesecomposites and Microwave curing of thermoplastic, composite based onnatural/synthetic reinforcement.Metals: General introduction, metallic powders sintering including Fe, Cu, steel, Ti,alloys, etc., melting and steel making.	
5.	Applications of Microwave Energy in Different Processes: Microwave brazing and joining of bulk metals, microwave cladding, microwave drilling of glass and metal and microwave casting of bulk metals	10

6.	Microwave Multi-Energy Processing: Materials processing in microwave +	4	
	hydrothermal, microwave + plasma, microwave + laser and how they impact on the		
	materials processing		
Total			

11. List of Demonstration Experiments

S.No.	Contents	Contact hours
		nours
1.	To study the role of susceptor in microwave processing	1
2.	Microwave sintering of materials (say, ceramics+metal)	1
3.	Microwave cladding of materials	1
4.	Microwave joining of metallic materials	1
5.	Microwave processing of polymers and composites	1

12. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Metaxas, AC and Meredith Roger J. "Industrial microwave heating",	1983
	Peter Peregrinus Ltd., London, ISBN: 0 906048 89 3	
2.	Clark, David E. and Sutton WH. "Microwave processing of materials",	1996
	Annual Review of MaterialsScience.	
3.	Clark, David E. and Sutton WH. "Microwave solutions for ceramic	2005
	engineers", American Ceramic Society, ISBN: 1-57498-224-9	
4.	Gupta, Manoj, and Eugene Wong Wai Leong. "Microwaves and	2008
	metals", John Wiley & Sons, ISBN:9780470822722	
5.	Binner, Jon, Paul Hogg, and John Murphy. "Advanced materials	2013
	source book", Elsevier, ISBN: 185617 238 4	

13. Suggested References:

1.	Dinesh Agrawal, "Microwave processing of ceramics", Solid State and Materials Science, Vol. 3 (480-485)	1998
		2000
2.	Clark, David E., Diane C. Folz, and Jon K. West. "Processing	2000
	materials with microwave energy" Materials Science and	
	Engineering: A, Vol. 287(153-158)	
3.	Mishra, Radha Raman and Apurbba Kumar Sharma. "Microwave-	2016
	material interaction phenomena: heating mechanisms, challenges and	
	opportunities in material processing." Composites Part A: Applied	
	Science and Manufacturing, Vol. 81(78-97)	